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Preface

In the preface to the third edition of this book I noted that upper-level
undergraduate and beginning graduate econometrics students are as
likely to learn about this book from their instructor as by word-of-
mouth, the phenomenon that made the first edition of this book so
successful. Sales of the third edition indicate that this trend has
continued - more and more instructors are realizing that students find
this book to be of immense value to their understanding of
econometrics.



What is it about this book that students have found to be of such value?
This book supplements econometrics texts, at all levels, by providing an
overview of the subject and an intuitive feel for its concepts and
techniques, without the usual clutter of notation and technical detail
that necessarily characterize an econometrics textbook. It is often said
of econometrics textbooks that their readers miss the forest for the
trees. This is inevitable - the terminology and techniques that must be
taught do not allow the text to convey a proper intuitive sense of
"What's it all about?" and "How does it all fit together?" All
econometrics textbooks fail to provide this overview. This is not from
lack of trying - most textbooks have excellent passages containing the
relevant insights and interpretations. They make good sense to
instructors, but they do not make the expected impact on the students.
Why? Because these insights and interpretations are broken up,
appearing throughout the book, mixed with the technical details. In their
struggle to keep up with notation and to learn these technical details,
students miss the overview so essential to a real understanding of those
details. This book provides students with a perspective from which it is
possible to assimilate more easily the details of these textbooks.

Although the changes from the third edition are numerous, the basic
structure and flavor of the book remain unchanged. Following an
introductory chapter, the second chapter discusses at some length the
criteria for choosing estimators, and in doing so develops many of the
basic concepts used throughout the book. The third chapter provides an
overview of the subject matter, presenting the five assumptions of the
classical linear regression model and explaining how most problems
encountered in econometrics can be interpreted as a violation of one of
these assumptions. The fourth chapter exposits some concepts of
inference to
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provide a foundation for later chapters. Chapter 5 discusses general
approaches to the specification of an econometric model, setting the
stage for the next six chapters, each of which deals with violations of an
assumption of the classical linear regression model, describes their
implications, discusses relevant tests, and suggests means of resolving
resulting estimation problems. The remaining eight chapters and
Appendices A, B and C address selected topics. Appendix D provides
some student exercises and Appendix E offers suggested answers to the



even-numbered exercises. A set of suggested answers to odd-numbered
questions is available from the publisher upon request to instructors
adopting this book for classroom use.

There are several major changes in this edition. The chapter on
qualitative and limited dependent variables was split into a chapter on
qualitative dependent variables (adding a section on count data) and a
chapter on limited dependent variables (adding a section on duration
models). The time series chapter has been extensively revised to
incorporate the huge amount of work done in this area since the third
edition. A new appendix on the sampling distribution concept has been
added, to deal with what I believe is students' biggest stumbling block to
understanding econometrics. In the exercises, a new type of question
has been added, in which a Monte Carlo study is described and students
are asked to explain the expected results. New material has been added
to a wide variety of topics such as bootstrapping, generalized method of
moments, neural nets, linear structural relations, VARs, and
instrumental variable estimation. Minor changes have been made
throughout to update results and references, and to improve exposition.

To minimize readers' distractions, there are no footnotes. All references,
peripheral points and details worthy of comment are relegated to a
section at the end of each chapter entitled "General Notes". The
technical material that appears in the book is placed in end-of-chapter
sections entitled "Technical Notes". This technical material continues to
be presented in a way that supplements rather than duplicates the
contents of traditional textbooks. Students should find that this material
provides a useful introductory bridge to the more sophisticated
presentations found in the main text. Students are advised to wait until a
second or third reading of the body of a chapter before addressing the
material in the General or Technical Notes. A glossary explains
common econometric terms not found in the body of this book.

Errors in or shortcomings of this book are my responsibility, but for
improvements I owe many debts, mainly to scores of students, both
graduate and undergraduate, whose comments and reactions have
played a prominent role in shaping this fourth edition. Jan Kmenta and
Terry Seaks have made major contributions in their role as
"anonymous" referees, even though I have not always followed their
advice. I continue to be grateful to students throughout the world who
have expressed thanks to me for writing this book; I hope this fourth
edition continues to be of value to students both during and after their
formal course-work.
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Dedication

To ANNA and RED who, until they discovered what an econometrician was, were
 very impressed that their son might become one. With apologies to 
K. A. C. Manderville, I draw their attention to the following, adapted from 
Undoing of Lamia Gurdleneck.

''You haven't told me yet," said Lady Nuttal, "what it is your fiancé does for a
living."

"He's an econometrician." replied Lamia, with an annoying sense of being on
the defensive.

Lady Nuttal was obviously taken aback. It had not occurred to her that econo-
metricians entered into normal social relationships. The species, she would have
 surmised, was perpetuated in some collateral manner, like mules.

"But Aunt Sara, it's a very interesting profession," said Lamia warmly.

"I don't doubt it," said her aunt, who obviously doubted it very much. "To
 express anything important in mere figures is so plainly impossible that there
 must be endless scope for well-paid advice on how to do it. But don't you think 
that life with an econometrician would be rather, shall we say, humdrum?"

Lamia was silent. She felt reluctant to discuss the surprising depth of emo-
tional possibility which she had discovered below Edward's numerical veneer.

"It's not the figures themselves," she said finally, "it's what you do with them
that matters."
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1
Introduction

1.1 What is Econometrics?

Strange as it may seem, there does not exist a generally accepted
answer to this question. Responses vary from the silly "Econometrics is
what econometricians do" to the staid "Econometrics is the study of the
application of statistical methods to the analysis of economic
phenomena," with sufficient disagreements to warrant an entire journal
article devoted to this question (Tintner, 1953).

This confusion stems from the fact that econometricians wear many
different hats. First, and foremost, they are economists, capable of
utilizing economic theory to improve their empirical analyses of the
problems they address. At times they are mathematicians, formulating
economic theory in ways that make it appropriate for statistical testing.
At times they are accountants, concerned with the problem of finding
and collecting economic data and relating theoretical economic
variables to observable ones. At times they are applied statisticians,
spending hours with the computer trying to estimate economic
relationships or predict economic events. And at times they are
theoretical statisticians, applying their skills to the development of
statistical techniques appropriate to the empirical problems
characterizing the science of economics. It is to the last of these roles
that the term "econometric theory" applies, and it is on this aspect of
econometrics that most textbooks on the subject focus. This guide is
accordingly devoted to this "econometric theory" dimension of
econometrics, discussing the empirical problems typical of economics
and the statistical techniques used to overcome these problems.

What distinguishes an econometrician from a statistician is the former's
pre-occupation with problems caused by violations of statisticians'
standard assumptions; owing to the nature of economic relationships
and the lack of controlled experimentation, these assumptions are
seldom met. Patching up statistical methods to deal with situations
frequently encountered in empirical work in economics has created a
large battery of extremely sophisticated statistical techniques. In fact,
econometricians are often accused of using sledgehammers to crack
open peanuts while turning a blind eye to data deficiencies and the
many
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questionable assumptions required for the successful application of
these techniques. Valavanis has expressed this feeling forcefully:

Econometric theory is like an exquisitely balanced French
recipe, spelling out precisely with how many turns to mix the
sauce, how many carats of spice to add, and for how many
milliseconds to bake the mixture at exactly 474 degrees of
temperature. But when the statistical cook turns to raw
materials, he finds that hearts of cactus fruit are unavailable, so
he substitutes chunks of cantaloupe; where the recipe calls for
vermicelli he used shredded wheat; and he substitutes green
garment die for curry, ping-pong balls for turtle's eggs, and, for
Chalifougnac vintage 1883, a can of turpentine. (Valavanis,
1959, p. 83)

How has this state of affairs come about? One reason is that prestige in
the econometrics profession hinges on technical expertise rather than on
hard work required to collect good data:

It is the preparation skill of the econometric chef that catches
the professional eye, not the quality of the raw materials in the
meal, or the effort that went into procuring them. (Griliches,
1994, p. 14)

Criticisms of econometrics along these lines are not uncommon.
Rebuttals cite improvements in data collection, extol the fruits of the
computer revolution and provide examples of improvements in
estimation due to advanced techniques. It remains a fact, though, that in
practice good results depend as much on the input of sound and
imaginative economic theory as on the application of correct statistical
methods. The skill of the econometrician lies in judiciously mixing these
two essential ingredients; in the words of Malinvaud:

The art of the econometrician consists in finding the set of
assumptions which are both sufficiently specific and sufficiently
realistic to allow him to take the best possible advantage of the
data available to him. (Malinvaud, 1966, p. 514)

Modern econometrics texts try to infuse this art into students by
providing a large number of detailed examples of empirical application.
This important dimension of econometrics texts lies beyond the scope of
this book. Readers should keep this in mind as they use this guide to



improve their understanding of the purely statistical methods of
econometrics.

1.2 The Disturbance Term

A major distinction between economists and econometricians is the
latter's concern with disturbance terms. An economist will specify, for
example, that consumption is a function of income, and write C = (Y)
where C is consumption and Y is income. An econometrician will claim
that this relationship must also include a disturbance (or error) term,
and may alter the equation to read
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C = (Y) +e where e (epsilon) is a disturbance term. Without the
disturbance term the relationship is said to be exact or deterministic;
with the disturbance term it is said to be stochastic.

The word "stochastic" comes from the Greek "stokhos," meaning a
target or bull's eye. A stochastic relationship is not always right on
target in the sense that it predicts the precise value of the variable being
explained, just as a dart thrown at a target seldom hits the bull's eye.
The disturbance term is used to capture explicitly the size of these
''misses" or "errors." The existence of the disturbance term is justified in
three main ways. (Note: these are not mutually exclusive.)

(1) Omission of the influence of innumerable chance events Although
income might be the major determinant of the level of consumption, it is
not the only determinant. Other variables, such as the interest rate or
liquid asset holdings, may have a systematic influence on consumption.
Their omission constitutes one type of specification error: the nature of
the economic relationship is not correctly specified. In addition to these
systematic influences, however, are innumerable less systematic
influences, such as weather variations, taste changes, earthquakes,
epidemics and postal strikes. Although some of these variables may
have a significant impact on consumption, and thus should definitely be
included in the specified relationship, many have only a very slight,
irregular influence; the disturbance is often viewed as representing the
net influence of a large number of such small and independent causes.



(2) Measurement error It may be the case that the variable being
explained cannot be measured accurately, either because of data
collection difficulties or because it is inherently unmeasurable and a
proxy variable must be used in its stead. The disturbance term can in
these circumstances be thought of as representing this measurement
error. Errors in measuring the explaining variable(s) (as opposed to the
variable being explained) create a serious econometric problem,
discussed in chapter 9. The terminology errors in variables is also used
to refer to measurement errors.

(3) Human indeterminacy Some people believe that human behavior is
such that actions taken under identical circumstances will differ in a
random way. The disturbance term can be thought of as representing
this inherent randomness in human behavior.

Associated with any explanatory relationship are unknown constants,
called parameters, which tie the relevant variables into an equation. For
example, the relationship between consumption and income could be
specified as

where b1 and b2 are the parameters characterizing this consumption
function. Economists are often keenly interested in learning the values
of these unknown parameters.
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The existence of the disturbance term, coupled with the fact that its
magnitude is unknown, makes calculation of these parameter values
impossible. Instead, they must be estimated. It is on this task, the
estimation of parameter values, that the bulk of econometric theory
focuses. The success of econometricians' methods of estimating
parameter values depends in large part on the nature of the disturbance
term; statistical assumptions concerning the characteristics of the
disturbance term, and means of testing these assumptions, therefore
play a prominent role in econometric theory.

1.3 Estimates and Estimators



In their mathematical notation, econometricians usually employ Greek
letters to represent the true, unknown values of parameters. The Greek
letter most often used in this context is beta (b). Thus, throughout this
book, b is used as the parameter value that the econometrician is
seeking to learn. Of course, no one ever actually learns the value of b,
but it can be estimated: via statistical techniques, empirical data can be
used to take an educated guess at b. In any particular application, an
estimate of b is simply a number. For example, b might be estimated as
16.2. But, in general, econometricians are seldom interested in
estimating a single parameter; economic relationships are usually
sufficiently complex to require more than one parameter, and because
these parameters occur in the same relationship, better estimates of
these parameters can be obtained if they are estimated together (i.e., the
influence of one explaining variable is more accurately captured if the
influence of the other explaining variables is simultaneously accounted
for). As a result, b seldom refers to a single parameter value; it almost
always refers to a set of parameter values, individually called b1, b2, . .
., bk where k is the number of different parameters in the set. b is then
referred to as a vector and is written as

In any particular application, an estimate of b will be a set of numbers.
For example, if three parameters are being estimated (i.e., if the
dimension of b is three), b might be estimated as

In general, econometric theory focuses not on the estimate itself, but on
the estimator - the formula or "recipe" by which the data are
transformed into an actual estimate. The reason for this is that the
justification of an estimate computed
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from a particular sample rests on a justification of the estimation
method (the estimator). The econometrician has no way of knowing the
actual values of the disturbances inherent in a sample of data;
depending on these disturbances, an estimate calculated from that
sample could be quite inaccurate. It is therefore impossible to justify the
estimate itself. However, it may be the case that the econometrician can
justify the estimator by showing, for example, that the estimator
"usually" produces an estimate that is "quite close" to the true
parameter value regardless of the particular sample chosen. (The
meaning of this sentence, in particular the meaning of ''usually" and of
"quite close," is discussed at length in the next chapter.) Thus an
estimate of b from a particular sample is defended by justifying the
estimator.

Because attention is focused on estimators of b, a convenient way of
denoting those estimators is required. An easy way of doing this is to

place a mark over the b or a superscript on it. Thus  (beta-hat) and b*
(beta-star) are often used to denote estimators of beta. One estimator,
the ordinary least squares (OLS) estimator, is very popular in
econometrics; the notation bOLS is used throughout this book to

represent it. Alternative estimators are denoted by  , b*, or something
similar. Many textbooks use the letter b to denote the OLS estimator.

1.4 Good and Preferred Estimators

Any fool can produce an estimator of b, since literally an infinite
number of them exists, i.e., there exists an infinite number of different
ways in which a sample of data can be used to produce an estimate of b,
all but a few of these ways producing "bad" estimates. What
distinguishes an econometrician is the ability to produce "good"
estimators, which in turn produce "good" estimates. One of these
"good" estimators could be chosen as the "best" or "preferred"
estimator and be used to generate the "preferred" estimate of b. What
further distinguishes an econometrician is the ability to provide "good"
estimators in a variety of different estimating contexts. The set of
"good" estimators (and the choice of "preferred" estimator) is not the
same in all estimating problems. In fact, a "good" estimator in one
estimating situation could be a "bad" estimator in another situation.



The study of econometrics revolves around how to generate a "good" or
the "preferred" estimator in a given estimating situation. But before the
"how to" can be explained, the meaning of "good" and "preferred" must
be made clear. This takes the discussion into the subjective realm: the
meaning of "good" or "preferred" estimator depends upon the subjective
values of the person doing the estimating. The best the econometrician
can do under these circumstances is to recognize the more popular
criteria used in this regard and generate estimators that meet one or
more of these criteria. Estimators meeting certain of these criteria could
be called "good" estimators. The ultimate choice of the "preferred"
estimator, however, lies in the hands of the person doing the estimating,
for it is
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his or her value judgements that determine which of these criteria is the
most important. This value judgement may well be influenced by the
purpose for which the estimate is sought, in addition to the subjective
prejudices of the individual.

Clearly, our investigation of the subject of econometrics can go no
further until the possible criteria for a "good" estimator are discussed.
This is the purpose of the next chapter.

General Notes

1.1 What is Econometrics?

The term "econometrics" first came into prominence with the formation
in the early 1930s of the Econometric Society and the founding of the
journal Econometrica. The introduction of Dowling and Glahe (1970)
surveys briefly the landmark publications in econometrics. Pesaran
(1987) is a concise history and overview of econometrics. Hendry and
Morgan (1995) is a collection of papers of historical importance in the
development of econometrics. Epstein (1987), Morgan (1990a) and Qin
(1993) are extended histories; see also Morgan (1990b). Hendry (1980)
notes that the word econometrics should not be confused with
"economystics," ''economic-tricks," or "icon-ometrics."

The discipline of econometrics has grown so rapidly, and in so many
different directions, that disagreement regarding the definition of
econometrics has grown rather than diminished over the past decade.



Reflecting this, at least one prominent econometrician, Goldberger
(1989, p. 151), has concluded that "nowadays my definition would be
that econometrics is what econometricians do." One thing that
econometricians do that is not discussed in this book is serve as expert
witnesses in court cases. Fisher (1986) has an interesting account of this
dimension of econometric work. Judge et al. (1988, p. 81) remind
readers that "econometrics is fun!"

A distinguishing feature of econometrics is that it focuses on ways of
dealing with data that are awkward/dirty because they were not
produced by controlled experiments. In recent years, however,
controlled experimentation in economics has become more common.
Burtless (1995) summarizes the nature of such experimentation and
argues for its continued use. Heckman and Smith (1995) is a strong
defense of using traditional data sources. Much of this argument is
associated with the selection bias phenomenon (discussed in chapter 16)
- people in an experimental program inevitably are not a random
selection of all people, particularly with respect to their unmeasured
attributes, and so results from the experiment are compromised.
Friedman and Sunder (1994) is a primer on conducting economic
experiments. Meyer (1995) discusses the attributes of "natural"
experiments in economics.

Mayer (1933, chapter 10), Summers (1991), Brunner (1973), Rubner
(1970) and Streissler (1970) are good sources of cynical views of
econometrics, summed up dramatically by McCloskey (1994, p. 359) ".
. .most allegedly empirical research in economics is unbelievable,
uninteresting or both." More comments appear in this book in section
9.2 on errors in variables and chapter 18 on prediction. Fair (1973) and
From and Schink (1973) are examples of studies defending the use of
sophisticated econometric techniques. The use of econometrics in the
policy context has been hampered
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by the (inexplicable?) operation of "Goodhart's Law" (1978), namely
that all econometric models break down when used for policy. The
finding of Dewald et al. (1986), that there is a remarkably high
incidence of inability to replicate empirical studies in economics, does
not promote a favorable view of econometricians.



What has been the contribution of econometrics to the development of
economic science? Some would argue that empirical work frequently
uncovers empirical regularities which inspire theoretical advances. For
example, the difference between time-series and cross-sectional
estimates of the MPC prompted development of the relative, permanent
and life-cycle consumption theories. But many others view
econometrics with scorn, as evidenced by the following quotes:

We don't genuinely take empirical work seriously in economics.
It's not the source by which economists accumulate their
opinions, by and large. (Leamer in Hendry et al., 1990, p. 182);

Very little of what economists will tell you they know, and
almost none of the content of the elementary text, has been
discovered by running regressions. Regressions on government-
collected data have been used mainly to bolster one theoretical
argument over another. But the bolstering they provide is weak,
inconclusive, and easily countered by someone else's
regressions. (Bergmann, 1987, p. 192);

No economic theory was ever abandoned because it was
rejected by some empirical econometric test, nor was a clear cut
decision between competing theories made in light of the
evidence of such a test. (Spanos, 1986, p. 660); and

I invite the reader to try . . . to identify a meaningful hypothesis
about economic behavior that has fallen into disrepute because
of a formal statistical test. (Summers, 1991, p. 130)

This reflects the belief that economic data are not powerful enough to
test and choose among theories, and that as a result econometrics has
shifted from being a tool for testing theories to being a tool for
exhibiting/displaying theories. Because economics is a
non-experimental science, often the data are weak, and because of this
empirical evidence provided by econometrics is frequently
inconclusive; in such cases it should be qualified as such. Griliches
(1986) comments at length on the role of data in econometrics, and
notes that they are improving; Aigner (1988) stresses the potential role
of improved data.

Critics might choose to paraphrase the Malinvaud quote as "The art of
drawing a crooked line from an unproved assumption to a foregone
conclusion." The importance of a proper understanding of econometric
techniques in the face of a potential inferiority of econometrics to



inspired economic theorizing is captured nicely by Samuelson (1965, p.
9): "Even if a scientific regularity were less accurate than the intuitive
hunches of a virtuoso, the fact that it can be put into operation by
thousands of people who are not virtuosos gives it a transcendental
importance." This guide is designed for those of us who are not
virtuosos!

Feminist economists have complained that traditional econometrics
contains a male bias. They urge econometricians to broaden their
teaching and research methodology to encompass the collection of
primary data of different types, such as survey or interview data, and
the use of qualitative studies which are not based on the exclusive use
of "objective" data. See MacDonald (1995) and Nelson (1995). King,
Keohane and
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Verba (1994) discuss how research using qualitative studies can meet
traditional scientific standards.

Several books focus on the empirical applications dimension of
econometrics. Some recent examples are Thomas (1993), Berndt (1991)
and Lott and Ray (1992). Manski (1991, p. 49) notes that "in the past,
advances in econometrics were usually motivated by a desire to answer
specific empirical questions. This symbiosis of theory and practice is
less common today." He laments that "the distancing of methodological
research from its applied roots is unhealthy."

1.2 The Disturbance Term

The error term associated with a relationship need not necessarily be
additive, as it is in the example cited. For some nonlinear functions it is
often convenient to specify the error term in a multiplicative form. In
other instances it may be appropriate to build the stochastic element
into the relationship by specifying the parameters to be random
variables rather than constants. (This is called the random-coefficients
model.)

Some econometricians prefer to define the relationship between C and Y
discussed earlier as "the mean of C conditional on Y is (Y)," written as
E(C\Y). = (Y). This spells out more explicitly what econometricians
have in mind when using this specification.



In terms of the throwing-darts-at-a-target analogy, characterizing
disturbance terms refers to describing the nature of the misses: are the
darts distributed uniformly around the bull's eye? Is the average miss
large or small? Does the average miss depend on who is throwing the
darts? Is a miss to the right likely to be followed by another miss to the
right? In later chapters the statistical specification of these
characteristics and the related terminology (such as "homoskedasticity"
and "autocorrelated errors") are explained in considerable detail.

1.3 Estimates and Estimators

An estimator is simply an algebraic function of a potential sample of
data; once the sample is drawn, this function creates and actual
numerical estimate.

Chapter 2 discusses in detail the means whereby an estimator is
"justified" and compared with alternative estimators.

1.4 Good and Preferred Estimators

The terminology "preferred" estimator is used instead of the term "best"
estimator because the latter has a specific meaning in econometrics.
This is explained in chapter 2.

Estimation of parameter values is not the only purpose of econometrics.
Two other major themes can be identified: testing of hypotheses and
economic forecasting. Because both these problems are intimately
related to the estimation of parameter values, it is not misleading to
characterize econometrics as being primarily concerned with parameter
estimation.
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Technical Notes

1.1 What is Econometrics?

In the macroeconomic context, in particular in research on real business
cycles, a computational simulation procedure called calibration is often
employed as an alternative to traditional econometric analysis. In this
procedure economic theory plays a much more prominent role than
usual, supplying ingredients to a general equilibrium model designed to



address a specific economic question. This model is then "calibrated" by
setting parameter values equal to average values of economic ratios
known not to have changed much over time or equal to empirical
estimates from microeconomic studies. A computer simulation produces
output from the model, with adjustments to model and parameters made
until the output from these simulations has qualitative characteristics
(such as correlations between variables of interest) matching those of
the real world. Once this qualitative matching is achieved the model is
simulated to address the primary question of interest. Kydland and
Prescott (1996) is a good exposition of this approach.

Econometricians have not viewed this technique with favor, primarily
because there is so little emphasis on evaluating the quality of the
output using traditional testing/assessment procedures. Hansen and
Heckman (1996), a cogent critique, note (p. 90) that "Such models are
often elegant, and the discussions produced from using them are
frequently stimulating and provocative, but their empirical foundations
are not secure. What credibility should we attach to numbers produced
from their 'computational experiments,' and why should we use their
'calibrated models' as a basis for serious quantitative policy evaluation?"
King (1995) is a good comparison of econometrics and calibration.
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2
Criteria for Estimators

2.1 Introduction

Chapter 1 posed the question, What is a "good" estimator? The aim of
this chapter is to answer that question by describing a number of criteria
that econometricians feel are measures of "goodness." These criteria are
discussed under the following headings:

(1) Computational cost

(2) Least squares

(3) Highest R2



(4) Unbiasedness

(5) Efficiency

(6) Mean square error

(7) Asymptotic properties

(8) Maximum likelihood

Since econometrics can be characterized as a search for estimators
satisfying one or more of these criteria, care is taken in the discussion of
the criteria to ensure that the reader understands fully the meaning of
the different criteria and the terminology associated with them. Many
fundamental ideas of econometrics, critical to the question, What's
econometrics all about?, are presented in this chapter.

2.2 Computational Cost

To anyone, but particularly to economists, the extra benefit associated
with choosing one estimator over another must be compared with its
extra cost, where cost refers to expenditure of both money and effort.
Thus, the computational ease and cost of using one estimator rather
than another must be taken into account whenever selecting an
estimator. Fortunately, the existence and ready availability of
high-speed computers, along with standard packaged routines for most
of the popular estimators, has made computational cost very low. As a
 

page_10

Page 11

result, this criterion does not play as strong a role as it once did. Its
influence is now felt only when dealing with two kinds of estimators.
One is the case of an atypical estimation procedure for which there does
not exist a readily available packaged computer program and for which
the cost of programming is high. The second is an estimation method for
which the cost of running a packaged program is high because it needs
large quantities of computer time; this could occur, for example, when
using an iterative routine to find parameter estimates for a problem
involving several nonlinearities.

2.3 Least Squares



For any set of values of the parameters characterizing a relationship,
estimated values of the dependent variable (the variable being
explained) can be calculated using the values of the independent
variables (the explaining variables) in the data set. These estimated

values (called  ) of the dependent variable can be subtracted from the
actual values (y) of the dependent variable in the data set to produce

what are called the residuals (y -  ). These residuals could be thought
of as estimates of the unknown disturbances inherent in the data set.

This is illustrated in figure 2.1. The line labeled  is the estimated
relationship corresponding to a specific set of values of the unknown
parameters. The dots represent actual observations on the dependent
variable y and the independent variable x. Each observation is a certain
vertical distance away from the estimated line, as pictured by the
double-ended arrows. The lengths of these double-ended arrows
measure the residuals. A different set of specific values of the

Figure 2.1
Minimizing the sum of squared residuals
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parameters would create a different estimating line and thus a different
set of residuals.

It seems natural to ask that a "good" estimator be one that generates a
set of estimates of the parameters that makes these residuals "small."
Controversy arises, however, over the appropriate definition of "small."
Although it is agreed that the estimator should be chosen to minimize a
weighted sum of all these residuals, full agreement as to what the
weights should be does not exist. For example, those feeling that all
residuals should be weighted equally advocate choosing the estimator
that minimizes the sum of the absolute values of these residuals. Those
feeling that large residuals should be avoided advocate weighting large
residuals more heavily by choosing the estimator that minimizes the sum
of the squared values of these residuals. Those worried about misplaced
decimals and other data errors advocate placing a constant (sometimes
zero) weight on the squared values of particularly large residuals. Those
concerned only with whether or not a residual is bigger than some
specified value suggest placing a zero weight on residuals smaller than
this critical value and a weight equal to the inverse of the residual on
residuals larger than this value. Clearly a large number of alternative
definitions could be proposed, each with appealing features.

By far the most popular of these definitions of "small" is the
minimization of the sum of squared residuals. The estimator generating
the set of values of the parameters that minimizes the sum of squared
residuals is called the ordinary least squares estimator. It is referred to
as the OLS estimator and is denoted by bOLS in this book. This
estimator is probably the most popular estimator among researchers
doing empirical work. The reason for this popularity, however, does not
stem from the fact that it makes the residuals "small" by minimizing the
sum of squared residuals. Many econometricians are leery of this
criterion because minimizing the sum of squared residuals does not say
anything specific about the relationship of the estimator to the true
parameter value b that it is estimating. In fact, it is possible to be too
successful in minimizing the sum of squared residuals, accounting for so
many unique features of that particular sample that the estimator loses
its general validity, in the sense that, were that estimator applied to a
new sample, poor estimates would result. The great popularity of the
OLS estimator comes from the fact that in some estimating problems
(but not all!) it scores well on some of the other criteria, described
below, that are thought to be of greater importance. A secondary reason
for its popularity is its computational ease; all computer packages
include the OLS estimator for linear relationships, and many have



routines for nonlinear cases.

Because the OLS estimator is used so much in econometrics, the
characteristics of this estimator in different estimating problems are
explored very thoroughly by all econometrics texts. The OLS estimator
always minimizes the sum of squared residuals; but it does not always
meet other criteria that econometricians feel are more important. As will
become clear in the next chapter, the subject of econometrics can be
characterized as an attempt to find alternative estimators to the OLS
estimator for situations in which the OLS estimator does
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not meet the estimating criterion considered to be of greatest
importance in the problem at hand.

2.4 Highest R2

A statistic that appears frequently in econometrics is the coefficient of
determination, R2. It is supposed to represent the proportion of the
variation in the dependent variable "explained" by variation in the
independent variables. It does this in a meaningful sense in the case of a
linear relationship estimated by OLS. In this case it happens that the
sum of the squared deviations of the dependent variable about its mean
(the "total" variation in the dependent variable) can be broken into two
parts, called the "explained" variation (the sum of squared deviations of
the estimated values of the dependent variable around their mean) and
the ''unexplained" variation (the sum of squared residuals). R2 is
measured either as the ratio of the "explained" variation to the "total"
variation or, equivalently, as 1 minus the ratio of the "unexplained"
variation to the "total" variation, and thus represents the percentage of
variation in the dependent variable "explained" by variation in the
independent variables.

Because the OLS estimator minimizes the sum of squared residuals (the
"unexplained" variation), it automatically maximizes R2. Thus
maximization of R2, as a criterion for an estimator, is formally identical
to the least squares criterion, and as such it really does not deserve a
separate section in this chapter. It is given a separate section for two
reasons. The first is that the formal identity between the highest R2
criterion and the least squares criterion is worthy of emphasis. And the



second is to distinguish clearly the difference between applying R2 as a
criterion in the context of searching for a "good" estimator when the
functional form and included independent variables are known, as is the
case in the present discussion, and using R2 to help determine the
proper functional form and the appropriate independent variables to be
included. This later use of R2, and its misuse, are discussed later in the
book (in sections 5.5 and 6.2).

2.5 Unbiasedness

Suppose we perform the conceptual experiment of taking what is called
a repeated sample: keeping the values of the independent variables
unchanged, we obtain new observations for the dependent variable by
drawing a new set of disturbances. This could be repeated, say, 2,000
times, obtaining 2,000 of these repeated samples. For each of these
repeated samples we could use an estimator b* to calculate an estimate
of b. Because the samples differ, these 2,000 estimates will not be the
same. The manner in which these estimates are distributed is called the
sampling distribution of b*. This is illustrated for the one-dimensional
case in figure 2.2, where the sampling distribution of the estimator is
labeled (b*). It is simply the probability density function of b*,
approximated
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Figure 2.2
Using the sampling distribution to illustrate bias

by using the 2,000 estimates of b to construct a histogram, which in turn
is used to approximate the relative frequencies of different estimates of
b from the estimator b*. The sampling distribution of an alternative

estimator,  , is also shown in figure 2.2.

This concept of a sampling distribution, the distribution of estimates
produced by an estimator in repeated sampling, is crucial to an
understanding of econometrics. Appendix A at the end of this book
discusses sampling distributions at greater length. Most estimators are
adopted because their sampling distributions have "good" properties;
the criteria discussed in this and the following three sections are directly
concerned with the nature of an estimator's sampling distribution.

The first of these properties is unbiasedness. An estimator b* is said to
be an unbiased estimator of b if the mean of its sampling distribution is
equal to b, i.e., if the average value of b* in repeated sampling is b. The
mean of the sampling distribution of b* is called the expected value of
b* and is written Eb* the bias of b* is the difference between Eb* and

b. In figure 2.2, b* is seen to be unbiased, whereas  has a bias of size

(E  - b). The property of unbiasedness does not mean that b* = b; it
says only that, if we could undertake repeated sampling an infinite



number of times, we would get the correct estimate "on the average."

The OLS criterion can be applied with no information concerning how
the data were generated. This is not the case for the unbiasedness
criterion (and all other criteria related to the sampling distribution),
since this knowledge is required to construct the sampling distribution.
Econometricians have therefore
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developed a standard set of assumptions (discussed in chapter 3)
concerning the way in which observations are generated. The general,
but not the specific, way in which the disturbances are distributed is an
important component of this. These assumptions are sufficient to allow
the basic nature of the sampling distribution of many estimators to be
calculated, either by mathematical means (part of the technical skill of
an econometrician) or, failing that, by an empirical means called a
Monte Carlo study, discussed in section 2.10.

Although the mean of a distribution is not necessarily the ideal measure
of its location (the median or mode in some circumstances might be
considered superior), most econometricians consider unbiasedness a
desirable property for an estimator to have. This preference for an
unbiased estimator stems from the hope that a particular estimate (i.e.,
from the sample at hand) will be close to the mean of the estimator's
sampling distribution. Having to justify a particular estimate on a "hope"
is not especially satisfactory, however. As a result, econometricians
have recognized that being centered over the parameter to be estimated
is only one good property that the sampling distribution of an estimator
can have. The variance of the sampling distribution, discussed next, is
also of great importance.

2.6 Efficiency

In some econometric problems it is impossible to find an unbiased
estimator. But whenever one unbiased estimator can be found, it is
usually the case that a large number of other unbiased estimators can
also be found. In this circumstance the unbiased estimator whose
sampling distribution has the smallest variance is considered the most
desirable of these unbiased estimators; it is called the best unbiased
estimator, or the efficient estimator among all unbiased estimators. Why
it is considered the most desirable of all unbiased estimators is easy to



visualize. In figure 2.3 the sampling distributions of two unbiased

estimators are drawn. The sampling distribution of the estimator 

denoted f(  ), is drawn "flatter" or "wider" than the sampling

distribution of b*, reflecting the larger variance of . Although both
estimators would produce estimates in repeated samples whose average

would be b, the estimates from  would range more widely and thus

would be less desirable. A researcher using  would be less certain that
his or her estimate was close to b than would a researcher using b*.

Sometimes reference is made to a criterion called "minimum variance."
This criterion, by itself, is meaningless. Consider the estimator b* = 5.2
(i.e., whenever a sample is taken, estimate b by 5.2 ignoring the
sample). This estimator has a variance of zero, the smallest possible
variance, but no one would use this estimator because it performs so
poorly on other criteria such as unbiasedness. (It is interesting to note,
however, that it performs exceptionally well on the computational cost
criterion!) Thus, whenever the minimum variance, or "efficiency,"
criterion is mentioned, there must exist, at least implicitly, some
additional constraint, such as unbiasedness, accompanying that
criterion. When the
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Figure 2.3
Using the sampling distribution to illustrate

efficiency

additional constraint accompanying the minimum variance criterion is
that the estimators under consideration be unbiased, the estimator is
referred to as the best unbiased estimator.

Unfortunately, in many cases it is impossible to determine
mathematically which estimator, of all unbiased estimators, has the
smallest variance. Because of this problem, econometricians frequently
add the further restriction that the estimator be a linear function of the
observations on the dependent variable. This reduces the task of finding
the efficient estimator to mathematically manageable proportions. An
estimator that is linear and unbiased and that has minimum variance
among all linear unbiased estimators is called the best linear unbiased
estimator (BLUE). The BLUE is very popular among econometricians.

This discussion of minimum variance or efficiency has been implicitly
undertaken in the context of a undimensional estimator, i.e., the case in
which b is a single number rather than a vector containing several

numbers. In the multidimensional case the variance of  becomes a

matrix called the variance-covariance matrix of . This creates special
problems in determining which estimator has the smallest variance. The



technical notes to this section discuss this further.

2.7 Mean Square Error (MSE)

Using the best unbiased criterion allows unbiasedness to play an
extremely strong role in determining the choice of an estimator, since
only unbiased esti-
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Figure 2.4
MSE trades off bias and variance

mators are considered. It may well be the case that, by restricting
attention to only unbiased estimators, we are ignoring estimators that
are only slightly biased but have considerably lower variances. This

phenomenon is illustrated in figure 2.4. The sampling distribution of 

the best unbiased estimator, is labeled f(  ). b* is a biased estimator
with sampling distribution (b*). It is apparent from figure 2.4 that,
although (b*) is not centered over b reflecting the bias of b*, it is

"narrower" than f(  ), indicating a smaller variance. It should be clear



from the diagram that most researchers would probably choose the

biased estimator b* in preference to the best unbiased estimator .

This trade-off between low bias and low variance is formalized by using
as a criterion the minimization of a weighted average of the bias and the
variance (i.e., choosing the estimator that minimizes this weighted
average). This is not a variable formalization, however, because the bias
could be negative. One way to correct for this is to use the absolute
value of the bias; a more popular way is to use its square. When the
estimator is chosen so as to minimize a weighted average of the
variance and the square of the bias, the estimator is said to be chosen on
the weighted square error criterion. When the weights are equal, the
criterion is the popular mean square error (MSE) criterion. The
popularity of the mean square error criterion comes from an alternative
derivation of this criterion: it happens that the expected value of a loss
function consisting of the square of the difference between b and its
estimate (i.e., the square of the estimation error) is the same as the sum
of the variance and the squared bias. Minimization of the expected
value of this loss function makes good intuitive sense as a criterion for
choosing an estimator.
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In practice, the MSE criterion is not usually adopted unless the best
unbiased criterion is unable to produce estimates with small variances.
The problem of multicollinearity, discussed in chapter 11, is an example
of such a situation.

2.8 Asymptotic Properties

The estimator properties discussed in sections 2.5, 2.6 and 2.7 above
relate to the nature of an estimator's sampling distribution. An unbiased
estimator, for example, is one whose sampling distribution is centered
over the true value of the parameter being estimated. These properties
do not depend on the size of the sample of data at hand: an unbiased
estimator, for example, is unbiased in both small and large samples. In
many econometric problems, however, it is impossible to find estimators
possessing these desirable sampling distribution properties in small
samples. When this happens, as it frequently does, econometricians may
justify an estimator on the basis of its asymptotic properties - the nature
of the estimator's sampling distribution in extremely large samples.



The sampling distribution of most estimators changes as the sample size
changes. The sample mean statistic, for example, has a sampling
distribution that is centered over the population mean but whose
variance becomes smaller as the sample size becomes larger. In many
cases it happens that a biased estimator becomes less and less biased as
the sample size becomes larger and larger - as the sample size becomes
larger its sampling distribution changes, such that the mean of its
sampling distribution shifts closer to the true value of the parameter
being estimated. Econometricians have formalized their study of these
phenomena by structuring the concept of an asymptotic distribution
and defining desirable asymptotic or "large-sample properties" of an
estimator in terms of the character of its asymptotic distribution. The
discussion below of this concept and how it is used is heuristic (and not
technically correct); a more formal exposition appears in appendix C at
the end of this book.

Consider the sequence of sampling distributions of an estimator 

formed by calculating the sampling distribution of  for successively
larger sample sizes. If the distributions in this sequence become more
and more similar in form to some specific distribution (such as a normal
distribution) as the sample size becomes extremely large, this specific

distribution is called the asymptotic distribution of . Two basic
estimator properties are defined in terms of the asymptotic distribution.

(1) If the asymptotic distribution of  becomes concentrated on a
particular value k as the sample size approaches infinity, k is said to be

the probability limit of  and is written plim  = k if plim  = b, then 
is said to be consistent.

(2) The variance of the asymptotic distribution of  is called the

asymptotic variance of  if  is consistent and its asymptotic variance is
smaller than
 

page_18

Page 19



Figure 2.5
How sampling distribution can change as the sample size

grows

the asymptotic variance of all other consistent estimators,  is said to be
asymptotically efficient.

At considerable risk of oversimplification, the plim can be thought of as

the large-sample equivalent of the expected value, and so plim  = b is
the large-sample equivalent of unbiasedness. Consistency can be
crudely conceptualized as the large-sample equivalent of the minimum
mean square error property, since a consistent estimator can be (loosely
speaking) though of as having, in the limit, zero bias and a zero
variance. Asymptotic efficiency is the large-sample equivalent of best
unbiasedness: the variance of an asymptotically efficient estimator goes
to zero faster than the variance of any other consistent estimator.

Figure 2.5 illustrates the basic appeal of asymptotic properties. For
sample size 20, the sampling distribution of b* is shown as (b*)20. Since



this sampling distribution is not centered over b, the estimator b* is
biased. As shown in figure 2.5, however, as the sample size increases to
40, then 70 and then 100, the sampling distribution of b* shifts so as to
be more closely centered over b (i.e., it becomes less biased), and it
becomes less spread out (i.e., its variance becomes smaller). If b* were
consistent, as the sample size increased to infinity
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the sampling distribution would shrink in width to a single vertical line,
of infinite height, placed exactly at the point b.

It must be emphasized that these asymptotic criteria are only employed
in situations in which estimators with the traditional desirable small-
sample properties, such as unbiasedness, best unbiasedness and
minimum mean square error, cannot be found. Since econometricians
quite often must work with small samples, defending estimators on the
basis of their asymptotic properties is legitimate only if it is the case that
estimators with desirable asymptotic properties have more desirable
small-sample properties than do estimators without desirable asymptotic
properties. Monte Carlo studies (see section 2.10) have shown that in
general this supposition is warranted.

The message of the discussion above is that when estimators with
attractive small-sample properties cannot be found one may wish to
choose an estimator on the basis of its large-sample properties. There is
an additional reason for interest in asymptotic properties, however, of
equal importance. Often the derivation of small-sample properties of an
estimator is algebraically intractable, whereas derivation of large-sample
properties is not. This is because, as explained in the technical notes, the
expected value of a nonlinear function of a statistic is not the nonlinear
function of the expected value of that statistic, whereas the plim of a
nonlinear function of a statistic is equal to the nonlinear function of the
plim of that statistic.

These two features of asymptotics give rise to the following four
reasons for why asymptotic theory has come to play such a prominent
role in econometrics.

(1) When no estimator with desirable small-sample properties can be
found, as is often the case, econometricians are forced to choose
estimators on the basis of their asymptotic properties. As example is the



choice of the OLS estimator when a lagged value of the dependent
variable serves as a regressor. See chapter 9.

(2) Small-sample properties of some estimators are extraordinarily
difficult to calculate, in which case using asymptotic algebra can
provide an indication of what the small-sample properties of this
estimator are likely to be. An example is the plim of the OLS estimator
in the simultaneous equations context. See chapter 10.

(3) Formulas based on asymptotic derivations are useful approximations
to formulas that otherwise would be very difficult to derive and
estimate. An example is the formula in the technical notes used to
estimate the variance of a nonlinear function of an estimator.

(4) Many useful estimators and test statistics may never have been
found had it not been for algebraic simplifications made possible by
asymptotic algebra. An example is the development of LR, W and LM
test statistics for testing nonlinear restrictions. See chapter 4.
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Figure 2.6
Maximum likelihood estimation

2.9 Maximum Likelihood

The maximum likelihood principle of estimation is based on the idea
that the sample of data at hand is more likely to have come from a "real
world" characterized by one particular set of parameter values than



from a "real world" characterized by any other set of parameter values.
The maximum likelihood estimate (MLE) of a vector of parameter
values b is simply the particular vector bMLE that gives the greatest
probability of obtaining the observed data.

This idea is illustrated in figure 2.6. Each of the dots represents an
observation on x drawn at random from a population with mean m and
variance s2. Pair A of parameter values, mA and (s2)A, gives rise in
figure 2.6 to the probability density function A for x while the pair B,
mB and (s2)B, gives rise to probability density function B. Inspection of
the diagram should reveal that the probability of having obtained the
sample in question if the parameter values were mA and (s2)A is very
low compared with the probability of having obtained the sample if the
parameter values were mB and (s2)B. On the maximum likelihood
principle, pair B is preferred to pair A as an estimate of m and s2. The

maximum likelihood estimate is the particular pair of values mMLE and
(s2)MLE that creates the greatest probability of having obtained the
sample in question; i.e., no other pair of values would be preferred to
this maximum likelihood pair, in the sense that pair B is preferred to
pair A. The means by which the econometrician finds this maximum
likelihood estimates is discussed briefly in the technical notes to this
section.

In addition to its intuitive appeal, the maximum likelihood estimator has
several desirable asymptotic properties. It is asymptotically unbiased, it
is consistent, it is asymptotically efficient, it is distributed
asymptotically normally, and its asymptotic variance can be found via a
standard formula (the Cramer-Rao lower bound - see the technical
notes to this section). Its only major theoretical drawback is that in
order to calculate the MLE the econometrician must assume
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a specific (e.g., normal) distribution for the error term. Most
econometricians seem willing to do this.

These properties make maximum likelihood estimation very appealing
for situations in which it is impossible to find estimators with desirable
small-sample properties, a situation that arises all too often in practice.
In spite of this, however, until recently maximum likelihood estimation



has not been popular, mainly because of high computational cost.
Considerable algebraic manipulation is required before estimation, and
most types of MLE problems require substantial input preparation for
available computer packages. But econometricians' attitudes to MLEs
have changed recently, for several reasons. Advances in computers and
related software have dramatically reduced the computational burden.
Many interesting estimation problems have been solved through the use
of MLE techniques, rendering this approach more useful (and in the
process advertising its properties more widely). And instructors have
been teaching students the theoretical aspects of MLE techniques,
enabling them to be more comfortable with the algebraic manipulations
it requires.

2.10 Monte Carlo Studies

A Monte Carlo study is a simulation exercise designed to shed light on
the small-sample properties of competing estimators for a given
estimating problem. They are called upon whenever, for that particular
problem, there exist potentially attractive estimators whose small-
sample properties cannot be derived theoretically. Estimators with
unknown small-sample properties are continually being proposed in the
econometric literature, so Monte Carlo studies have become quite
common, especially now that computer technology has made their
undertaking quite cheap. This is one good reason for having a good
understanding of this technique. A more important reason is that a
thorough understanding of Monte Carlo studies guarantees an
understanding of the repeated sample and sampling distribution
concepts, which are crucial to an understanding of econometrics.
Appendix A at the end of this book has more on sampling distributions
and their relation to Monte Carlo studies.

The general idea behind a Monte Carlo study is to (1) model the
data-generating process, (2) generate several sets of artificial data, (3)
employ these data and an estimator to create several estimates, and (4)
use these estimates to gauge the sampling distribution properties of that
estimator. This is illustrated in figure 2.7. These four steps are described
below.

(1) Model the data-generating process Simulation of the process
thought to be generating the real-world data for the problem at hand
requires building a model for the computer to mimic the data-generating
process, including its stochastic component(s). For example, it could be
specified that N (the sample size) values of X, Z and an error term



generate N values of Y according to Y = b1 + b2X + b3Z + e, where the
bi are specific, known numbers, the N val-
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Figure 2.7
Structure of a Monte Carlo study

use of X and Z are given, exogenous, observations on explanatory
variables, and the N values of e are drawn randomly from a normal
distribution with mean zero and known variance s2. (Computers are
capable of generating such random error terms.) Any special features
thought to characterize the problem at hand must be built into this

model. For example, if b2 = b3-1 then the values of b2 and b3 must be
chosen such that this is the case. Or if the variance s2 varies from
observation to observation, depending on the value of Z, then the error
terms must be adjusted accordingly. An important feature of the study is
that all of the (usually unknown) parameter values are known to the
person conducting the study (because this person chooses these values).



(2) Create sets of data With a model of the data-generating process
built into the computer, artificial data can be created. The key to doing
this is the stochastic element of the data-generating process. A sample
of size N is created by obtaining N values of the stochastic variable e
and then using these values, in conjunction with the rest of the model, to
generate N, values of Y. This yields one complete sample of size N,
namely N observations on each of Y, X and Z, corresponding to the
particular set of N error terms drawn. Note that this artificially
generated set of sample data could be viewed as an example of
real-world data that a researcher would be faced with when dealing with
the kind of estimation problem this model represents. Note especially
that the set of data obtained depends crucially on the particular set of
error terms drawn. A different set of
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error terms would create a different data set for the same problem.
Several of these examples of data sets could be created by drawing
different sets of N error terms. Suppose this is done, say, 2,000 times,
generating 2,000 set of sample data, each of sample size N. These are
called repeated samples.

(3) Calculate estimates Each of the 2,000 repeated samples can be used

as data for an estimator 3 say, creating 2,000 estimated 3i (i = 1,2,. .
., 2,000) of the parameter b3. These 2,000 estimates can be viewed as

random ''drawings" from the sampling distribution of 3

(4) Estimate sampling distribution properties These 2,000 drawings

from the sampling distribution of 3 can be used as data to estimate the
properties of this sampling distribution. The properties of most interest
are its expected value and variance, estimates of which can be used to
estimate bias and mean square error.

(a) The expected value of the sampling distribution of 3 is
estimated by the average of the 2,000 estimates:



(b) The bias of 3 is estimated by subtracting the known true value
of b3 from the average:

(c) The variance of the sampling distribution of 3 is estimated by
using the traditional formula for estimating variance:

(d) The mean square error 3 is estimated by the average of the

squared differences between 3 and the true value of b3:

At stage 3 above an alternative estimator  could also have been used
to calculate 2,000 estimates. If so, the properties of the sampling

distribution of  could also be estimated and then compared with

those of the sampling distribution of 3 (Here 3 could be, for example,

the ordinary least squares estimator and  any competing estimator
such as an instrumental variable estimator, the least absolute error
estimator or a generalized least squares estimator. These estimators are
discussed in later chapters.) On the basis of this comparison, the person
conducting the Monte Carlo study may be in a position to recommend
one estimator in preference to another for the sample size N. By
repeating such a study for progressively greater values of N, it is
possible to investigate how quickly an estimator attains its asymptotic
properties.
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2.11 Adding Up



Because in most estimating situations there does not exist a "super-
estimator" that is better than all other estimators on all or even most of
these (or other) criteria, the ultimate choice of estimator is made by
forming an "overall judgement" of the desirableness of each available
estimator by combining the degree to which an estimator meets each of
these criteria with a subjective (on the part of the econometrician)
evaluation of the importance of each of these criteria. Sometimes an
econometrician will hold a particular criterion in very high esteem and
this will determine the estimator chosen (if an estimator meeting this
criterion can be found). More typically, other criteria also play a role on
the econometrician's choice of estimator, so that, for example, only
estimators with reasonable computational cost are considered. Among
these major criteria, most attention seems to be paid to the best
unbiased criterion, with occasional deference to the mean square error
criterion in estimating situations in which all unbiased estimators have
variances that are considered too large. If estimators meeting these
criteria cannot be found, as is often the case, asymptotic criteria are
adopted.

A major skill of econometricians is the ability to determine estimator
properties with regard to the criteria discussed in this chapter. This is
done either through theoretical derivations using mathematics, part of
the technical expertise of the econometrician, or through Monte Carlo
studies. To derive estimator properties by either of these means, the
mechanism generating the observations must be known; changing the
way in which the observations are generated creates a new estimating
problem, in which old estimators may have new properties and for
which new estimators may have to be developed.

The OLS estimator has a special place in all this. When faced with any
estimating problem, the econometric theorist usually checks the OLS
estimator first, determining whether or not it has desirable properties.
As seen in the next chapter, in some circumstances it does have
desirable properties and is chosen as the "preferred" estimator, but in
many other circumstances it does not have desirable properties and a
replacement must be found. The econometrician must investigate
whether the circumstances under which the OLS estimator is desirable
are met, and, if not, suggest appropriate alternative estimators.
(Unfortunately, in practice this is too often not done, with the OLS
estimator being adopted without justification.) The next chapter
explains how the econometrician orders this investigation.

General Notes



2.2 Computational Cost

Computational cost has been reduced significantly by the development
of extensive computer software for econometricians. The more
prominent of these are ET,
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GAUSS, LIMDEP, Micro-FIT, PC-GIVE, RATS, SAS, SHAZAM,
SORITEC, SPSS, and TSP. The Journal of Applied Econometrics and
the Journal of Economic Surveys both publish software reviews
regularly. All these packages are very comprehensive, encompassing
most of the econometric techniques discussed in textbooks. For
applications they do not cover, in most cases specialized programs exist.
These packages should only be used by those well versed in
econometric theory, however. Misleading or even erroneous results can
easily be produced if these packages are used without a full
understanding of the circumstances in which they are applicable, their
inherent assumptions and the nature of their output; sound research
cannot be produced merely by feeding data to a computer and saying
SHAZAM.

Problems with the accuracy of computer calculations are ignored in
practice, but can be considerable. See Aigner (1971, pp. 99101) and
Rhodes (1975). Quandt (1983) is a survey of computational problems
and methods in econometrics.

2.3 Least Squares

Experiments have shown that OLS estimates tend to correspond to the
average of laymen's "freehand" attempts to fit a line to a scatter of data.
See Mosteller et al. (1981).

In figure 2.1 the residuals were measured as the vertical distances from
the observations to the estimated line. A natural alternative to this
vertical measure is the orthogonal measure - the distance from the
observation to the estimating line along a line perpendicular to the
estimating line. This infrequently seen alternative is discussed in
Malinvaud (1966, pp. 711); it is sometimes used when measurement
errors plague the data, as discussed in section 9.2

2.4 Highest R2



R2 is called the coefficient of determination. It is the square of the

correlation coefficient between y and its OLS estimate 

The total variation of the dependent variable y about its mean, s(y - y)2,
is called SST (the total sum of squares); the "explained" variation, the
sum of squared deviations of the estimated values of the dependent

variable about their mean,  is called SSR (the regression sum of
squares); and the "unexplained" variation, the sum of squared residuals,
is called SSE (the error sum of squares). R2 is then given by SSR/SST or
by 1 - (SSE/SST).

What is a high R2? There is no generally accepted answer to this
question. In dealing with time series data, very high R2s are not
unusual, because of common trends. Ames and Reiter (1961) found, for
example, that on average the R2 of a relationship between a randomly
chosen variable and its own value lagged one period is about 0.7, and
that an R2 in excess of 0.5 could be obtained by selecting an economic
time series and regressing it against two to six other randomly selected
economic time series. For cross-sectional data, typical R2s are not
nearly so high.

The OLS estimator maximizes R2. Since the R2 measure is used as an
index of how well an estimator "fits" the sample data, the OLS
estimator is often called the "best-fitting" estimator. A high R2 is often
called a ''good fit."

Because the R2 and OLS criteria are formally identical, objections to
the latter apply
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to the former. The most frequently voiced of these is that searching for
a good fit is likely to generate parameter estimates tailored to the
particular sample at hand rather than to the underlying "real world."
Further, a high R2 is not necessary for "good" estimates; R2 could be
low because of a high variance of the disturbance terms, and our
estimate of b could be ''good" on other criteria, such as those discussed
later in this chapter.



The neat breakdown of the total variation into the "explained" and
"unexplained" variations that allows meaningful interpretation of the R2
statistic is valid only under three conditions. First, the estimator in
question must be the OLS estimator. Second, the relationship being
estimated must be linear. Thus the R2 statistic only gives the percentage
of the variation in the dependent variable explained linearly by
variation in the independent variables. And third, the linear relationship
being estimated must include a constant, or intercept, term. The
formulas for R2 can still be used to calculate an R2 for estimators other
than the OLS estimator, for nonlinear cases and for cases in which the
intercept term is omitted; it can no longer have the same meaning,
however, and could possibly lie outside the 01 interval. The zero
intercept case is discussed at length in Aigner (1971, pp. 8590). An

alternative R2 measure, in which the variations in y and  are measured
as deviations from zero rather than their means, is suggested.

Running a regression without an intercept is the most common way of
obtaining an R2 outside the 01 range. To see how this could happen,
draw a scatter of points in (x,y) space with an estimated OLS line such
that there is a substantial intercept. Now draw in the OLS line that
would be estimated if it were forced to go through the origin. In both
cases SST is identical (because the same observations are used). But in
the second case the SSE and the SSR could be gigantic, because the 

and the (  -y)could be huge. Thus if R2 is calculated as 1 - SSR/SST, a
negative number could result; if it is calculated as SSR/SST, a number
greater than one could result.

R2 is sensitive to the range of variation of the dependent variable, so

that comparisons of R2s must be undertaken with care. The favorite
example used to illustrate this is the case of the consumption function
versus the savings function. If savings is defined as income less
consumption, income will do exactly as well in explaining variations in
consumption as in explaining variations in savings, in the sense that the
sum of squared residuals, the unexplained variation, will be exactly the
same for each case. But in percentage terms, the unexplained variation
will be a higher percentage of the variation in savings than of the
variation in consumption because the latter are larger numbers. Thus the
R2 in the savings function case will be lower than in the consumption
function case. This reflects the result that the expected value of R2 is

approximately equal to b2V/(b2V + s2) where V is E(x-x)2.



In general, econometricians are interested in obtaining "good"
parameter estimates where "good" is not defined in terms of R2.
Consequently the measure R2 is not of much importance in
econometrics. Unfortunately, however, many practitioners act as though
it is important, for reasons that are not entirely clear, as noted by
Cramer (1987, p. 253):

These measures of goodness of fit have a fatal attraction.
Although it is generally conceded among insiders that they do
not mean a thing, high values are still a source of pride and
satisfaction to their authors, however hard they may try to
conceal these feelings.
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Because of this, the meaning and role of R2 are discussed at some
length throughout this book. Section 5.5 and its general notes extend the
discussion of this section. Comments are offered in the general notes of
other sections when appropriate. For example, one should be aware that
R2 from two equations with different dependent variables should not be
compared, and that adding dummy variables (to capture seasonal
influences, for example) can inflate R2 and that regressing on group
means overstates R2 because the error terms have been averaged.

2.5 Unbiasedness

In contrast to the OLS and R2 criteria, the unbiasedness criterion (and
the other criteria related to the sampling distribution) says something
specific about the relationship of the estimator to b, the parameter being
estimated.

Many econometricians are not impressed with the unbiasedness
criterion, as our later discussion of the mean square error criterion will
attest. Savage (1954, p. 244) goes so far as to say: "A serious reason to
prefer unbiased estimates seems never to have been proposed." This
feeling probably stems from the fact that it is possible to have an
"unlucky" sample and thus a bad estimate, with only cold comfort from
the knowledge that, had all possible samples of that size been taken, the
correct estimate would have been hit on average. This is especially the
case whenever a crucial outcome, such as in the case of a matter of life
or death, or a decision to undertake a huge capital expenditure, hinges



on a single correct estimate. None the less, unbiasedness has enjoyed
remarkable popularity among practitioners. Part of the reason for this
may be due to the emotive content of the terminology: who can stand
up in public and state that they prefer biased estimators?

The main objection to the unbiasedness criterion is summarized nicely
by the story of the three econometricians who go duck hunting. The first
shoots about a foot in front of the duck, the second about a foot behind;
the third yells, "We got him!"

2.6 Efficiency

Often econometricians forget that although the BLUE property is
attractive, its requirement that the estimator be linear can sometimes be
restrictive. If the errors have been generated from a "fat-tailed"
distribution, for example, so that relatively high errors occur frequently,
linear unbiased estimators are inferior to several popular nonlinear
unbiased estimators, called robust estimators. See chapter 19.

Linear estimators are not suitable for all estimating problems. For
example, in estimating the variance s2 of the disturbance term,
quadratic estimators are more appropriate. The traditional formula
SSE/(T - K), where T is the number of observations and K is the number
of explanatory variables (including a constant), is under general
conditions the best quadratic unbiased estimator of s2. When K does not
include the constant (intercept) term, this formula is written as SSE(T -
K - 1).

Although in many instances it is mathematically impossible to determine
the best unbiased estimator (as opposed to the best linear unbiased
estimator), this is not the case if the specific distribution of the error is
known. In this instance a lower bound, called the Cramer-Rao lower
bound, for the variance (or variance-covariance matrix)
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of unbiased estimators can be calculated. Furthermore, if this lower
bound is attained (which is not always the case), it is attained by a
transformation of the maximum likelihood estimator (see section 2.9)
creating an unbiased estimator. As an example, consider the sample
mean statistic X. Its variance, s2/T, is equal to the Cramer-Rao lower
bound if the parent population is normal. Thus X is the best unbiased



estimator (whether linear or not) of the mean of a normal population.

2.7 Mean Square Error (MSE)

Preference for the mean square error criterion over the unbiasedness
criterion often hinges on the use to which the estimate is put. As an
example of this, consider a man betting on horse races. If he is buying
"win" tickets, he will want an unbiased estimate of the winning horse,
but if he is buying "show" tickets it is not important that his horse wins
the race (only that his horse finishes among the first three), so he will be
willing to use a slightly biased estimator of the winning horse if it has a
smaller variance.

The difference between the variance of an estimator and its MSE is that
the variance measures the dispersion of the estimator around its mean
whereas the MSE measures its dispersion around the true value of the
parameter being estimated. For unbiased estimators they are identical.

Biased estimators with smaller variances than unbiased estimators are

easy to find. For example, if  is an unbiased estimator with variance V

 , then 0.9  is a biased estimator with variance 0.81V(  ). As a more
relevant example, consider the fact that, although (SSE/(T - K) is the
best quadratic unbiased estimator of s2, as noted in section 2.6, it can be
shown that among quadratic estimators the MSE estimator of s2 is
SSE/(T - K + 2).

The MSE estimator has not been as popular as the best unbiased
estimator because of the mathematical difficulties in its derivation.
Furthermore, when it can be derived its formula often involves
unknown coefficients (the value of b), making its application
impossible. Monte Carlo studies have shown that approximating the
estimator by using OLS estimates of the unknown parameters can
sometimes circumvent this problem.

2.8 Asymptotic Properties

How large does the sample size have to be for estimators to display their
asymptotic properties? The answer to this crucial question depends on
the characteristics of the problem at hand. Goldfeld and Quandt (1972,
p. 277) report an example in which a sample size of 30 is sufficiently
large and an example in which a sample of 200 is required. They also
note that large sample sizes are needed if interest focuses on estimation
of estimator variances rather than on estimation of coefficients.



An observant reader of the discussion in the body of this chapter might
wonder why the large-sample equivalent of the expected value is
defined as the plim rather than being called the "asymptotic
expectation." In practice most people use the two terms synonymously,
but technically the latter refers to the limit of the expected value, which
is usually, but not always, the same as the plim. For discussion see the
technical notes to appendix C.
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2.9 Maximum Likelihood

Note that bMLE is not, as is sometimes carelessly stated, the most
probable value of b; the most probable value of b is b itself. (Only in a
Bayesian interpretation, discussed later in this book, would the former
statement be meaningful.) bMLE is simply the value of b that
maximizes the probability of drawing the sample actually obtained.

The asymptotic variance of the MLE is usually equal to the Cramer-Rao
lower bound, the lowest asymptotic variance that a consistent estimator
can have. This is why the MLE is asymptotically efficient.
Consequently, the variance (not just the asymptotic variance) of the
MLE is estimated by an estimate of the Cramer-Rao lower bound. The
formula for the Cramer-Rao lower bound is given in the technical notes
to this section.

Despite the fact that bMLE is sometimes a biased estimator of b
(although asymptotically unbiased), often a simple adjustment can be
found that creates an unbiased estimator, and this unbiased estimator
can be shown to be best unbiased (with no linearity requirement)
through the relationship between the maximum likelihood estimator and
the Cramer-Rao lower bound. For example, the maximum likelihood
estimator of the variance of a random variable x is given by the formula

which is a biased (but asymptotically unbiased) estimator of the true
variance. By multiplying this expression by T/(T - 1), this estimator can
be transformed into a best unbiased estimator.



Maximum likelihood estimators have an invariance property similar to
that of consistent estimators. The maximum likelihood estimator of a
nonlinear function of a parameter is the nonlinear function of the
maximum likelihood estimator of that parameter: [g(b)]MLE =
g(bMLE) where g is a nonlinear function. This greatly simplifies the
algebraic derivations of maximum likelihood estimators, making
adoption of this criterion more attractive.

Goldfeld and Quandt (1972) conclude that the maximum likelihood
technique performs well in a wide variety of applications and for
relatively small sample sizes. It is particularly evident, from reading
their book, that the maximum likelihood technique is well-suited to
estimation involving nonlinearities and unusual estimation problems.
Even in 1972 they did not feel that the computational costs of MLE
were prohibitive.

Application of the maximum likelihood estimation technique requires
that a specific distribution for the error term be chosen. In the context
of regression, the normal distribution is invariably chosen for this
purpose, usually on the grounds that the error term consists of the sum
of a large number of random shocks and thus, by the Central Limit
Theorem, can be considered to be approximately normally distributed.
(See Bartels, 1977, for a warning on the use of this argument.) A more
compelling reason is that the normal distribution is relatively easy to
work with. See the general notes to chapter 4 for further discussion. In
later chapters we encounter situations (such as count data and logit
models) in which a distribution other than the normal is employed.

Maximum likelihood estimates that are formed on the incorrect
assumption that the errors are distributed normally are called quasi-
maximum likelihood estimators. In
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many circumstances they have the same asymptotic distribution as that
predicted by assuming normality, and often related test statistics retain
their validity (asymptotically, of course). See Godfrey (1988, p. 402) for
discussion.

Kmenta (1986, pp. 17583) has a clear discussion of maximum likelihood
estimation. A good brief exposition is in Kane (1968, pp. 17780).
Valavanis (1959, pp. 236), an econometrics text subtitled "An



Introduction to Maximum Likelihood Methods," has an interesting
account of the meaning of the maximum likelihood technique.

2.10 Monte Carlo Studies

In this author's opinion, understanding Monte Carlo studies is one of the
most important elements of studying econometrics, not because a
student may need actually to do a Monte Carlo study, but because an
understanding of Monte Carlo studies guarantees an understanding of
the concept of a sampling distribution and the uses to which it is put.
For examples and advice on Monte Carlo methods see Smith (1973) and
Kmenta (1986, chapter 2). Hendry (1984) is a more advanced
reference. Appendix A at the end of this book provides further
discussion of sampling distributions and Monte Carlo studies. Several
exercises in appendix D illustrate Monte Carlo studies.

If a researcher is worried that the specific parameter values used in the
Monte Carlo study may influence the results, it is wise to choose the
parameter values equal to the estimated parameter values using the data
at hand, so that these parameter values are reasonably close to the true
parameter values. Furthermore, the Monte Carlo study should be
repeated using nearby parameter values to check for sensitivity of the
results. Bootstrapping is a special Monte Carlo method designed to
reduce the influence of assumptions made about the parameter values
and the error distribution. Section 4.6 of chapter 4 has an extended
discussion.

The Monte Carlo technique can be used to examine test statistic as well
as parameter estimators. For example, a test statistic could be examined
to see how closely its sampling distribution matches, say, a chi-square.
In this context interest would undoubtedly focus on determining its size
(type I error for a given critical value) and power, particularly as
compared with alternative test statistics.

By repeating a Monte Carlo study for several different values of the
factors that affect the outcome of the study, such as sample size or
nuisance parameters, one obtains several estimates of, say, the bias of
an estimator. These estimated biases can be used as observations with
which to estimate a functional relationship between the bias and the
factors affecting the bias. This relationship is called a response surface.
Davidson and MacKinnon (1993, pp. 75563) has a good exposition.

It is common to hold the values of the explanatory variables fixed
during repeated sampling when conducting a Monte Carlo study.



Whenever the values of the explanatory variables are affected by the
error term, such as in the cases of simultaneous equations, measurement
error, or the lagged value of a dependent variable serving as a regressor,
this is illegitimate and must not be done - the process generating the
data must be properly mimicked. But in other cases it is not obvious if
the explanatory variables should be fixed. If the sample exhausts the
population, such as would be the case for observations on all cities in
Washington state with population greater than 30,000, it would not
make sense to allow the explanatory variable values to change during
repeated sampling. On the other hand, if a sample of wage-earners is
drawn
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from a very large potential sample of wage-earners, one could visualize
the repeated sample as encompassing the selection of wage-earners as
well as the error term, and so one could allow the values of the
explanatory variables to vary in some representative way during
repeated samples. Doing this allows the Monte Carlo study to produce
an estimated sampling distribution which is not sensitive to the
characteristics of the particular wage-earners in the sample; fixing the
wage-earners in repeated samples produces an estimated sampling
distribution conditional on the observed sample of wage-earners, which
may be what one wants if decisions are to be based on that sample.

2.11 Adding Up

Other, less prominent, criteria exist for selecting point estimates, some
examples of which follow.

(a) Admissibility An estimator is said to be admissible (with respect
to some criterion) if, for at least one value of the unknown b, it
cannot be beaten on that criterion by any other estimator.

(b) Minimax A minimax estimator is one that minimizes the
maximum expected loss, usually measured as MSE, generated by
competing estimators as the unknown b varies through its possible
values.

(c) Robustness An estimator is said to be robust if its desirable
properties are not sensitive to violations of the conditions under
which it is optimal. In general, a robust estimator is applicable to a



wide variety of situations, and is relatively unaffected by a small
number of bad data values. See chapter 19.

(d) MELO In the Bayesian approach to statistics (see chapter 13), a
decision-theoretic approach is taken to estimation; an estimate is
chosen such that it minimizes an expected loss function and is
called the MELO (minimum expected loss) estimator. Under
general conditions, if a quadratic loss function is adopted the mean
of the posterior distribution of b is chosen as the point estimate of b
and this has been interpreted in the non-Bayesian approach as
corresponding to minimization of average risk. (Risk is the sum of
the MSEs of the individual elements of the estimator of the vector
b.) See Zellner (1978).

(e) Analogy principle Parameters are estimated by sample statistics
that have the same property in the sample as the parameters do in
the population. See chapter 2 of Goldberger (1968b) for an
interpretation of the OLS estimator in these terms. Manski (1988)
gives a more complete treatment. This approach is sometimes
called the method of moments because it implies that a moment of
the population distribution should be estimated by the
corresponding moment of the sample. See the technical notes.

(f) Nearness/concentration Some estimators have infinite variances
and for that reason are often dismissed. With this in mind, Fiebig
(1985) suggests using as a criterion the probability of nearness

(prefer  to b* if prob  or the probability of

concentration (prefer  to b* if prob 

Two good introductory references for the material of this chapter are
Kmenta (1986, pp. 916, 97108, 15672) and Kane (1968, chapter 8).
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Technical Notes

2.5 Unbiasedness

The expected value of a variable x is defined formally as 
where f is the probability density function (sampling distribution) of x.



Thus E(x) could be viewed as a weighted average of all possible values
of x where the weights are proportional to the heights of the density
function (sampling distribution) of x.

2.6 Efficiency

In this author's experience, student assessment of sampling distributions
is hindered, more than anything else, by confusion about how to
calculate an estimator's variance. This confusion arises for several
reasons.

(1) There is a crucial difference between a variance and an estimate
of that variance, something that often is not well understood.

(2) Many instructors assume that some variance formulas are
"common knowledge," retained from previous courses.

(3) It is frequently not apparent that the derivations of variance
formulas all follow a generic form.

(4) Students are expected to recognize that some formulas are
special cases of more general formulas.

(5) Discussions of variance, and appropriate formulas, are seldom
gathered together in one place for easy reference.

Appendix B has been included at the end of this book to alleviate this
confusion, supplementing the material in these technical notes.

In our discussion of unbiasedness, no confusion could arise from b being
multidimensional: an estimator's expected value is either equal to b (in
every dimension) or it is not. But in the case of the variance of an
estimator confusion could arise. An estimator b* that is k-dimensional
really consists of k different estimators, one for each dimension of b.
These k different estimators all have their own variances. If all k of the
variances associated with the estimator b* are smaller than their

respective counterparts of the estimator  then it is clear that the

variance of b* can be considered smaller than the variance of . For
example, if b is two-dimensional, consisting of two separate parameters
b1 and b2



an estimator b* would consist of two estimators and . If b* were

an unbiased estimator of b, would be an unbiased estimator of ,

and would be an unbiased estimator of b2. The estimators and 
would each have variances. Suppose their variances were 3.1 and 7.4,

respectively. Now suppose  , consisting of 1 2, is another unbiased

estimator, where 1 and 2 have variances 5.6 and 8.3, respectively. In

this example, since the variance of is less than the variance of 1
and the
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variance of is less than the variance of 2, it is clear that the

"variance" of b* is less than the variance of  . But what if the variance

of 2 were 6.3 instead of 8.3? Then it is not clear which "variance" is
smallest.

An additional complication exists in comparing the variances of
estimators of a multi-dimensional b. There may exist a nonzero
covariance between the estimators of the separate components of b. For

example, a positive covariance between 1 and 2 implies that,

whenever 1 overestimates b1, there is a tendency for 2 to
overestimate b2, making the complete estimate of b worse than would
be the case were this covariance zero. Comparison of the "variances" of
multidimensional estimators should therefore somehow account for this
covariance phenomenon.

The "variance" of a multidimensional estimator is called a variance-
covariance matrix. If b* is an estimator of k-dimensional b, then the
variance-covariance matrix of b*, denoted by V(b*), is defined as a k ×
k matrix (a table with k entries in each direction) containing the
variances of the k elements of b* along the diagonal and the covariance
in the off-diagonal positions. Thus,



where  is the variance of the k the element of b* and C( , ) is

the covariance between  and  . All this variance-covariance
matrix does is array the relevant variances and covariances in a table.
One this is done, the econometrician can draw on mathematicians'
knowledge of matrix algebra to suggest ways in which the variance-
covariance matrix of one unbiased estimator could be considered
"smaller" than the variance-covariance matrix of another unbiased
estimator.

Consider four alternative ways of measuring smallness among variance-
covariance matrices, all accomplished by transforming the matrices into
single numbers and then comparing those numbers:

(1) Choose the unbiased estimator whose variance-covariance
matrix has the smallest trace (sum of diagonal elements);

(2) choose the unbiased estimator whose variance-covariance
matrix has the smallest determinant;

(3) choose the unbiased estimator for which any given linear
combination of its elements has the smallest variance;

(4) choose the unbiased estimator whose variance-covariance
matrix minimizes a risk function consisting of a weighted sum of
the individual variances and covariances. (A risk function is the
expected value of a traditional loss function, such as the square of
the difference between an estimate and what it is estimating.)

This last criterion seems sensible: a researcher can weight the variances
and covariances according to the importance he or she subjectively
feels their minimization should be given in choosing an estimator. It
happens that in the context of an unbiased estimator this risk function
can be expressed in an alternative form, as the expected value of a
quadratic function of the difference between the estimate and the true

parameter value; i.e.,E (  - b)'Q (  - b) This alternative interpretation
also makes good intuitive sense as a choice criterion for use in the
estimating context.



If the weights in the risk function described above, the elements of Q,
are chosen so as to make it impossible for this risk function to be
negative (a reasonable request,
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since if it were negative it would be a gain, not a loss), then a very
fortunate thing occurs. Under these circumstances all four of these
criteria lead to the same choice of estimator. What is more, this result
does not depend on the particular weights used in the risk function.

Although these four ways of defining a smallest matrix are reasonably
straightforward, econometricians have chosen, for mathematical
reasons, to use as their definition an equivalent but conceptually more
difficult idea. This fifth rule says, choose the unbiased estimator whose
variance-covariance matrix, when subtracted from the variance-
covariance matrix of any other unbiased estimator, leaves a
non-negative definite matrix. (A matrix A is non-negative definite if the
quadratic function formed by using the elements of A as parameters
(x'Ax) takes on only non-negative values. Thus to ensure a non-negative
risk function as described above, the weighting matrix Q must be
non-negative definite.)

Proofs of the equivalence of these five selection rules can be
constructed by consulting Rothenberg (1973, p. 8), Theil (1971, p. 121),
and Goldberger (1964, p. 38).

A special case of the risk function is revealing. Suppose we choose the
weighting such that the variance of any one element of the estimator
has a very heavy weight, with all other weights negligible. This implies
that each of the elements of the estimator with the "smallest" variance-
covariance matrix has individual minimum variance. (Thus, the example
given earlier of one estimator with individual variances 3.1 and 7.4 and
another with variances 5.6 and 6.3 is unfair; these two estimators could
be combined into a new estimator with variances 3.1 and 6.3.) This
special case also indicates that in general covariances play no role in
determining the best estimator.

2.7 Mean Square Error (MSE)

In the multivariate context the MSE criterion can be interpreted in
terms of the "smallest" (as defined in the technical notes to section 2.6)



MSE matrix. This matrix, given by the formula E(  - b)(  - b)', is a
natural matrix generalization of the MSE criterion. In practice, however,
this generalization is shunned in favor of the sum of the MSEs of all the

individual components of  , a definition of risk that has come to be the
usual meaning of the term.

2.8 Asymptotic Properties

The econometric literature has become full of asymptotics, so much so
that at least one prominent econometrician, Leamer (1988), has
complained that there is too much of it. Appendix C of this book
provides an introduction to the technical dimension of this important
area of econometrics, supplementing the items that follow.

The reason for the important result that Eg g(Ex) for g nonlinear is

illustrated in figure 2.8. On the horizontal axis are measured values of 

, the sampling distribution of which is portrayed by pdf(  ), with values

ofg( ) measured on the vertical axis. Values A and B of  , equidistant

from E , are traced to give g(A) and g(B). Note that g(B) is much

farther from g(  ) than is g(A): high values of  lead to values of g( )

considerably above g(E  ), but low values of  lead to values of g( )

only slightly below g(E  ) Consequently the sampling distribution of g(

) is asymmetric, as shown by pdf[g(  )], and in this example the

expected value of g( ) lies above g(E  )
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Figure 2.8
Why the expected value of a nonlinear function is
not the nonlinear function of the expected value

If g were a linear function, the asymmetry portrayed in figure 2.8 would

not arise and thus we would have Eg( )=g(E  )For g nonlinear,
however, this result does not hold.

Suppose now that we allow the sample size to become very large, and

suppose that plim  exists and is equal to E  in figure 2.8. As the

sample size becomes very large, the sampling distributionpdf(  ) begins

to collapse on plim  i.e., its variance becomes very, very small. The
points A and B are no longer relevant since values near them now occur

with negligible probability. Only values of  very, very close to plim 

are relevant; such values when traced through g( ) are very, very close

to g(plim  ). Clearly, the distribution of g( ) collapses on g(plim  ) as

the distribution of  collapses on plim  . Thus plim g( )=g(plim ), for
g a continuous function.



For a simple example of this phenomenon, let g be the square function,

so that g  = .2. From the well-known result that V(x) = E(x)2-E(x)2,

we can deduce that E( 2)=(E  )2+V (  )Clearly,E( 2)  (E  2), but if

the variance of  goes to zero as the sample size goes to infinity then

plim( 2)=(plim  )2. The case of  equal to the sample mean statistic
provides an easy example of this.

Note that in figure 2.8 the modes, as well as the expected values, of the
two densities do not correspond. An explanation of this can be
constructed with the help of the "change of variable" theorem discussed
in the technical notes to section 2.9.

An approximate correction factor can be estimated to reduce the small-

sample bias discussed here. For example, suppose an estimate  of b is
distributed normally with
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mean b and variance V( .) Then exp  is distributed log-normally with

mean exp  suggesting that exp (b) could be estimated by exp

 which, although biased, should have less bias than exp (b). If
in this same example the original error were not distributed normally, so

that  was not distributed normally, a Taylor series expansion could be

used to deduce an appropriate correction factor. Expand exp  around

E  =b

plus higher-order terms which are neglected. Taking the expected value
of both sides produces

suggesting that exp b could be estimated by



For discussion and examples of these kinds of adjustments, see Miller
(1984), Kennedy (1981a, 1983) and Goldberger (1968a). An alternative
way of producing an estimate of a nonlinear function g(b) is to calculate
many values of g(b* + e), where e is an error with mean zero and
variance equal to the estimated variance of b*, and average them. For
more on this ''smearing" estimate see Duan (1983).

When g is a linear function, the variance of g( ) is given by the square

of the slope of g times the variance of  i.e., V(ax) = a2V(x). When g is
a continuous nonlinear function its variance is more difficult to
calculate. As noted above in the context of figure 2.8, when the sample

size becomes very large only values of  very, very close to plim  are

relevant, and in this range a linear approximation to  is adequate. The
slope of such a linear approximation is given by the first derivative of g

with respect to . Thus the asymptotic variance of g( ) is often
calculated as the square of this first derivative times the asymptotic

variance of  , with this derivative evaluated at  = plim  for the

theoretical variance, and evaluated at  for the estimated variance.

2.9 Maximum Likelihood

The likelihood of a sample is often identified with the "probability" of
obtaining that sample, something which is, strictly speaking, not correct.
The use of this terminology is accepted, however, because of an implicit
understanding, articulated by Press et al. (1986, p. 500): "If the yi's take
on continuous values, the probability will always be zero unless we add
the phrase, '. . . plus or minus some fixed dy on each data point.' So let's
always take this phrase as understood."

The likelihood function is identical to the joint probability density
function of the given sample. It is given a different name (i.e., the name
"likelihood") to denote the fact that in this context it is to be interpreted
as a function of the parameter values (since it is to be maximized with
respect to those parameter values) rather than, as is usually the case,
being interpreted as a function of the sample data.

The mechanics of finding a maximum likelihood estimator are explained
in most econometrics texts. Because of the importance of maximum
likelihood estimation in
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the econometric literature, an example is presented here. Consider a
typical econometric problem of trying to find the maximum likelihood
estimator of the vector

in the relationship y = b1 + b2x + b3z + e where T observations on y, x
and z are available.

(1) The first step is to specify the nature of the distribution of the
disturbance term e. Suppose the disturbances are identically and
independently distributed with probability density function (e). For
example, it could be postulated that e is distributed normally with
mean zero and variance s2 so that

(2) The second step is to rewrite the given relationship as e = y - b1
- b2x - b3z so that for the ithe value of e we have

(3) The third step is to form the likelihood function, the formula for
the joint probability distribution of the sample, i.e., a formula
proportional to the probability of drawing the particular error terms
inherent in this sample. If the error terms are independent of each
other, this is given by the product of all the (e)s, one for each of the
T sample observations. For the example at hand, this creates the
likelihood function



a complicated function of the sample data and the unknown
parameters b1, b2 and b3, plus any unknown parameters inherent in

the probability density function - in this case s2.

(4) The fourth step is to find the set of values of the unknown
parameters (b1, b2, b3 and s2), as functions of the sample data, that
maximize this likelihood function. Since the parameter values that
maximize L also maximize lnL, and the latter task is easier, attention
usually focuses on the log-likelihood function. In this example,

In some simple cases, such as this one, the maximizing values of this
function (i.e., the MLEs) can be found using standard algebraic
maximizing techniques. In
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most cases, however, a numerical search technique (described in
section 6.3) must be employed to find the MLE.

There are two circumstances in which the technique presented above
must be modified.

(1) Density of y not equal to density of e We have observations on
y, not e. Thus, the likelihood function should be structured from the
density of y, not the density of e. The technique described above
implicitly assumes that the density of y, (y), is identical to (e), the
density of e with e replaced in this formula by y - Xb, but this is not
necessarily the case. The probability of obtaining a value of e in the
small range de is given by (e) de; this implies an equivalent
probability for y of (y)|dy| where (y) is the density function of y and
|dy| is the absolute value of the range of y values corresponding to
de. Thus, because of (e) de = (y)|dy|, we can calculate (y) as
(e)|de/dy|.



In the example given above (y) and (e) are identical since |de/dy| is
one. But suppose our example were such that we had

where l is some (known or unknown) parameter. In this case,

and the likelihood function would become

where Q is the likelihood function of the original example, with each
yi raised to the power l.

This method of finding the density of y when y is a function of
another variable e whose density is known, is referred to as the
change-of-variable technique. The multivariate analogue of |de/dy|
is the absolute value of the Jacobian of the transformation - the
determinant of the matrix of first derivatives of the vector e with
respect to the vector y. Judge et al. (1988, pp. 30-6) have a good
exposition.

(2) Observations not independent In the examples above, the
observations were independent of one another so that the density
values for each observation could simply be multiplied together to
obtain the likelihood function. When the observations are not
independent, for example if a lagged value of the regress and
appears as a regressor, or if the errors are autocorrelated, an
alternative means of finding the likelihood function must be
employed. There are two ways of handling this problem.

(a) Using a multivariate density A multivariate density function
gives the density of an entire vector of e rather than of just one
element of that vector (i.e., it gives the "probability" of obtaining
the entire set of ei). For example, the multivariate normal
density function for the vector e is given (in matrix terminology)
by the formula
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where s2W is the variance-covariance matrix of the vector e.
This formula itself can serve as the likelihood function (i.e.,
there is no need to multiply a set of densities together since this
formula has implicity already done that, as well as taking
account of interdependencies among the data). Note that this
formula gives the density of the vector e, not the vector y. Since
what is required is the density of y, a multivariate adjustment
factor equivalent to the univariate |de/dy| used earlier is
necessary. This adjustment factor is |det de/dy| where de/dy is a
matrix containing in its ijth position the derivative of the ith
observation of e with respect to the jth observation of y. It is
called the Jacobian of the transformation from e to y. Watts
(1973) has a good explanation of the Jacobian.

(b) Using a transformation It may be possible to transform the
variables of the problem so as to be able to work with errors that
are independent. For example, suppose we have

but e is such that et = ret-1 + ut where ut is a normally
distributed error with mean zero and variance $sigmatwou The
es are not independent of one another, so the density for the
vector e cannot be formed by multiplying together all the
individual densities; the multivariate density formula given
earlier must be used, where W is a function of r and s2 is a
function of r and $sigmatwou. But the u errors are distributed
independently, so the density of the u vector can be formed by
multiplying together all the individual ut densities. Some

algebraic manipulation allows ut to be expressed as



(There is a special transformation for u1; see the technical notes
to section 8.3 where autocorrelated errors are discussed.) The
density of the y vector, and thus the required likelihood
function, is then calculated as the density of the u vector times
the Jacobian of the transformation from u to y. In the example at
hand, this second method turns out to be easier, since the first
method (using a multivariate density function) requires that the
determinant of W be calculated, a difficult task.

Working through examples in the literature of the application of these
techniques is the best way to become comfortable with them and to
become aware of the uses to which MLEs can be put. To this end see
Beach and MacKinnon (1978a), Savin and White (1978), Lahiri and
Egy (1981), Spitzer (1982), Seaks and Layson (1983), and Layson and
Seaks (1984).

The Cramer-Rao lower bound is a matrix given by the formula

where q is the vector of unknown parameters (including s2) for the
MLE estimates of which the Cramer-Rao lower bound is the asymptotic
variance-covariance matrix. Its estimation is accomplished by inserting
the MLE estimates of the unknown parameters. The inverse of the
Cramer-Rao lower bound is called the information matrix.
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If the disturbances were distributed normally, the MLE estimator of s2
is SSE/T. Drawing on similar examples reported in preceding sections,
we see that estimation of the variance of a normally distributed
population can be computed as SSE/(T - 1), SSE/T or SSE/(T + 1),
which are, respectively, the best unbiased estimator, the MLE, and the
minimum MSE estimator. Here SSE is s(x - x)2.

2.11 Adding Up



The analogy principle of estimation is often called the method of
moments because typically moment conditions (such as that EX'e = 0,
the covariance between the explanatory variables and the error is zero)
are utilized to derive estimators using this technique. For example,
consider a variable x with unknown mean m. The mean m of x is the
first moment, so we estimate m by the first moment (the average) of the
data, x. This procedure is not always so easy. Suppose, for example,

that the density of x is given by f(x)=lxl-1 for 0 < × < 1 and zero
elsewhere. The expected value of x is l/(l + 1) so the method of
moments estimator l* of l is found by setting x = l*/(l* + 1) and solving
to obtain l* = x/(1 - x). In general we are usually interested in estimating
several parameters and so will require as many of these moment
conditions as there are parameters to be estimated, in which case
finding estimates involves solving these equations simultaneously.

Consider, for example, estimating a and b in y = a + bx + e. Because
e is specified to be an independent error, the expected value of the
product of x and e is zero, an "orthogonality" or "moment"
condition. This suggests that estimation could be based on setting
the product of x and the residual e* = y - a* - b*x equal to zero,
where a* and b* are the desired estimates of a and b. Similarly, the
expected value of e (its first moment) is specified to be zero,
suggesting that estimation could be based on setting the average of
the e* equal to zero. This gives rise to two equations in two
unknowns:

which a reader might recognize as the normal equations of the
ordinary least squares estimator. It is not unusual for a method of
moments estimator to turn out to be a familiar estimator, a result
which gives it some appeal. Greene (1997, pp. 14553) has a good
textbook exposition.

This approach to estimation is straightforward so long as the number
of moment conditions is equal to the number of parameters to be
estimated. But what if there are more moment conditions than
parameters? In this case there will be more equations than
unknowns and it is not obvious how to proceed. The generalized
method of moments (GMM) procedure, described in the technical



notes of section 8.1, deals with this case.
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3
The Classical Linear Regression Model

3.1 Textbooks as Catalogs

In chapter 2 we learned that many of the estimating criteria held in high
regard by econometricians (such as best unbiasedness and minimum
mean square error) are characteristics of an estimator's sampling
distribution. These characteristics cannot be determined unless a set of
repeated samples can be taken or hypothesized; to take or hypothesize
these repeated samples, knowledge of the way in which the
observations are generated is necessary. Unfortunately, an estimator
does not have the same characteristics for all ways in which the
observations can be generated. This means that in some estimating
situations a particular estimator has desirable properties but in other
estimating situations it does not have desirable properties. Because
there is no "superestimator" having desirable properties in all situations,
for each estimating problem (i.e., for each different way in which the
observations can be generated) the econometrician must determine
anew which estimator is preferred. An econometrics textbook can be
characterized as a catalog of which estimators are most desirable in
what estimating situations. Thus, a researcher facing a particular
estimating problem simply turns to the catalog to determine which
estimator is most appropriate for him or her to employ in that situation.
The purpose of this chapter is to explain how this catalog is structured.

The cataloging process described above is centered around a standard
estimating situation referred to as the classical linear regression model
(CLR model). It happens that in this standard situation the OLS
estimator is considered the optimal estimator. This model consists of
five assumptions concerning the way in which the data are generated.
By changing these assumptions in one way or another, different
estimating situations are created, in many of which the OLS estimator is
no longer considered to be the optimal estimator. Most econometric
problems can be characterized as situations in which one (or more) of



these five assumptions is violated in a particular way. The catalog works
in a straightforward way: the estimating situation is modeled in the
general mold of the CLR model and then the researcher pinpoints the
way in which this situation differs from the standard situation as
described by the CLR model (i.e., finds out which
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assumption of the CLR model is violated in this problem); he or she
then turns to the textbook (catalog) to see whether the OLS estimator
retains its desirable properties, and if not what alternative estimator
should be used. Because econometricians often are not certain of
whether the estimating situation they face is one in which an assumption
of the CLR model is violated, the catalog also includes a listing of
techniques useful in testing whether or not the CLR model assumptions
are violated.

3.2 The Five Assumptions

The CLR model consists of five basic assumptions about the way in
which the observations are generated.

(1) The first assumption of the CLR model is that the dependent
variable can be calculated as a linear function of a specific set of
independent variables, plus a disturbance term. The unknown
coefficients of this linear function form the vector b and are assumed to
be constants. Several violations of this assumption, called specification
errors, are discussed in chapter 6:

(a) wrong regressors - the omission of relevant independent
variables or the inclusion of irrelevant independent variables;

(b) nonlinearity - when the relationship between the dependent and
independent variables is not linear;

(c) changing parameters - when the parameters (b) do not remain
constant during the period in which data were collected.

(2) The second assumption of the CLR model is that the expected value
of the disturbance term is zero; i.e., the mean of the distribution from
which the disturbance term is drawn is zero. Violation of this
assumption leads to the biased intercept problem, discussed in chapter



7.

(3) The third assumption of the CLR model is that the disturbance
terms all have the same variance and are not correlated with one
another. Two major econometric problems, as discussed in chapter 8,
are associated with violations of this assumption:

(a) heteroskedasticity - when the disturbances do not all have the
same variance;

(b) autocorrelated errors - when the disturbances are correlated
with one another.

(4) The fourth assumption of the CLR model is that the observations on
the independent variable can be considered fixed in repeated samples;
i.e., it is possible to repeat the sample with the same independent
variable values. Three important econometric problems, discussed in
chapters 9 and 10, correspond to violations of this assumption:
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(a) errors in variables - errors in measuring the independent
variables;

(b) autoregression - using a lagged value of the dependent variable
as an independent variable;

(c) simultaneous equation estimation - situations in which the
dependent variables are determined by the simultaneous interaction
of several relationships.

(5) The fifth assumption of the CLR model is that the number of
observations is greater than the number of independent variables and
that there are no exact linear relationships between the independent
variables. Although this is viewed as an assumption for the general case,
for a specific case it can easily be checked, so that it need not be
assumed. The problem of multicollinearity (two or more independent
variables being approximately linearly related in the sample data) is
associated with this assumption. This is discussed in chapter 11.

All this is summarized in table 3.1, which presents these five
assumptions of the CLR model, shows the appearance they take when



dressed in mathematical notation, and lists the econometric problems
most closely associated with violations of these assumptions. Later
chapters in this book comment on the meaning and significance of these
assumptions, note implications of their violation for the OLS estimator,
discuss ways of determining whether or not they are violated, and
suggest new estimators appropriate to situations in which one of these
assumptions must be replaced by an alternative assumption. Before we
move on to this, however, more must be said about the character of the
OLS estimator in the context of the CLR model, because of the central
role it plays in the econometrician's "catalog."

3.3 The OLS Estimator in the CLR Model

The central role of the OLS estimator in the econometrician's catalog is
that of a standard against which all other estimators are compared. The
reason for this is that the OLS estimator is extraordinarily popular. This
popularity stems from the fact that, in the context of the CLR model,
the OLS estimator has a large number of desirable properties, making it
the overwhelming choice for the "optimal" estimator when the
estimating problem is accurately characterized by the CLR model. This
is best illustrated by looking at the eight criteria listed in chapter 2 and
determining how the OLS estimator rates on these criteria in the context
of the CLR model.

(1) Computational cost Because of the popularity of the OLS estimator,
many packaged computer routines exist, and for simple cases hand-held
calculators can be used to perform the required calculations quickly.
(Some hand-held calculators have OLS estimation built in.) Whenever
the functional form being estimated is linear, as it is in the CLR model,
the OLS estimator involves very little computational cost.
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Table 3.1 The assumptions of the CLR model
Mathematical expression

Assumption Bivariate

(1) Dependent variable a linear function of a
specific set of independent variables, plus a
disturbance

yt = b0 + b1xt + et,
t = 1, . . ., T

(2) Expected value of disturbance term is zero Eet = 0, for all t



(3) Disturbances have uniform variance and are
uncorrelated

(4) Observations on independent variables can be
considered fixed in repeated samples

xt fixed in repeated
samples

(5) No exact linear relationships between
independent variables and more observations
than independent variables

The mathematical terminology is explained in the technical notes to this section. The
observations on the dependent variable; X is a matrix of observations on the independent variables; 
the variance of the disturbances; I is the identity matrix; K is the number of independent variables; 
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(2) Least squares Because the OLS estimator is designed to minimize
the sum of squared residuals, it is automatically "optimal" on this
criterion.

(3) Highest R2 Because the OLS estimator is optimal on the least
squares criterion, it will automatically be optimal on the highest R2
criterion.

(4) Unbiasedness The assumptions of the CLR model can be used to
show that the OLS estimator bOLS is an unbiased estimator of b.

(5) Best unbiasedness In the CLR model bOLS is a linear estimator; i.e.,
it can be written as a linear function of the errors. As noted earlier, it is
unbiased. Among all linear unbiased estimators of b, it can be shown (in
the context of the CLR model) to have the "smallest" variance-
covariance matrix. Thus the OLS estimator is the BLUE in the CLR
model. If we add the additional assumption that the disturbances are
distributed normally (creating the CNLR model - the classical normal
linear regression model,) it can be shown that the OLS estimator is the
best unbiased estimator (i.e., best among all unbiased estimators, not
just linear unbiased estimators).



(6) Mean square error It is not the case that the OLS estimator is the
minimum mean square error estimator in the CLR model. Even among
linear estimators, it is possible that a substantial reduction in variance
can be obtained by adopting a slightly biased estimator. This is the OLS
estimator's weakest point; chapters 11 and 12 discuss several estimators
whose appeal lies in the possibility that they may beat OLS on the MSE
criterion.

(7) Asymptotic criteria Because the OLS estimator in the CLR model is
unbiased, it is also unbiased in samples of infinite size and thus is
asymptotically unbiased. It can also be shown that the variance-
covariance matrix of bOLS goes to zero as the sample size goes to
infinity, so that bOLS is also a consistent estimator of b. Further, in the
CNLR model it is asymptotically efficient.

(8) Maximum likelihood It is impossible to calculate the maximum
likelihood estimator given the assumptions of the CLR model, because
these assumptions do not specify the functional form of the distribution
of the disturbance terms. However, if the disturbances are assumed to
be distributed normally (the CNLR model), it turns out that bMLE is

identical to bOLS.

Thus, whenever the estimating situation can be characterized by the
CLR model, the OLS estimator meets practically all of the criteria
econometricians consider relevant. It is no wonder, then, that this
estimator has become so popular. It is in fact too popular: it is often
used, without justification, in estimating situations that are not
accurately represented by the CLR model. If some of the CLR model
assumptions do not hold, many of the desirable properties of the OLS
estimator no longer hold. If the OLS estimator does not have the
properties that are thought to be of most importance, an alternative
estimator must be found. Before moving to this aspect of our
examination of econometrics, however, we will spend a chapter
discussing some concepts of and problems in inference, to provide a
foundation for later chapters.
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General Notes

3.1 Textbooks as Catalogs



The econometricians' catalog is not viewed favorably by all. Consider
the opinion of Worswick (1972, p. 79): ''[Econometricians] are not, it
seems to me, engaged in forging tools to arrange and measure actual
facts so much as making a marvellous array of pretend-tools which
would perform wonders if ever a set of facts should turn up in the right
form."

Bibby and Toutenberg (1977, pp. 723) note that the CLR model, what
they call the GLM (general linear model), can be a trap, a snare and a
delusion. They quote Whitehead as saying: "Seek simplicity. . . and
distrust it," and go on to explain how use of the linear model can change
in undesirable ways the nature of the debate on the phenomenon being
examined in the study in question. For example, casting the problem in
the mold of the CLR model narrows the question by restricting its terms
of reference to a particular model based on a particular set of data; it
trivializes the question by focusing attention on apparently meaningful
yet potentially trivial questions concerning the values of unknown
regression coefficients; and it technicalizes the debate, obscuring the
real questions at hand, by turning attention to technical statistical
matters capable of being understood only by experts.

They warn users of the GLM by noting that "it certainly eliminates the
complexities of hardheaded thought, especially since so many computer
programs exist. For the soft-headed analyst who doesn't want to think
too much, an off-the-peg computer package is simplicity itself,
especially if it cuts through a mass of complicated data and provides a
few easily reportable coefficients. Occam's razor has been used to
justify worse barbarities: but razors are dangerous things and should be
used carefully."

If more than one of the CLR model assumptions is violated at the same
time, econometricians often find themselves in trouble because their
catalogs usually tell them what to do if only one of the CLR model
assumptions is violated. Much recent econometric research examines
situations in which two assumptions of the CLR model are violated
simultaneously. These situations will be discussed when appropriate.

3.3 The OLS Estimator in the CLR Model

The process whereby the OLS estimator is applied to the data at hand is
usually referred to by the terminology "running a regression." The
dependent variable (the "regressand") is said to be "regressed" on the
independent variables ("the regressors") to produce the OLS estimates.



This terminology comes from a pioneering empirical study in which it
was found that the mean height of children born of parents of a given
height tends to "regress" or move towards the population average
height. See Maddala (1977, pp. 97101) for further comment on this and
for discussion of the meaning and interpretation of regression analysis.
Critics note that the New Standard Dictionary defines regression as
"The diversion of psychic energy . . . into channels of fantasy."

The result that the OLS estimator in the CLR model is the BLUE is
often referred to as the Gauss-Markov theorem.

The formula for the OLS estimator of a specific element of the b vector
usually
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Figure 3.1
Defining the Ballentine

Venn diagram

involves observations on all the independent variables (as well as
observations on the dependent variable), not just observations on the
independent variable corresponding to that particular element of b. This
is because, to obtain an accurate estimate of the influence of one
independent variable on the dependent variable, the simultaneous
influence of other independent variables on the dependent variable must



be taken into account. Doing this ensures that the jth element of bOLS
reflects the influence of the jth independent variable on the dependent
variable, holding all the other independent variables constant. Similarly,
the formula for the variance of an element of bOLS also usually
involves observations on all the independent variables.

Because the OLS estimator is so popular, and because it so often plays a
role in the formulation of alternative estimators, it is important that its
mechanical properties be well understood. The most effective way of
expositing these characteristics is through the use of a Venn diagram
called the Ballentine. Suppose the CLR model applies, with Y
determined by X and an error term. In figure 3.1 the circle Y represents
variation in the dependent variable Y and the circle X represents
variation in the independent variable X. The overlap of X with Y, the
blue area, represents variation that Y and X have in common in the
sense that this variation in Y can be explained by X via an OLS
regression. The blue area reflects information employed by the
estimating procedure in estimating the slope coefficient bx; the larger
this area, the more information is used to form the estimate and thus the
smaller is its variance.

Now consider figure 3.2, in which a Ballentine for a case of two
explanatory variables, X and Z, is portrayed (i.e., now Y is determined
by both X and Z). In general, the X and Z circles will overlap, reflecting
some collinearity between the two; this is shown in figure 3.2 by the
red-plus-orange area. If Y were regressed on X alone, information in the
blue-plus-red area would be used to estimate bx, and if Y were regressed
on Z alone, information in the green-plus-red area would be used to
estimate bz. What happens, though, if Y is regressed on X and Z
together?

In the multiple regression of Y on X and Z together, the OLS estimator
uses the
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Figure 3.2
Interpreting multiple regression

with the Ballentine

information in the blue area to estimate bx and the information in the

green area to estimate bz, discarding the information in the red area.
The information in the blue area corresponds to variation in Y that
matches up uniquely with variation in X; using this information should
therefore produce an unbiased estimate of bx. Similarly, information in
the green area corresponds to variation in Y that matches up uniquely
with variation in Z; using this information should produce an unbiased
estimate of bz. The information in the red area is not used because it
reflects variation in Y that is determined by variation in both X and Z,
the relative contributions of which are not a priori known. In the blue
area, for example, variation in Y is all due to variation in X, so matching
up this variation in Y with variation in X should allow accurate
estimation of bx. But in the red area, matching up these variations will
be misleading because not all variation in Y is due to variation in X.

Notice that regression Y on X and Z together creates unbiased estimates
of bx and bz whereas regressing Y on X and Z separately creates biased
estimates of bx and bz because this latter method uses the red area. But
notice also that, because the former method discards the red area, it
uses less information to produce its slope coefficient estimates and thus
these estimates will have larger variances. As is invariably the case in
econometrics, the price of obtaining unbiased estimates is higher
variances.



Whenever X and Z are orthogonal to one another (have zero
collinearity) they do not overlap as in figure 3.2 and the red area
disappears. Because there is no red area in this case, regressing Y on X
alone or on Z alone produces the same estimates of bx and bz as if Y
were regressed on X and Z together. Thus, although in general the OLS
estimate of a specific element of the b vector involves observations on
all the regressors, in the case of orthogonal regressors it involves
observations on only one regressor (the one for which it is the slope
coefficient estimate).

Whenever X and Z are highly collinear and therefore overlap a lot, the
blue and green areas become very small, implying that when Y is
regressed on X and Z together very
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little information is used to estimate bx and bz. This causes the
variances of these estimates to be very large. Thus, the impact of
multicollinearity is to raise the variances of the OLS estimates. Perfect
collinearity causes the X and Z circles to overlap completely; the blue
and green areas disappear and estimation is impossible. Multicollinearity
is discussed at length in chapter 11.

In figure 3.1 the blue area represents the variation in Y explained by X.
Thus, R2 is given as the ratio of the blue area to the entire Y circle. In
figure 3.2 the blue-plus-red-plus-green area represents the variation in Y
explained by X and Z together. (Note that the red area is discarded only
for the purpose of estimating the coefficients, not for predicting Y; once
the coefficients are estimated, all variation in X and Z is used to predict
Y.) Thus, the R2 resulting from the multiple regression is given by the
ratio of the blue-plus-red-plus-green area to the entire Y circle. Notice
that there is no way of allocating portions of the total R2 to X and Z
because the red area variation is explained by both, in a way that cannot
be disentangled. Only if X and Z are orthogonal, and the red area
disappears, can the total R2 be allocated unequivocally to X and Z
separately.

The yellow area represents variation in Y attributable to the error term,
and thus the magnitude of the yellow area represents the magnitude of
s2, the variance of the error term. This implies, for example, that if, in



the context of figure 3.2, Y had been regressed on only X, omitting Z, s2
would be estimated by the yellow-plus-green area, an overestimate.

The Ballentine was named, by its originators Cohen and Cohen (1975),
after a brand of US beer whose logo resembles figure 3.2. Their use of
the Ballentine was confined to the exposition of various concepts
related to R2. Kennedy (1981b) extended its use to the exposition of
other aspects of regression. A limitation of the Ballentine is that it is
necessary in certain cases for the red area to represent a negative
quantity. (Suppose the two explanatory variables X and Z each have
positive coefficients, but in the data X and Z are negatively correlated:
X alone could do a poor job of explaining variation in Y because, for
example, the impact of a high value of X is offset by a low value of Z.)
This suggests that the explanations offered above are lacking and should
be revised; for example, the result that regressing on X alone reduces
the variance of its coefficient estimate should be explained in terms of
this regression incorporating a greater range of variation of X (i.e., the
entire X circle as opposed to just the blue-plus-brown area). This
problem notwithstanding, the interpretation advanced earlier is retained
in this book, on the grounds that the benefits of its illustrative power
out-weigh the danger that it will lead to error. The Ballentine is used
here as a metaphoric device illustrating some regression results; it
should not be given meaning beyond that.

An alternative geometric analysis of OLS, using vector geometry, is
sometimes used. Davidson and MacKinnon (1993, chap. 1) have a good
exposition.

Technical Notes

3.2 The Five Assumptions

The regression model y = g(x1, . . ., xk) + e is really a specification of

how the conditional means E(y|x1, . . ., xk) are related to each other
through x. The population
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regression function is written as E(y|x1, . . . xk) = g(x); it describes how
the average or expected value of y varies with x. Suppose g is a linear
function so that the regression function is y = b1 + b2x2 + b3x3 + . . . +



bkxk + e. Each element of bOLS , for example) is an estimate of
the effect on the conditional expectation of y of a unit change in x4,
with all other x held constant.

In the CLR model, the regression model is specified as y = b1 + b2x2 +

. . . + bkxk + disturbance, a formula that can be written down T times,
once for each set of observations on the dependent and independent
variables. This gives a large stack of equations, which can be
consolidated via matrix notation as Y = Xb + e. Here Y is a vector
containing the T observations on the dependent variable y; X is a matrix
consisting of K columns, each column being a vector of T observations
on one of the independent variables; and e is a vector containing the T
unknown disturbances.

3.3 The OLS Estimator in the CLR Model

The formula for bOLS is (X'X)-1X'Y. A proper derivation of this is
accomplished by minimizing the sum of squared errors. An easy way of
remembering this formula is to premultiply Y = Xb + e by X' to get X'Y =
X'Xb + X'e, drop the X'e, and then solve for b.

The formula for the variance-covariance matrix bOLS is s2 (X'X)-1
where s2 is the variance of the disturbance term. For the simple case in
which the regression function is y = b1 + b2x2 this gives the formula

 for the variance of . Note that, if the variation in the
regressor values is substantial, the denominator of this expression will
be large, tending to make the variance of bOLS small.

The variance-covariance matrix of bOLS is usually unknown because s2

is usually unknown. It is estimated by s2(X'X)-1 where s2 is an
estimator of s2. The estimator s2 is usually given by the formula

 where  is the estimate of the disturbance vector,

calculated as (Y - ) where  is XbOLS. In the CLR model s2 is the
best quadratic unbiased estimator of s2; in the CNLR model it is best
unbiased.

By discarding the red area in figure 3.2, the OLS formula ensures that
its estimates of the influence of one independent variable are calculated
while controlling for the simultaneous influence of the other



independent variables, i.e., the interpretation of, say, the jth element of
bOLS is as an estimate of the influence of the jthe explanatory variable,
holding all other explanatory variables constant. That the red area is
discarded can be emphasized by noting that the OLS estimate of, say,
bx can be calculated from either the regression of Y on X and Z together
or the regression of Y on X "residualized" with respect to Z (i.e., with
the influence of Z removed). In figure 3.2, if we were to regress X on Z
we would be able to explain the red-plus-orange area; the residuals from
this regression, the blue-plus-brown area, is called X residualized for Z.
Now suppose that Y is regressed on X residualized for Z. The overlap of
the Y circle with the blue-plus-brown area is the blue area, so exactly
the same information is used to estimate bx in this method as is used
when Y is regressed on X and Z together, resulting in an identical
estimate of bx.

Notice further that, if Y were also residualized for Z, producing the
yellow-plus-blue area, regressing the residualized Y on the residualized
X would also produce the same estimate of bx since their overlap is the
blue area. An important implication of
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this result is that, for example, running a regression on data from which
a linear time trend has been removed will produce exactly the same
coefficient estimates as when a linear time trend is included among the
regressors in a regression run on raw data. As another example, consider
the removal of a linear seasonal influence; running a regression on
linearly deseasonalized data will produce exactly the same coefficient
estimates as if the linear seasonal influence were included as an extra
regressor in a regression run on raw data.

A variant of OLS called stepwise regression is to be avoided. It consists
of regressing Y on each explanatory variable separately and keeping the
regression with the highest R2. This determines the estimate of the slope
coefficient of that regression's explanatory variable. Then the residuals
from this regression are used as the dependent variable in a new search
using the remaining explanatory variables and the procedure is
repeated. Suppose that, for the example of figure 3.2, the regression of
Y on X produced a higher R2 than the regression of Y on Z. Then the
estimate of bx would be formed using the information in the



blue-plus-red area. Note that this estimate is biased.

The Ballentine can be used to illustrate several variants of R2. Consider,

for example, the simple R2 between Y and Z in figure 3.2. If the area of

the Y circle is normalized to be unity, this simple R2, denoted  is

given by the red-plus-green area. The partial R2 between Y and Z is
defined as reflecting the influence of Z on Y after accounting for the
influence of X. It is measured by obtaining the R2 from the regression of

Y corrected for X on Z corrected for X, and is denoted . Our earlier
use of the Ballentine makes it easy to deduce that in figure 3.2 it is
given as the green area divided by the yellow-plus-green area. The
reader might like to verify that it is given by the formula

The OLS estimator has several well-known mechanical properties with
which students should become intimately familiar - instructors tend to
assume this knowledge after the first lecture or two on OLS. Listed
below are the more important of these properties; proofs can be found
in most textbooks. The context is y = a + bx + e.

(1) If b = 0 so that the only regressor is the intercept, y is regressed
on a column of ones, producing aOLS = y, the average of the y
observations.

(2) If a = 0 so there is no intercept and one explanatory variable, y is
regressed on a column of x values, producing bOLS = Sxy/Sx2.

(3) If there is an intercept and one explanatory variable

(4) If observations are expressed as deviations from their means, y*
= y - y and x* = x - x, then bOLS = Sx*y*/Sx*2. This follows from
(3) above. Lower case letters are sometimes reserved to denote
deviations from sample means.

(5) The intercept can be estimated as  or, if there are more

explanatory variables, as  This comes from the first
normal equation, the equation that results from setting the partial



derivative of SSE with respect to a equal to zero (to minimize the
SSE).

(6) An implication of (5) is that the sum of the OLS residuals equals
zero; in effect
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the intercept is estimated by the value that causes the sum of the
OLS residuals to equal zero.

(7) The predicted, or estimated, y values are calculated as

. An implication of (6) is that the mean of the 

values equals the mean of the actual y values: 

(8) An implication of (5), (6) and (7) above is that the OLS
regression line passes through the overall mean of the data points.

(9) Adding a constant to a variable, or scaling a variable, has a
predictable impact on the OLS estimates. For example, multiplying
the x observations by 10 will multiply bOLS by one-tenth, and
adding 6 to the y observations will increase aOLS by 6.

(10) A linear restriction on the parameters can be incorporated into
a regression by eliminating one coefficient from that equation and
running the resulting regression using transformed variables. For an
example see the general notes to section 4.3.

(11) The "variation" in the dependent variable is the "total sum of

squares"  where y'y is matrix notation for
Sy2, and N is the sample size.

(12) The "variation" explained linearly by the independent variables

is the "regression sum of squares," .

(13) The sum of squared errors from a regression is

. (Note that textbook
notation varies. Some authors use SSE for "explained sum of
squares" and SSR for "sum of squared residuals," creating results
that look to be the opposite of those given here.)



(14) SSE is often calculated by Sy2 - aOLSSy - bOLSSxy, or in the

more general matrix notation .

(15) The coefficient of determination, R2 = SSR/SST = 1 - SSE/SST

is maximized by OLS because OLS minimizes SSE. R2 is the

squared correlation coefficient between y and  it is the fraction of
the "variation" in y that is explained linearly by the explanatory
variables.

(16) When no intercept is included, it is possible for R2 to lie
outside the zero to one range. See the general notes to section 2.4.

(17) Minimizing with some extra help cannot make the minimization
less successful. Thus SSE decreases (or in unusual cases remains
unchanged) when an additional explanatory variable is added; R2
must therefore rise (or remain unchanged).

(18) Because the explanatory variable(s) is (are) given as much
credit as possible for explaining changes in y, and the error as little
credit as possible, eOLS is uncorrelated with the explanatory

variable(s) and thus with  (because  is a linear function of the
explanatory variable(s).

(19) The estimated coefficient of the ith regressor can be obtained
by regressing y on this regressor "residualized" for the other
regressors (the residuals from a regression of the ith regressor on all
the other regressors). The same result is obtained if the
"residualized" y is used as the regressand, instead of y. These results
were explained earlier in these technical notes with the help of the
Ballentine.
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4
Interval Estimation and Hypothesis Testing



4.1 Introduction

In addition to estimating parameters, econometricians often wish to
construct confidence intervals for their estimates and test hypotheses
concerning parameters. To strengthen the perspective from which
violations of the CLR model are viewed in the following chapters, this
chapter provides a brief discussion of these principles of inference in
the context of traditional applications found in econometrics.

Under the null hypothesis most test statistics have a distribution that is
tabulated in appendices at the back of statistics books, the most
common of which are the standard normal, the t, the chi-square, and the
F distributions. In small samples the applicability of all these
distributions depends on the errors in the CLR model being normally
distributed, something that is not one of the CLR model assumptions.
For situations in which the errors are not distributed normally, it turns
out that in most cases a traditional test statistic has an asymptotic
distribution equivalent to one of these tabulated distributions; with this
as justification, testing/interval estimation proceeds in the usual way,
ignoring the small sample bias. For expository purposes, this chapter's
discussion of inference is couched in terms of the classical normal linear
regression (CNLR) model, in which the assumptions of the CLR model
are augmented by assuming that the errors are distributed normally.

4.2 Testing a Single Hypothesis: The t Test

Hypothesis tests on and interval estimates of single parameters are
straightforward applications of techniques familiar to all students of
elementary statistics. In the CNLR model the OLS estimator bOLS
generates estimates that are distributed joint-normally in repeated

samples. This means that  are all connected to one

another (through their covariances). In particular, this means that ,
say, is distributed normally with mean b3 (since the OLS estimator is

unbiased) and variance  equal to the third diagonal element of
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the variance-covariance matrix of bOLS. The square root of V  is

the standard deviation of . Using the normal table and this



standard deviation, interval estimates can be constructed and
hypotheses can be tested.

A major drawback to this procedure is that the variance-covariance
matrix of bOLS is not usually known (because s2, the variance of the
disturbances, which appears in the formula for this variance-covariance
matrix, is not usually known). Estimating s2 by s2, as discussed in the
technical notes to section 3.3, allows an estimate of this matrix to be
created. The square root of the third diagonal element of this matrix is

the standard error of , an estimate of the standard deviation of

. With this estimate the t-table can be used in place of the normal
table to test hypotheses or construct interval estimates.

The use of such t tests, as they are called, is so common that most
packaged computer programs designed to compute the OLS estimators
(designed to run OLS regressions) have included in their output a
number called the t statistic for each parameter estimate. This gives the
value of the parameter estimate divided by its estimated standard
deviation (the standard error). This value can be compared directly to
critical values in the t-table to test the hypothesis that that parameter is
equal to zero. In some research reports, this t statistic is printed in
parentheses underneath the parameter estimates, creating some
confusion because sometimes the standard errors appear in this position.
(A negative number in parentheses would have to be a t value, so that
this would indicate that these numbers were t values rather than
standard errors.)

4.3 Testing a Joint Hypothesis: The F Test

Suppose that a researcher wants to test the joint hypothesis that, say,
the fourth and fifth elements of b are equal to 1.0 and 2.0, respectively.
That is, he wishes to test the hypothesis that the sub-vector

is equal to the vector



This is a different question from the two separate questions of whether
b4 is equal to 1.0 and whether b5 is equal to 2.0. It is possible, for
example, to accept the hypothesis that b4 is equal to 1.0 and also to
accept the hypothesis that b5 is equal to 2.0, but to reject the joint
hypothesis that
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is equal to

The purpose of this section is to explain how the F test is used to test
such joint hypotheses. The following section explains how a difference
between results based on separate tests and joint tests could arise.

The F statistic for testing a set of J linear constraints in a regression
with K parameters (including the intercept) and T observations takes the
generic form

where the degrees of freedom for this F statistic are J and T - K. This
generic form is worth memorizing - it is extremely useful for structuring
F tests for a wide variety of special cases, such as Chow tests (chapter
6) and tests involving dummy variables (chapter 14).

When the constraints are true, because of the error term they will not be
satisfied exactly by the data, so the SSE will increase when the
constraints are imposed - minimization subject to constraints will not be
as successful as minimization without constraints. But if the constraints
are true the per-constraint increase in SSE should not be large, relative
to the influence of the error term. The numerator has the
"per-constraint" change in SSE due to imposing the constraints and the
denominator has the "per-error" contribution to SSE. (The minus K in



this expression corrects for degrees of freedom, explained in the general
notes.) If their ratio is ''too big" we would be reluctant to believe that it
happened by chance, concluding that it must have happened because
the constraints are false. High values of this F statistic thus lead us to
reject the null hypothesis that the constraints are true.

How does one find the constrained SSE? A constrained regression is run
to obtain the constrained SSE. The easiest example is the case of
constraining a coefficient to be equal to zero - just run the regression
omitting that coefficient's variable. To run a regression constraining

 to be 1.0 and  to be 2.0, subtract 1.0 times the fourth regressor
and 2.0 times the fifth regressor from the dependent variable and
regress this new, constructed dependent variable on the remaining
regressors. In general, to incorporate a linear restriction into a
regression, use the restriction to solve out one of the parameters, and
rearrange the resulting equation to form a new regression involving
constructed variables. An explicit example is given in the general notes.
 

page_56

Page 57

4.4 Interval Estimation for a Parameter Vector

Interval estimation in the multidimensional case is best illustrated by a
two-dimensional example. Suppose that the sub-vector

is of interest. The OLS estimate of this sub-vector is shown as the point
in the center of the rectangle in figure 4.1. Using the t-table and the
square root of the fourth diagonal term in the estimated variance-
covariance matrix of bOLS, a 95% confidence interval can be

constructed for b4. This is shown in figure 4.1 as the interval from A to

B;  lies halfway between A and B. Similarly, a 95% confidence
interval can be constructed for b5; it is shown in figure 4.1 as the
interval from C to D and is drawn larger than the interval AB to reflect

an assumed larger standard error for 



Figure 4.1
A Confidence region with zero covariance
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An interval estimate for the sub-vector

is a region or area that, when constructed in repeated samples, covers
the true value (b4, b5) in, say, 95% of the samples. Furthermore, this
region should for an efficient estimate be the smallest such region
possible. A natural region to choose for this purpose is the rectangle
formed by the individual interval estimates, as shown in figure 4.1. If

 and  have zero covariance, then in repeated sampling
rectangles calculated in this fashion will cover the unknown point (b4,

b5) in 0.95 × 0.95 = 90.25% of the samples. (In repeated samples the



probability is 0.95 that the b4 confidence interval covers b4, as is the
probability that the b5 confidence interval covers b5, thus the
probability for both b4 and b5 to be covered simultaneously is 0.95 ×
0.95.)

Evidently, this rectangle is not "big" enough to serve as a 95% joint
confidence interval. Where should it be enlarged? Because the region
must be kept as small as possible, the enlargement must come in those
parts that have the greatest chance of covering (b4, b5) in a repeated

samples. The corners of the rectangle will cover (b4, b5) in a repeated

sample whenever  and  are simultaneously a long way from
their mean values of b4 and b5. The probability in repeated samples of
having these two unlikely events occur simultaneously is very small.
Thus the areas just outside the rectangle near the points A, B, C, and D
are more likely to cover (b4, b5) in repeated samples than are the areas
just outside the corners of the rectangle: the rectangle should be made
bigger near the points A, B, C, and D. Further thought suggests that the
areas just outside the points A, B, C, and D are more likely, in repeated
samples, to cover (b4, b5) than the areas just inside the corners of the
rectangle. Thus the total region could be made smaller by chopping a lot
of area off the corners and extending slightly the areas near the points
A, B, C, and D. In fact, the F statistic described earlier allows the
econometrician to derive the confidence region as an ellipse, as shown
in figure 4.1.

The ellipse in figure 4.1 represents the case of zero covariance between

 and . If  and  have a positive covariance (an estimate
of this covariance is found in either the fourth column and fifth row or
the fifth column and fourth row of the estimate of the variance-

covariance matrix of bOLS), whenever  is an overestimate of b4,

 is likely to be an overestimate of b5 and whenever  is an

underestimate of b4,  is likely to be an underestimate of b5. This
means that the area near the top right-hand corner of the rectangle and
the area near the bottom left-hand corner are no longer as unlikely to
cover (b4, b5) in repeated samples; it also means that the areas near the
top left-hand corner and bottom right-hand corner are even less likely to
cover (b4, b5). In this case the ellipse representing the confidence
region is tilted to the right, as shown in figure 4.2. In the case of

negative covariance between  and 
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Figure 4.2
A confidence region with positive covariance

ellipse is tilted to the left. In all cases, the ellipse remains centered on

the point  , .

This two-dimensional example illustrates the possibility, mentioned
earlier, of accepting two individual hypotheses but rejecting the
corresponding joint hypothesis. Suppose the hypothesis is that b4 = 0
and b5 = 0, and suppose the point (0,0) lies inside a corner of the
rectangle in figure 4.1, but outside the ellipse. Testing the hypothesis b4

= 0 using a t test concludes that b4 is insignificantly different from zero
(because the interval AB contains zero), and testing the hypothesis b5 =
0 concludes that b5 is insignificantly different from zero (because the
interval CD contains zero). But testing the joint hypothesis



using an F test, concludes that
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is significantly different from the zero vector because (0,0) lies outside
the ellipse. In this example one can confidently say that at least one of
the two variables has a significant influence on the dependent variable,
but one cannot with confidence assign that influence to either of the
variables individually. The typical circumstance in which this comes
about is in the case of multicollinearity (see chapter 11), in which
independent variables are related so that it is difficult to tell which of
the variables deserves credit for explaining variation in the dependent
variable. Figure 4.2 is representative of the multicollinearity case.

In three dimensions the confidence region becomes a confidence
volume and is represented diagrammatically by an ellipsoid. In higher
dimensions diagrammatic representation is impossible, but the hyper-
surface corresponding to a critical value of the F statistic can be called
a multidimensional ellipsoid.

4.5 LR, W, and LM Statistics

The F test discussed above is applicable whenever we are testing linear
restrictions in the context of the CNLR model. Whenever the problem
cannot be cast into this mold for example, if the restrictions are
nonlinear, the model is nonlinear in the parameters or the errors are
distributed non-normally this procedure is inappropriate and is usually
replaced by one of three asymptotically equivalent tests. These are the
likelihood ratio (LR) test, the Wald (W) test), and the Lagrange
multiplier (LM) test. The test statistics associated with these tests have
unknown small-sample distributions, but are each distributed
asymptotically as a chi-square (X2) with degrees of freedom equal to
the number of restrictions being tested.



These three test statistics are based on three different rationales.
Consider figure 4.3, in which the log-likelihood (lnL) function is
graphed as a function of b, the parameter being estimated. bMLE is, by
definition, the value of b at which lnL attains its maximum. Suppose the

restriction being tested is written as g(b) = 0, satisfied at the value 
where the function g(b) cuts the horizontal axis:

(1) The LR test If the restriction is true, then lnLR, the maximized value
of lnL imposing the restriction, should not be significantly less than
lnLmax, the unrestricted maximum value of lnL. The LR test tests
whether (lnLR - lnLmax) is significantly different from zero.

(2) The W test If the restriction g(b) = 0 is true, then g(bMLE) should

not be significantly different from zero. The W test whether bMLE (the
unrestricted estimate of b) violates the restriction by a significant
amount.

(3) The LM test The log-likelihood function lnL is maximized at point A
where the slope of lnL with respect to b is zero. If the restriction is true,
then the slope of lnL at point B should not be significantly different
from zero. The LM test tests whether the slope of lnL, evaluated at the
restricted estimate, is significantly different from zero.
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Figure 4.3
Explaining the LR, W, and LM statistics

When faced with three statistics with identical asymptotic properties,
econometricians would usually choose among them on the basis of their
small-sample properties, as determined by Monte Carlo studies. In this
case, however, it happens that computational cost plays a dominant role
in this respect. To calculate the LR statistics, both the restricted and the
unrestricted estimates of b must be calculated. If neither is difficult to
compute, then the LR test is computationally the most attractive of the
three tests. To calculate the W statistic only the unrestricted estimate is
required; if the restricted but not the unrestricted estimate is difficult to
compute, owing to a nonlinear restriction, for example, the W test is
computationally the most attractive. To calculate the LM statistic, only
the restricted estimate is required; if the unrestricted but not the
restricted estimate is difficult to compute - for example, when imposing
the restriction transforms a nonlinear functional form into a linear
functional form - the LM test is the most attractive.
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4.6 Bootstrapping

Testing hypotheses exploits knowledge of the sampling distributions of
test statistics when the null is true, and constructing confidence intervals
requires knowledge of estimators' sampling distributions. Unfortunately,
this "knowledge" is often questionable, or unavailable, for a variety of
reasons:

(1) Assumptions made concerning the distribution of the error term may
be false. For example, the error may not be distributed normally, or
even approximately normally, as is often assumed.

(2) Algebraic difficulties in calculating the characteristics of a sampling
distribution often cause econometricians to undertake such derivations
assuming that the sample size is very large. The resulting "asymptotic"
results may not be close approximations for the sample size of the
problem at hand.

(3) For some estimating techniques, such as minimizing the median
squared error, even asymptotic algebra cannot produce formulas for
estimator variances.

(4) A researcher may obtain an estimate by undertaking a series of tests,
the results of which lead eventually to adoption of a final estimation
formula. This search process makes it impossible to derive algebraically
the character of the sampling distribution.

One way of dealing with these problems is to perform a Monte Carlo
study: data are simulated to mimic the process thought to be generating
the data, the estimate or test statistic is calculated and this process is
repeated several thousand times to allow computation of the character
of the sampling distribution of the estimator or test statistic. To tailor the
Monte Carlo study to the problem at hand, initial parameter estimates
are used as the "true" parameter values, and the actual values of the
explanatory variables are employed as the "fixed in repeated samples"
values of the explanatory variables. But this tailoring is incomplete
because in the Monte Carlo study the errors must be drawn from a
known distribution such as the normal. This is a major drawback of the
traditional Monte Carlo methodology in this context.



The bootstrap is a special Monte Carlo procedure which circumvents
this problem. It does so by assuming that the unknown distribution of
the error term can be adequately approximated by a discrete distribution
that gives equal weight to each of the residuals from the original
estimation. Assuming a reasonable sample size, in typical cases most of
the residuals should be small in absolute value, so that although each
residual is given equal weight (and thus is equally likely to be chosen in
random draws from this distribution), small residuals predominate,
causing random draws from this distribution to produce small values
much more frequently than large values. This procedure, which
estimates sampling distributions by using only the original data (and so
"pulls itself up by
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its own bootstraps") has proved to be remarkably successful. In effect it
substitutes computing power, the price of which has dramatically
decreased, for theorem-proving, whose price has held constant or even
increased as we have adopted more complicated estimation procedures.

The bootstrap begins by estimating the model in question and saving the
residuals. It performs a Monte Carlo study, using the estimated
parameter values as the "true" parameter values and the actual values of
the explanatory variables as the fixed explanatory variable values.
During this Monte Carlo study errors are drawn, with replacement, from
the set of original residuals. In this way account is taken of the unknown
distribution of the true errors. This "residual based" technique is only
appropriate whenever each error is equally likely to be drawn for each
observation. If this is not the case, an alternative bootstrapping method
is employed. See the general notes to this section for further discussion.

General Notes

4.1 Introduction

It is extremely convenient to assume that errors are distributed
normally, but there exists little justification for this assumption. Tiao
and Box (1973, p. 13) speculate that "Belief in universal near-Normality
of disturbances may be traced, perhaps, to early feeding on a diet of
asymptotic Normality of maximum likelihood and other estimators."
Poincaré is said to have claimed that "everyone believes in the
[Gaussian] law of errors, the experimenters because they think it is a



mathematical theorem, the mathematicians because they think it is an
empirical fact." Several tests for normality exist; for a textbook
exposition see Maddala (1977, pp. 3058). See also Judge et al. (1985,
pp. 8827). The consequences of non-normality of the fat-tailed kind,
implying infinite variance, are quite serious, since hypothesis testing and
interval estimation cannot be undertaken meaningfully. Faced with such
non-normality, two options exist. First, one can employ robust
estimators, as described in chapter 18. And second, one can transform
the data to create transformed errors that are closer to being normally
distributed. For discussion see Maddala (1977, pp. 31417).

Testing hypotheses is viewed by some with scorn. Consider for example
the remark of Johnson (1971, p. 2): "The 'testing of hypotheses' is
frequently merely a euphemism for obtaining plausible numbers to
provide ceremonial adequacy for a theory chosen and defended on a
priori grounds." For a completely opposite cynical view, Blaug (1980,
p. 257) feels that econometricians "express a hypothesis in terms of an
equation, estimate a variety of forms for that equation, select the best
fit, discard the rest, and then adjust the theoretical argument to
rationalize the hypothesis that is being tested."

It should be borne in mind that despite the power, or lack thereof, of
hypothesis tests, often conclusions are convincing to a researcher only if
supported by personal experience. Nelson (1995, p. 141) captures this
subjective element of empirical research by noting that "what often
really seems to matter in convincing a male colleague of the
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existence of sex discrimination is not studies with 10,000 'objective'
observations, but rather a particular single direct observation: the
experience of his own daughter."

Hypothesis tests are usually conducted using a type I error rate
(probability of rejecting a true null) of 5%, but there is no good reason
why 5% should be preferred to some other percentage. It is chosen so
often that it has become a tradition, prompting Kempthorne and
Doerfler (1969, p. 231) to opine that "statisticians are people whose aim
in life is to be wrong 5% of the time!"



For a number of reasons, tests of significance can sometimes be
misleading. A good discussion can be found in Bakan (1966). One of
the more interesting problems in this respect is the fact that almost any
parameter can be found to be significantly different from zero if the
sample size is sufficiently large. (Almost every relevant independent
variable will have some influence, however small, on a dependent
variable; increasing the sample size will reduce the variance and
eventually make this influence statistically significant.) Thus, although a
researcher wants a large sample size to generate more accurate
estimates, too large a sample size might cause difficulties in interpreting
the usual tests of significance. McCloskey and Ziliak (1996) look
carefully at a large number of empirical studies in economics and
conclude that researchers seem not to appreciate that statistical
significance does not imply economic significance. One must ask if the
magnitude of the coefficient in question is large enough for its
explanatory variable to have a meaningful (as opposed to "significant")
influence on the dependent variable. This is called the too-large sample
size problem. It is suggested that the significance level be adjusted
downward as the sample size grows; for a formalization see Leamer
(1978, pp. 889, 1045). See also Attfield (1982). Leamer would also
argue (1988, p. 331) that this problem would be resolved if researchers
recognized that genuinely interesting hypotheses are neighborhoods, not
points.

Another interesting dimension of this problem is the question of what
significance level should be employed when replicating a study with
new data; conclusions must be drawn by considering both sets of data
as a unit, not just the new set of data. For discussion see Busche and
Kennedy (1984). A third interesting example in this context is the
propensity for published studies to contain a disproportionately large
number of type I errors; studies with statistically significant results tend
to get published, whereas those with insignificant results do not. For
comment see Figure (1975). Yet another example that should be
mentioned here is pre-test bias, discussed in chapter 12.

Inferences from a model may be sensitive to the model specification,
the validity of which may be in doubt. A fragility analysis is
recommended to deal with this; it examines the range of inferences
resulting from the range of believable model specifications. See Leamer
and Leonard (1983) and Leamer (1983a).

Armstrong (1978, pp. 4067) advocates the use of the method of multiple
hypotheses, in which research is designed to compare two or more
reasonable hypotheses, in contrast to the usual advocacy strategy in



which a researcher tries to find confirming evidence for a favorite
hypothesis. (Econometricians, like artists, tend to fall in love with their
models!) It is claimed that the latter procedure biases the way scientists
perceive the world, and that scientists employing the former strategy
progress more rapidly.
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4.2 Testing a Single Hypothesis: the t Test

A t test can be used to test any single linear constraint. Suppose y = a +
bx + dw + e and we wish to test b + d = 1. A t test is formulated by
rewriting the constraint so that it is equal to zero, in this case as b+ d - 1
= 0, estimating the left-hand side as bOLS + dOLS - 1 and dividing this
by the square root of its estimated variance to form a t statistic with
degrees of freedom equal to the sample size minus the number of
parameters estimated in the regression. Estimation of the variance of
(bOLS + dOLS - 1) is a bit messy, but can be done using the elements in
the estimated variance-covariance matrix from the OLS regression. This
messiness can be avoided by using an F test, as explained in the general
notes to the following section.

Nonlinear constraints are usually tested by using a W, LR or LM test,
but sometimes an "asymptotic" t test is encountered: the nonlinear
constraint is written with its right-hand side equal to zero, the left-hand
side is estimated and then divided by the square root of an estimate of
its asymptotic variance to produce the asymptotic t statistic. It is the
square root of the corresponding W test statistic. The asymptotic
variance of a nonlinear function was discussed in chapter 2.

4.3 Testing a Joint Hypothesis: the F Test

If there are only two observations, a linear function with one
independent variable (i.e., two parameters) will fit the data perfectly,
regardless of what independent variable is used. Adding a third
observation will destroy the perfect fit, but the fit will remain quite
good, simply because there is effectively only one observation to
explain. It is to correct this phenomenon that statistics are adjusted for
degrees of freedom - the number of "free" or linearly independent
observations used in the calculation of the statistic. For all of the F tests
cited in this section, the degrees of freedom appropriate for the



numerator is the number of restrictions being tested. The degrees of
freedom for the denominator is T - K, the number of observations less
the number of parameters being estimated. T - K is also the degrees of
freedom for the t statistic mentioned in section 4.2.

The degrees of freedom of a statistic is the number of quantities that
enter into the calculation of the statistic minus the number of constraints
connecting these quantities. For example, the formula used to compute
the sample variance involves the sample mean statistic. This places a
constraint on the data - given the sample mean, any one data point can
be determined by the other (N - 1) data points. Consequently there are
in effect only (N - 1) unconstrained observations available to estimate
the sample variance; the degrees of freedom of the sample variance
statistic is (N - 1).

A special case of the F statistic is automatically reported by most
regression packages - the F statistic for the "overall significance of the
regression." This F statistic tests the hypothesis that all the slope
coefficients are zero. The constrained regression in this case would have
only an intercept.

To clarify further how one runs a constrained regression, suppose for
example that y = a + bx + dw + e and we wish to impose the constraint
that b + d = 1. Substitute b = 1 - d and rearrange to get y - x = a + d(w -
x) + e. The restricted
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SSE is obtained from regressing the constructed variable (y - x) on a
constant and the constructed variable (w - x). Note that because the
dependent variable has changed it will not be meaningful to compare
the R2 of this regression with that of the original regression.

In the preceding example it should be clear that it is easy to construct an
F test of the hypothesis that b + d = 1. The resulting F statistic will be
the square of the t statistic that could be used to test this same
hypothesis (described in the preceding section). This reflects the general
result that the square of a t statistic is an F statistic (with degrees of
freedom one and the degrees of freedom for the t test). With the
exception of testing a single coefficient equal to a specific value, it is
usually easier to perform an F test than a t test.



By dividing the numerator and denominator of the F statistic by SST,
the total variation in the dependent variable, F can be written in terms
of R2 and DR2. This method is not recommended, however, because
often the restricted SSE is obtained by running a regression with a
different dependent variable than that used by the regression run to
obtain the unrestricted SSE (as in the example above), implying
different SSTs and incomparable R2s.

An F statistic with p and n degrees of freedom is the ratio of two
independent chi-square statistics, each divided by its degrees of
freedom, p for the numerator and n for the denominator. For the
standard F statistic we have been discussing, the chi-square on the
denominator is SSE, the sum of squared OLS residuals, with degrees of
freedom T - K, divided by s2. Asymptotically, SSE/(T - K) equals s2, so
the denominator becomes unity, leaving F equal to the numerator
chi-square divided by its degrees of freedom p. Thus, asymptotically pF
is distributed as a chi-square with the degrees of freedom p. This
explains why test statistics derived on asymptotic arguments are
invariably expressed as chi-square statistics rather than as F statistics.
In small samples it cannot be said that this approach, calculating the
chi-square statistic and using critical values from the chi-square
distribution, is definitely preferred to calculating the F statistic and
using critical values from the F distribution.

One application of the F test is in testing for causality. It is usually
assumed that movements in the dependent variable are caused by
movements in the independent variable(s), but the existence of a
relationship between these variables proves neither the existence of
causality nor its direction. Using the dictionary meaning of causality, it
is impossible to test for causality. Granger developed a special definition
of causality which econometricians use in place of the dictionary
definition; strictly speaking, econometricians should say ''Granger-
cause" in place of "cause," but usually they do not. A variable x is said
to Granger-cause y if prediction of the current value of y is enhanced by
using past values of x. This definition is implemented for empirical
testing by regressing y on past, current and future values of x; if
causality runs one way, from x to y, the set of coefficients of the future
values of x should test insignificantly different from the zero vector (via
an F test), and the set of coefficients of the past values of x should test
significantly different from zero. Before running this regression both
data sets are transformed (using the same transformation), so as to
eliminate any autocorrelation in the error attached to this regression.
(This is required to permit use of the F test; chapter 8 examines the



problem of autocorrelated errors. Great controversy exists over the
appropriate way of conducting this transformation and the extent to
which the results are sensitive to the transformation chosen. Other
criticisms focus on the possibility of expected future values of x
affecting the current value of y, and,
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in general, the lack of full correspondence between Granger-causality
and causality. (Consider, for example, the fact that Christmas card sales
Granger-cause Christmas!) Bishop (1979) has a concise review and
references to the major studies on this topic. Darnell (1994, pp. 413) has
a concise textbook exposition.

4.4 Interval Estimation for a parameter Vector

Figure 4.2 can be used to illustrate another curiosity - the possibility of
accepting the hypothesis that

on the basis of an F test while rejecting the hypothesis that b4 = 0 and

the hypothesis that b5 = 0 on the basis of individual t tests. This would
be the case if, for the sample at hand, the point (0,0) fell in either of the
small shaded areas (in the upper right or lower left) of the ellipse in
figure 4.2. For a summary discussion of the possible cases that could
arise here, along with an example of this seldom encountered curiosity,
see Geary and Leser (1968).

4.5 LR, W, and LM Statistics

Figure 4.3 is taken from Buse (1982) who uses it to conduct a more
extensive discussion of the W, LR and LM statistics, noting, for
example, that the geometric distances being tested depend on the
second derivatives of the log-likelihood function, which enter into the
test statistics through variances (recall that these second derivatives
appeared in the Cramer-Rao lower bound). Engle (1984) has an
extensive discussion of the W, LR and LM test statistics. Greene (1990,
pp. 12633) is a good textbook exposition.



The name of the LM statistic comes from an alternative derivation of
this statistic. To maximize subject to restrictions, the Lagrange
multiplier technique is usually employed; if the restrictions are not
binding, the vector of Lagrange multipliers is zero. Thus, when
maximizing the log-likelihood subject to restrictions, if the restrictions
are true they should be close to being satisfied by the data and the value
of the Lagrange multiplier vector should be close to zero. The validity
of the restrictions could therefore be tested by testing the vector of
Lagrange multipliers against the zero vector. This produces the LM test.

Critical values from the X2 distribution are used for the LR, W and LM
tests, in spite of the fact that in small samples they are not distributed as
X2. This is a weakness of all three of these tests. Furthermore, it has
been shown by Berndt and Saving (1977) that in linear models in small
samples the values of these test statistics are such that W > LR > LM
for the same data, testing for the same restrictions. Consequently, it is
possible for conflict among these tests to arise in the sense that in small
samples a restriction could be accepted on the basis of one test but
rejected on the basis of another. Zaman (1996, pp. 41112) argues that
the third-order terms in the asymptotic
 

page_67

Page 68

expansions of the W, LR and LM tests are different and upon
examination the LR test is to be favored in small samples. Dagenais and
Dufour (1991, 1992) conclude that W tests and some forms of LM tests
are not invariant to changes in the measurement units, the
representation of the null hypothesis and reparameterizations, and so
recommend the LR test.

Because it requires estimation under only the null hypothesis, the LM
test is less specific than other tests concerning the precise nature of the
alternative hypothesis. This could be viewed as an advantage, since it
allows testing to be conducted in the context of a more general
alternative hypothesis, or as a disadvantage, since it does not permit the
precise nature of an alternative hypothesis to play a role and thereby
increase the power of the test. Monte Carlo studies, however, have
shown that this potential drawback is not of great concern.

For the special case of testing linear restrictions in the CNLR model
with s2 known, the LR, W and LM tests are equivalent to the F test



(which in this circumstance, because s2 is known, becomes a X2 test).
When s2 is unknown, see Vandaele (1981) for the relationships among
these tests.

In many cases it turns out that the parameters characterizing several
misspecifications are functionally independent of each other, so that the
information matrix is block-diagonal. In this case the LM statistic for
testing all the misspecifications jointly is the sum of the LM statistics for
testing each of the misspecifications separately. The same is true for the
W and LR statistics.

A nonlinear restriction can be written in different ways. For example,
the restriction ab - 1 = 0 could be written as a - 1/b = 0. Gregory and
Veall (1985) find that the Wald test statistic is sensitive to which way
the restriction is written. For this example, they recommend the former
version.

4.6 Bootstrapping

Jeong and Maddala (1993) is a good survey of bootstrapping in an
econometric context. Li and Maddala (1996) extend this survey,
concentrating on time series data. Veall (1987, 1992) are good examples
of econometric applications, and Veall (1989, 1998) are concise surveys
of such applications. Efron and Tibshirani (1993) is a detailed
exposition.

An implicit assumption of bootstrapping is that the errors are
exchangeable, meaning that each error, which in this case is one of the
N residuals (sample size N), is equally likely to occur with each
observation. This may not be true. For example, larger error variances
might be associated with larger values of one of the explanatory
variables, in which case large errors are more likely to occur whenever
there are large values of this explanatory variable. A variant of the
bootstrap called the complete bootstrap is employed to deal with this
problem. Each of the N observations in the original sample is written as
a vector of values containing an observation on the dependent variable
and an associated observation for each of the explanatory variables.
Observations for a Monte Carlo repeated sample are drawn with
replacement from the set of these vectors.

This technique introduces three innovations. First, it implicitly employs
the true, unknown errors because they are part of the dependent
variable values, and keeps these unknown errors paired with the original
explanatory variable values with which
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they were associated. Second, it does not employ estimates of the
unknown parameters, implicitly using the true parameter values. And
third, it no longer views the explanatory variable values as fixed in
repeated samples, assuming instead that these values were drawn from a
distribution adequately approximated by a discrete distribution giving
equal weight to each observed vector of values on the explanatory
variables. This makes sense in a context in which the observations are a
small subset of a large population of similar observations.
Unfortunately, it does not make sense if the original observations
exhaust the population, as would be the case, for example, if they were
observations on all large Canadian cities. Nor would it make sense in a
context in which a researcher selected the values of the explanatory
variables to suit the study rather than via some random process. It also
would not be suitable for a problem in which the errors are
autocorrelated in that the error for one observation is related to the
error for another; in this case a bootstrapping residuals technique would
have to be used with an appropriate modification to create the desired
error correlation in each bootstrapped sample. The message here is that
the bootstrapping procedure must be carefully thought out for each
application.

An alternative computer-based means of estimating a sampling
distribution of a test statistic is that associated with a
randomization/permutation test. The rationale behind this testing
methodology is that if an explanatory variable has no influence on a
dependent variable then it should make little difference to the outcome
of the test statistic if the values of this explanatory variable are shuffled
and matched up with different dependent variable values. By
performing this shuffling thousands of times, each time calculating the
test statistic, the hypothesis can be tested by seeing if the original test
statistic value is unusual relative to the thousands of test statistic values
created by the shufflings. Notice how different is the meaning of the
sampling distribution - it no longer corresponds to "What would happen
if we drew different bundles of errors"; now it corresponds to "What
would happen if the independent variable values were paired with
different dependent variable values." Hypothesis testing is based on
viewing the test statistic as having resulted from playing a game of
chance; the randomization view of testing claims that there is more than



one way to play a game of chance with one's data! For further
discussion of this testing methodology in the econometrics context see
Kennedy (1995) and Kennedy and Cade (1996). Noreen (1989) is a
good elementary reference.

Technical Notes

4.1 Introduction

A type I error is concluding the null hypothesis is false when it is true; a
type II error is concluding the null hypothesis is true when it is a false.
Traditional testing methodologies set the probability of a type I error
(called the size, usually denoted a, called the significance level) equal
to an arbitrarily determined value (typically 5%) and then maximize the
power (one minus the probability of a type II error) of the test. A test is
called uniformly most powerful (UMP) if it has greater power than any
other test of the same size for all degrees of falseness of the hypothesis.
Econometric theorists work hard to develop fancy tests with high
power, but, as noted by McAleer (1994,
 

page_69

Page 70

p. 334), a test that is never used has zero power, suggesting that tests
must be simple to perform if they are to have power.

A test is consistent if its power goes to one as the sample size grows to
infinity, something that usually happens if the test is based on a
consistent estimate. Many tests are developed and defended on the
basis of asymptotics, with most such tests being consistent; this creates
a dilemma - how can the power of such tests be compared when
asymptotically they all have power one? This problem is solved through
the concepts of a local alternative and local power. For the null
hypothesis b = b0, the alternative hypothesis is indexed to approach the
null as the sample size T approaches infinity, so that, for example, the

alternative  becomes the local alternative  Now an
increase in T increases power, but this is balanced by a move of the
alternative towards the null; the local alternative is in general
constructed so as to make the power approach a well-defined limit as T
approaches infinity. This limit is called the local power, and is what is
used to compare consistent tests.



4.3 Testing a Joint Hypothesis: The F Test

The DSSE that appears in the numerator of the F statistics sometimes
appears in other guises in textbooks. If, for example, the test is for b
equal to a specific vector b0, then DSSE = (bOLS - b0)'X' X (bOLS -
b0). This can be shown algebraically, but it is instructive to see why it
makes sense. Assuming the CNLR model applies, under the null
hypothesis bOLS is distributed normally with mean b0 and variance-

covariance matrix s2 (X'X)-1. Thus (bOLS - b0) is distributed normally
with mean zero and variance s2 (X'X)-1, implying that (bOLS - b0)X'X
(bOLS - b0/s2 is distributed as a chi-square. (This is explained in the
technical notes to section 4.5.) This chi-square is the numerator
chi-square of the F statistic (an F statistic is the ratio of two
independent chi-squares, each divided by its degrees of freedom); the s2
gets canceled out by a s2 that appears in the denominator chi-square.

4.5 LR, W, and LM Statistics

The LR test statistic is computed as -2 In l where l is the likelihood
ratio, the ratio of the constrained maximum of the likelihood (i.e., under
the null hypothesis) to the unconstrained maximum of the likelihood.

The W statistic is computed using a generalized version of the X2 which
is useful to know. A sum of J independent, squared standard normal
variables is distributed as X2 with J degrees of freedom. (This in effect
defines a X2 distribution in most elementary statistics texts.) Thus, if the

J elements qj of q are distributed normally with mean zero, variance 

and zero covariance, then  is distributed as a X2 with J
degrees of freedom. This can be written in matrix terminology as Q = q'

V-1q where V is a diagonal matrix with  as its diagonal elements.
Generalizing in the obvious way, we obtain q' V-10 distributed as a X2
with J degrees of freedom, where the J×1 vector q is distributed
multivariate normally with mean zero and variance-covariance matrix
V.

For the W statistic, q is a vector of  of the J restrictions evaluated at
bMLE, and V, the variance-covariance matrix of  is given by G'CG
where G is the (K×J) matrix
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of derivatives of  with respect to b and C is the Cramer-Rao lower
bound, representing the asymptotic variance of bMLE. (Recall the
technical notes of section 2.8 for an explanation of why the asymptotic
variance of  is given by G'CG). Placing hats over G and C to indicate
that they are evaluated at bMLE, we obtain W = '[  '  ]-1  .

Calculation of the LM statistic can be undertaken by the formula  '

, sometimes referred to as the score statistic.  is a K × 1 vector of the

slopes (first derivatives) of InL with respect to b, evaluated at  the
restricted estimates of b  is an estimate of the Cramer-Rao lower
bound. Different ways of estimating the Cramer-Rao lower bound give
rise to a variety of LM statistics with identical asymptotic properties but
slightly different small-sample properties. For discussion of the various
different ways of computing the LM statistic, and an evaluation of their
relative merits, see Davidson and MacKinnon (1983).

If the model in question can be written as Y = h(x; b) + e where h is
either a linear or nonlinear functional form and the e are distributed
independent normally with zero mean and common variance, an
auxiliary regression can be employed to facilitate calculation of the LM
statistic for a test of some portion of b equal to a specific vector.
Consider H, the vector of the K derivatives of h with respect to b. Each
element of this vector could be evaluated for each of the N

"observations", using , the restricted estimate of b. This would give
a set of N "observations" on each of the K derivatives. Consider also 

the vector of N residuals resulting from the calculation of  Suppose
 is regressed on the K derivatives in H. Then the product of the

resulting R2 and the sample size N yields the LM statistic: LM = NR2.
For a derivation of this, and an instructive example illustrating its
application, see Breusch and Pagan (1980, pp. 2423). Additional
examples of the derivation and use of the LM statistic can be found in
Godfrey (1978), Breusch and Pagan (1979), Harvey (1981, pp. 167-74),
and Tse (1984).

It is noted in appendix A that there are three different ways of
estimating the information matrix. This implies that there are three
different ways of estimating the variance-covariance matrix needed for
calculating the W and LM tests. In general, the OPG variant is inferior
to the alternatives and should be avoided; see, for example, Bera and



McKenzie (1986). Unfortunately, however, some of the
computationally attractive ways of calculating the LM statistic
implicitly have built into them the OPG calculation for the variance-
covariance matrix of the MLE, causing the size of the resulting LM
statistic to be too large. In particular, versions of the LM test that are
calculated as the explained sum of squares from regressing a column of
ones on first derivatives are suspect. Davidson and MacKinnon (1983)
suggest an alternative way of calculating the LM statistic for a wide
variety of applications, through running what they call a double-length
regression (DLR), which retains the computational attractiveness of the
OPG variant of the LM test, but avoids its shortcomings. Godfrey
(1988, pp. 824) has a good discussion. See also Davidson and
MacKinnon (1988). Davidson and MacKinnon (1993, pp. 492502) is a
good textbook exposition.

4.6 Bootstrapping

When drawing OLS residuals for bootstrapping they should be adjusted
upwards by multiplying by the square root of n/(n - k) to account for the
fact that although the
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OLS residuals are unbiased estimates of the errors, they underestimate
their absolute value.

To find the sampling distribution of a test statistic on the null
hypothesis, the null- hypothesis parameter values should be used when
creating Monte Carlo repeated samples. In general, as with all Monte
Carlo studies, every effort should be made to create the bootstrap
samples in a way that incorporates all known facets of the
data-generating process.

The bootstrap should investigate the sampling distribution of an
"asymptotically pivotal" statistic, a statistic whose sampling distribution
does not depend on the true values of the parameters. For example,
rather than estimating the sampling distribution of a parameter estimate,
the sampling distribution of the associated t statistic should be
estimated. The sampling distribution of the t statistic can be used
indirectly to produce confidence intervals, rather than calculating
confidence intervals directly using the sampling distribution of the
parameter estimate.
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5
Specification

5.1 Introduction

At one time econometricians tended to assume that the model provided
by economic theory represented accurately the real-world mechanism
generating the data, and viewed their role as one of providing "good"
estimates for the key parameters of that model. If any uncertainty was
expressed about the model specification, there was a tendency to think
in terms of using econometrics to "find" the real-world data-generating
mechanism. Both these views of econometrics are obsolete. It is now
generally acknowledged that econometric models are ''false" and that
there is no hope, or pretense, that through them "truth" will be found.
Feldstein's (1982, p. 829) remarks are typical of this view: "in practice
all econometric specifications are necessarily 'false' models. . . The
applied econometrician, like the theorist, soon discovers from
experience that a useful model is not one that is 'true' or 'realistic' but
one that is parsimonious, plausible and informative." This is echoed by
an oft-quoted remark attributed to George Box - "All models are wrong,
but some are useful" - and another from Theil (1971, p. vi): "Models are
to be used, but not to be believed."

In light of this recognition, econometricians have been forced to
articulate more clearly what econometric models are. There is some
consensus that models are metaphors, or windows, through which
researchers view the observable world, and that their acceptance and
use depends not upon whether they can be deemed "true" but rather
upon whether they can be said to correspond to the facts. Econometric
specification analysis is a means of formalizing what is meant by
"corresponding to the facts," thereby defining what is meant by a
"correctly specified model." From this perspective econometric analysis
becomes much more than estimation and inference in the context of a
given model; in conjunction with economic theory, it plays a crucial,
preliminary role of searching for and evaluating a model, leading
ultimately to its acceptance or rejection.



Econometrics textbooks are mainly devoted to the exposition of
econometrics for estimation and inference in the context of a given
model for the data-generating process. The more important problem of
specification of this model is not given much attention, for three main
reasons. First, specification is not easy. In
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the words of Hendry and Richard (1983, p. 112), "the data generation
process is complicated, data are scarce and of uncertain relevance,
experimentation is uncontrolled and available theories are highly
abstract and rarely uncontroversial." Second, most econometricians
would agree that specification is an innovative/imaginative process that
cannot be taught: "Even with a vast arsenal of diagnostics, it is very
hard to write down rules that can be used to guide a data analysis. So
much is really subjective and subtle. . . A great deal of what we teach in
applied statistics is not written down, let alone in a form suitable for
formal encoding. It is just simply 'lore'" (Welsch, 1986, p. 405). And
third, there is no accepted "best" way of going about finding a correct
specification.

There is little that can be done about items one and two above; they
must be lived with. Item three, however, is worthy of further discussion:
regardless of how difficult a specification problem, or how limited a
researcher's powers of innovation/imagination, an appropriate
methodology should be employed when undertaking empirical work.
The purpose of this chapter is to discuss this issue; it should be viewed
as a prelude to the examination in chapter 6 of specific violations of the
first assumption of the CLR model.

5.2 Three Methodologies

Until about the mid-1970s, econometricians were too busy doing
econometrics to worry about the principles that were or should be
guiding empirical research. Sparked by the predictive failure of
large-scale econometric models, and fueled by dissatisfaction with the
gap between how econometrics was taught and how it was applied by
practitioners, the profession began to examine with a critical eye the
way in which econometric models were specified. This chapter is in part
a summary of the state of this ongoing methodological debate. At
considerable risk of oversimplification, three main approaches to the



specification problem are described below in stylized form.

(I) Average Economic Regression (AER)

This approach describes what is thought to be the usual way in which
empirical work in economics is undertaken. The researcher begins with
a specification that is viewed as being known to be correct, with data
being used primarily to determine the orders of magnitude of a small
number of unknown parameters. Significant values of diagnostic test
statistics, such as the Durbin-Watson statistic, are initially interpreted as
suggesting estimation problems that should be dealt with by adopting
more sophisticated estimation methods, rather than as pointing to a
misspecification of the chosen model. If these more sophisticated
methods fail to "solve" the problem, the researcher then conducts
"specification" tests, hunting for an alternative specification that is
"better", using age-old criteria such as correct signs, high R2s, and
significant t values on coefficients
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"known" to be nonzero. Thus in the AER approach the data ultimately
do play a role in the specification, despite the researcher's initial attitude
regarding the validity of the theoretical specification. This role may be
characterized as proceeding from a simple model and "testing up" to a
specific more general model.

(2) Test, Test, Test (TTT)

This approach uses econometrics to discover which models of the
economy are tenable, and to test rival views. To begin, the initial
specification is made more general than the researcher expects the
specification ultimately chosen to be, and testing of various restrictions,
such as sets of coefficients equal to the zero vector, is undertaken to
simplify this general specification; this testing can be characterized as
"testing down" from a general to a more specific model. Following this,
the model is subjected to a battery of diagnostic, or misspecification,
tests, hunting for signs that the model is misspecified. (Note the contrast
with AER "specification" tests, which hunt for specific alternative
specifications.) A significant diagnostic, such as a small DW value, is
interpreted as pointing to a model misspecification rather than as
pointing to a need for more sophisticated estimation methods. The
model is continually respecified until a battery of diagnostic tests allows



a researcher to conclude that the model is satisfactory on several
specific criteria (discussed in the general notes), in which case it is said
to be "congruent" with the evidence.

(3) Fragility Analysis

The specification ultimately arrived at by the typical AER or TTT
search may be inappropriate because its choice is sensitive to the initial
specification investigated, the order in which tests were undertaken,
type I and type II errors, and innumerable prior beliefs of researchers
concerning the parameters that subtly influence decisions taken
(through the exercise of innovation/imagination) throughout the
specification process. It may, however, be the case that the different
possible specifications that could have arisen from the AER or the TTT
approaches would all lead to the same conclusion with respect to the
purpose for which the study was undertaken, in which case why worry
about the specification? This is the attitude towards specification
adopted by the third approach. Suppose that the purpose of the study is
to estimate the coefficients of some "key" variables. The first step of
this approach, after identifying a general family of models, is to
undertake an "extreme bounds analysis," in which the coefficients of
the key variables are estimated using all combinations of
included/excluded "doubtful" variables. If the resulting range of
estimates is too wide for comfort, an attempt is made to narrow this
range by conducting a "fragility analysis." A Bayesian method (see
chapter 13) is used to incorporate non-sample information into the
estimation, but in such a way as to allow for a range of this Bayesian
information, corresponding to the range of such informa-
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tion that will surely characterize the many researchers interested in this
estimation. This range of information will produce a range of estimates
of the parameters of interest; a narrow range ("sturdy" estimates)
implies that the data at hand yield useful information, but if this is not
the case ("fragile" estimates), it must be concluded that inferences from
these data are too fragile to be believed.

Which is the best of these three general approaches? There is no
agreement that one of these methodologies is unequivocally the best to
employ; each has faced criticism, a general summary of which is



provided below.

(1) The AER is the most heavily criticized, perhaps because it reflects
most accurately what researchers actually do. It is accused of using
econometrics merely to illustrate assumed-known theories. The attitude
that significant diagnostics reflect estimation problems rather than
specification errors is viewed in an especially negative light, even by
those defending this approach. "Testing up" is recognized as
inappropriate, inviting type I errors through loss of control over the
probability of a type I error. The ad hoc use of extraneous information,
such as the "right" signs on coefficient estimates, is deplored, especially
by those with a Bayesian bent. The use of statistics such as R2, popular
with those following this methodology, is frowned upon. Perhaps most
frustrating to critics is the lack of a well-defined structure and set of
criteria for this approach; there is never an adequate description of the
path taken to the ultimate specification.

(2) The TTT methodology is also criticized for failing in practice to
provide an adequate description of the path taken to the ultimate
specification, reflecting an underlying suspicion that practitioners using
this methodology find it necessary to use many of the ad hoc rules of
thumb followed in the AER approach. This could in part be a reflection
of the role played in specification by innovation/imagination, which
cannot adequately be explained or defended, but is nonetheless
unsettling. The heavy reliance on testing in this methodology raises
fears of a proliferation of type I errors (creating pretest bias, discussed
in section 12.4 of chapter 12), exacerbated by the small degrees of
freedom due to the very general initial specification and by the fact that
many of these tests have only asymptotic justification. When "testing
up" the probability of a type I error is neither known nor controlled;
using the "testing down" approach can allay these fears by the adoption
of a lower a value for the tests, but this is not routinely done.

(3) Objections to fragility analysis usually come from those not
comfortable with the Bayesian approach, even though care has been
taken to make it palatable to non-Bayesians. Such objections are
theological in nature and not likely to be resolved. There is vagueness
regarding how large a range of parameter estimates has to be to
conclude that it is fragile; attempts to formalize this lead to measures
comparable to the test statistics this approach seeks to avoid. The
methodology never does lead to the adoption of a specific specification,
something that researchers find unsatisfactory. There is no scope for the
general fami-
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ly of models initially chosen to be changed in the light of what the data
has to say. Many researchers find Bayesian prior formulation both
difficult and alien. Some object that this analysis too often concludes
that results are fragile.

5.3 General Principles for Specification

Although the controversy over econometric methodology has not yet
been resolved, the debate has been fruitful in that some general
principles have emerged to guide model specification.

(1) Although "letting the data speak for themselves" through
econometric estimation and testing is an important part of model
specification, economic theory should be the foundation of and guiding
force in a specification search.

(2) Models whose residuals do not test as insignificantly different from
white noise (random errors) should be initially viewed as containing a
misspecification, not as needing a special estimation procedure, as too
many researchers are prone to do.

(3) "Testing down" is more suitable than "testing up"; one should begin
with a general, unrestricted model and then systematically simplify it in
light of the sample evidence. In doing this a researcher should control
the overall probability of a type I error by adjusting the a value used at
each stage of the testing (as explained in the technical notes), something
which too many researchers neglect to do. This approach, deliberate
overfitting, involves a loss of efficiency (and thus loss of power) when
compared to a search beginning with a correct simple model. But this
simple model may not be correct, in which case the approach of
beginning with a simple model and expanding as the data permit runs
the danger of biased inference resulting from underspecification.

(4) Tests of misspecification are better undertaken by testing
simultaneously for several misspecifications rather than testing
one-by-one for these misspecifications. By such an "overtesting"
technique one avoids the problem of one type of misspecification. This
approach helps to deflect the common criticism that such tests rely for
their power on aspects of the maintained hypothesis about which little is



known.

(5) Regardless of whether or not it is possible to test simultaneously for
misspecifications, models should routinely be exposed to a battery of
misspecification diagnostic tests before being accepted. A subset of the
data should be set aside before model specification and estimation, so
that these tests can include tests for predicting extra-sample
observations.

(6) Researchers should be obliged to show that their model
encompasses rival models, in the sense that it can predict what results
would be obtained were one to run the regression suggested by a rival
model. The chosen model
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should be capable of explaining the data and of explaining the successes
and failures of rival models in accounting for the same data.

(7) Bounds on the range of results corresponding to different reasonable
specifications should be reported, rather than just providing the results
of the specification eventually adopted, and the path taken to the
selection of this specification should be fully reported.

5.4 Misspecification Tests/Diagnostics

Despite the protestations of fragility analysis advocates, testing has
come to play a more and more prominent role in econometric work.
Thanks to the ingenuity of econometric theorists, and the power of
asymptotic algebra, an extremely large number of tests have been
developed, seemingly catering to practitioners' every possible need, but
at the same time courting confusion because of unknown small-sample
properties, suspicions of low power, and often-conflicting prescriptions.
It is not possible in this book to discuss all or even a majority of these
tests. The more prominent among them are discussed briefly in later
chapters when it is relevant to do so; before moving on to these
chapters, however, it may be useful to have an overview of tests used
for specification purposes. They fall into several categories.

(1) Omitted variable (OV) tests F and t tests for zero restrictions on (or,
more generally, linear combinations of) the parameters, as discussed in
chapter 4, are commonly used for specification purposes. Several more



complicated tests, such as Hausman tests, can be reformulated as OV
tests in an artificial regression, greatly simplifying testing.

(2) RESET tests RESET tests, discussed in chapter 6, are used to test for
whether unknown variables have been omitted from a regression
specification, and are not to be confused with OV tests that test for zero
coefficients on known variables. They can also be used to detect a
misspecified functional form.

(3) Tests for functional form Two types of tests for functional form are
available, as discussed in chapter 6. The first type, such as tests based
on recursive residuals and the rainbow test, does not specify a specific
alternative functional form. For the second type, functional form is
tested by testing a restriction on a more general functional form, such as
a Box-Cox transformation.

(4) Tests for structural change In this category fall tests for parameter
constancy, discussed in chapter 6, such as Chow tests, cusum and
cusum-of-squares tests, and predictive failure (or post-sample
prediction) tests.

(5) Tests for outliers These tests, among which are included tests for
normality, are sometimes used as general tests for misspecification.
Examples
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are the Jarque-Bera test, the Shapiro-Wilk test, the Cook outlier test,
and the use of the DFITS measure (discussed in chapter 18).

(6) Tests for non-spherical errors These are tests for various types of
serial correlation and heteroskedasticity, discussed in chapter 8.
Examples are the Durbin-Watson test, the Breusch-Godfrey test,
Durbin's h and m tests, the Goldfeld-Quandt test, the Breusch-Pagan
test and the White test.

(7) Tests for exogeneity These tests, often referred to as Hausman tests,
test for contemporaneous correlation between regressors and the error.
They are discussed in chapter 9 (testing for measurement error) and
chapter 10 (testing for simultaneous equation bias).



(8) Data transformation tests These tests, which do not have any
specific alternative hypothesis, are considered variants of the Hausman
test. Examples are the grouping test and the differencing test.

(9) Non-nested tests When testing rival models that are not nested, as
might arise when testing for encompassing, non-nested tests must be
employed. Examples are the non-nested F test and the J test.

(10) Conditional moment tests These tests are based on a very general
testing methodology which in special cases gives rise to most of the tests
listed above. Beyond serving as a unifying framework for existing tests,
the value of this testing methodology is that it suggests how
specification tests can be undertaken in circumstances in which
alternative tests are difficult to construct.

Categorizing tests in this way is awkward, for several reasons.

(1) Such a list will inevitably be incomplete. For example, it could be
expanded to incorporate tests for specification encountered in more
advanced work. Should there be categories for unit root and
cointegration tests (see chapter 17), identification tests (see chapter 10),
and selection bias tests (see chapter 16), for example? What about
Bayesian "tests"?

(2) It is common for practitioners to use a selection criterion, such as
the Akaike information criterion, or adjusted R2, to aid in model
specification, particularly for determining things like the number of lags
to include. Should this methodology be classified as a test?

(3) These categories are not mutually exclusive. There are non-nested
variants of tests for non-spherical errors and of functional form tests,
some tests for functional form are just variants of tests for structural
break, and the RESET test is a special case of an OV test, for example.

(4) Tests take different forms. Some are LM tests, some are LR tests,
and some are W tests. Some use F-tables, some use t-tables, some use
X2-tables, and some require their own special tables. Some are exact
tests, whereas some rest on an asymptotic justification.

(5) Some tests are "specification" tests, involving a specific alternative,
whereas others are "misspecification" tests, with no specific alternative.
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This last distinction is particularly relevant for this chapter. A prominent
feature of the list of general principles given earlier is the use of
misspecification tests, the more common of which are often referred to
as diagnostics. These tests are designed to detect an inadequate
specification (as opposed to "specification" tests, which examine the
validity of a specific alternative). There have been calls for researchers
to submit their models to misspecification tests as a matter of course,
and it is becoming common for computer packages automatically to
print out selected diagnostics.

Of the tests listed above, several fall into the misspecification category.
Possibly the most prominent are the non-spherical error tests. As
stressed in chapter 8, a significant value for the DW statistic could be
due to several misspecifications (an omitted variable, a dynamic
misspecification, or an incorrect functional form), not just to
autocorrelated errors, the usual conclusion drawn by those following the
AER methodology. The same is true of tests for heteroskedasticity. As
noted in chapter 6, significant values of RESET could be due to an
incorrect functional form, and tests for structural break and the first
type of functional form test statistic could be significant because of a
structural break, an omitted variable or an incorrect functional form. So
these tests should be viewed as misspecification tests. Outliers could
arise from a variety of specification errors, so they also can be classified
as misspecification tests.

It could be argued that the misspecification tests mentioned in the
preceding paragraph are to some extent specification tests because they
can be associated with one or more specific classes of alternatives that
have inspired their construction. Because of this they are discussed in
later chapters when that class of alternative is addressed. Three of the
tests listed above, however, are sufficiently general in nature that there
is no obvious alternative specification determining where they should
appear in later chapters. These are data transformation tests, non-nested
tests, and conditional moment tests.

Data transformation tests The idea behind data transformation tests is
that if the null hypothesis of a linear functional form with a set of
specific explanatory variables is correct, then estimating with raw data
should yield coefficient estimates very similar to those obtained from
using linearly transformed data. If the two sets of estimated coefficients
are not similar, one can conclude that the null hypothesis is not correct,
but one cannot draw any conclusion about what dimension of that null



hypothesis is incorrect, since many different misspecifications could
have given rise to this discrepancy. Choosing a specific transformation,
and formalizing what is meant by "very similar," produces a test
statistic. Fortunately, as explained in the technical notes, data
transformation tests have been shown to be equivalent to OV tests,
greatly simplifying their application.

Non-nested tests Two models are non-nested (or "separate") if one
cannot be obtained from the other by imposing a restriction. The
importance of this distinction is that in this circumstance it is not
possible to follow the usual testing methodology, namely to employ a
test of the restriction as a specification test. Non-nested hypothesis tests
provide a means of testing the specification of one
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model by exploiting the supposed "falsity" of other models. A model
chosen to play the role of the "other" model need not be an alternative
model under consideration, but this is usually the case. If the null model
is the "correct" model, then the "other" model should not be able to
explain anything beyond that explained by the null model. Formalizing
this, as explained in the technical notes, produces a non-nested
hypothesis test, on the basis of which the null can be either rejected or
not rejected/accepted. If the former is the case, then one cannot
conclude that the "other'' model should be accepted - the role of the
"other" model in this exercise is simply to act as a standard against
which to measure the performance of the null. (This is what makes this
test a misspecification test, rather than a specification test.) If one wants
to say something about the "other" model, then the roles of the two
hypotheses must be reversed, with the "other" model becoming the null,
and the test repeated. Note that in this testing procedure it is possible to
reject both models or to accept both models.

Conditional moment tests These tests are undertaken by selecting a
function of the data and parameters that under a correct specification
should be zero, computing this function for each observation (evaluated
at the MLEs), taking the average over all the observations and testing
this average against zero. The function used for this purpose is usually a
moment or a conditional moment (such as the product of an exogenous
variable and the residual), explaining why these tests are called moment
(M) or conditional moment (CM) tests. The test would be formed by
creating an estimate of the variance-covariance matrix of this average



and using a Wald test formula. Its main appeal is that in some
circumstances it is easier to formulate appropriate moment conditions
than to derive alternative tests.

5.5 R2 Again

The coefficient of determination, R2, is often used in specification
searches and in undertaking hypothesis tests. Because it is so frequently
abused by practitioners, an extension of our earlier (section 2.4)
discussion of this statistic is warranted.

It is noted in the general notes to section 4.3 that the F test could be
interpreted in terms of R2 and changes in R2. Whether or not a set of
extra independent variables belongs in a relationship depends on
whether or not, by adding the extra regressors, the R2 statistic increases
significantly. This suggests that, when one is trying to determine which
independent variable should be included in a relationship, one should
search for the highest R2.

This rule would lead to the choice of a relationship with too many
regressors (independent variables) in it, because the addition of a
regressor cannot cause the R2 statistic to fall (for the same reason that
the addition of a regressor cannot cause the minimized sum of squared
residuals to become larger - minimizing without the restriction that the
extra regressor must be ignored gives at least as
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low a minimand as when the restriction is imposed). Correcting the R2
statistic for degrees of freedom solves this problem. The R2 statistic
adjusted to account for degrees of freedom is called the "adjusted R2"

or "R2" and is now reported by most packaged computer regression
programs, and by practically all researchers, in place of the unadjusted
R2.

Adding another regressor changes the degrees of freedom associated
with the measures that make up the R2 statistic. If an additional
regressor accounts for very little of the unexplained variation in the
dependent variable, R2 falls (whereas R2 rises). Thus, only if R2 rises
should an extra variable be seriously considered for inclusion in the set



of independent variables. This suggests that econometricians should
search for the "best" set of independent variables by determining which
potential set of independent variables produces the highest R2. This
procedure is valid only in the sense that the "correct set" of independent
variables will produce, on average in repeated samples, a higher R2 than
will any "incorrect'' set of independent variables.

Another common use of the R2 statistic is in the context of measuring
the relative importance of different independent variables in
determining the dependent variable. Textbooks present several ways of
decomposing the R2 statistic into component parts, each component
being identified with one independent variable and used as a measure of
the relative importance of that independent variable in the regression.
Unfortunately, none of these partitions of R2 is meaningful unless it
happens that the independent variables are uncorrelated with one
another in the sample at hand. (This happens only by experimental
design or by extraordinary luck, economists almost never being in a
position to effect either.) In the typical case in which the independent
variables are correlated in the sample, these suggested partitionings are
not meaningful because: (a) they can no longer be legitimately allocated
to the independent variables; (b) they no longer add up to R2; or (c)
they do add up to R2 but contain negative as well as positive terms.

The main reason for this can be explained as follows. Suppose there are
only two independent variables, and they are correlated in the sample.
Two correlated variables can be thought of as having, between them,
three sorts of variation: variation unique to the first variable, variation
unique to the second variable and variation common to both variables.
(When the variables are uncorrelated, this third type of variation does
not exists.) Each of the three types of variation in this set of two
variables "explains" some of the variation in the dependent variable.
The basic problem is that no one can agree how to divide the
explanatory power of the common variation between the two
independent variables. If the dependent variable is regressed on both
independent variables, the resulting R2 reflects the explanatory power
of all three types of independent variable variation. If the dependent
variable is regressed on only one independent variable, variation unique
to the other variable is removed and the resulting R2 reflects the
explanatory power of the other two types of independent variable
variation. Thus, if one
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independent variable is removed, the remaining variable gets credit for
all of the common variation. If the second independent variable were
reinstated and the resulting increase in R2 were used to measure the
influence of this second variable, this variable would get credit for none
of the common variation. Thus it would be illegitimate to measure the
influence of an independent variable either by its R2 in a regression of
the dependent variable on only that independent variable, or by the
addition to R2 when that independent variable is added to a set of
regressors. This latter measure clearly depends on the order in which the
independent variables are added. Such procedures, and others like them,
can only be used when the independent variables are uncorrelated in the
sample. The use of breakdowns of the R2 statistic in this context should
be avoided.

5.1 General Notes

5.1 Introduction

Economists' search for "truth" has over the years given rise to the view
that economists are people searching in a dark room for a non-existent
black cat; econometricians are regularly accused of finding one.

The consensus reported in the second paragraph of this chapter may or
may not exist. Some quotations reflecting views consistent with this
interpretation are Pesaran (1988, p. 339), "econometric models are
metaphors providing different windows on a complex and bewildering
reality," and Poirier (1988, p. 139), "'Truth' is really nothing more than a
'correspondence' with the facts, and an important role for econometrics
is to articulate what constitutes a satisfactory degree of
correspondence."

That model specification requires creativity and cannot be taught is
widely acknowledged. Consider, for example, the remarks of Pagan
(1987, p. 20): "Constructing 'systematic theologies' for econometrics
can well stifle creativity, and some evidence of this has already become
apparent. Few would deny that in the hands of the masters the
methodologies perform impressively, but in the hands of their disciples
it is all much less convincing."



Economists are often accused of never looking at their data - they
seldom dirty their hands with primary data collection, using instead
secondary data sources available in electronic form. Indeed, as noted by
Reuter (1982, p. 137) "Economists are unique among social scientists in
that they are trained only to analyses, not to collect, data.. . . One
consequence is a lack of scepticism about the quality of data." Aigner
(1988) stresses how dependent we are on data of unknown quality,
generated by others for purposes that do not necessarily correspond
with our own, and notes (p. 323) that "data generation is a dirty,
time-consuming, expensive and non-glorious job." All this leads to an
inexcusable lack of familiarity with the data, a source of many errors in
econometric specification and analysis. This suggests that a possible
route to finding better specifications is to focus on getting more and
better data, and looking more carefully at these data, rather than on
fancier techniques for dealing with existing data. Breuer and Wohar
(1996) is an example in which knowing the institutional details of how
the data were produced can aid an econometric analysis. Chatfield
(1991) has some good examples of how empirical work can be greatly
enhanced by being sensi-
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tive to the context of the problem (the data-generating process) and
knowing a lot about one's data.

EDA, exploratory data analysis, is an approach to statistics which
emphasizes that a researcher should always begin by looking carefully
at the data in a variety of imaginative ways. Exploratory data analysts
use the interocular trauma test: keep looking at the data until the
answer hits you between the eyes! For an exposition of EDA, see
Hartwig and Dearing (1979), and for examples see L. S. Mayer (1980)
and Denby and Pregibon (1987). Maddala (1988, pp. 557) presents a
nice example from Anscombe (1973) in which four sets of data give rise
to almost identical regression coefficients, but very different graphs.
Leamer (1994, p. xiii) has an amusing graph in which the data spell out
HELP. Unwin (1992) discusses how interactive graphics should
revolutionize statistical practice. Perhaps econometric software should
have built into it some means of preventing a user from running a
regression until the data have been examined!

5.2 Three Methodologies



Pagan (1987) has a good account of the wakening of the profession's
interest in econometric methodology. Pagan (1995) is an update;
Granger (1990) contains a selection of articles prominent in this
controversy. Hendry et al. (1990) is an instructive informal discussion
of these issues. In this context the word "methodology" refers to the
principles of the procedures adopted in the testing and quantification of
economic theories, in contrast to its more popular use as a synonym for
econometric "technique" or "method.'' Nakamura et al. (1990) is a
useful survey of methods of model specification. Readers should be
warned that many econometricians do not view this debate over
econometric methodology with favor; they prefer not to worry about
such issues. This invariably means that they continue to use the
approach to specification they have always used, the AER approach,
albeit with more testing than in the past. Dharmapala and McAleer
(1996) discuss econometric methodology in the context of the
philosophy of science.

The nomenclature AER (average economic regression) is taken from
Gilbert (1986), which contains an extraordinarily clear exposition of the
TTT (test, test, test) approach. Pagan (1987) has an excellent
presentation of TTT and of fragility analysis, along with critiques of
both. Pagan also identifies a fourth approach, the VAR methodology
(discussed in chapter 10); it has not been included here because it
cannot be interpreted as a general specification methodology (it applies
only to time series data) and because it in effect makes no effort to seek
or evaluate a traditional specification.

The AER approach is defended by Darnell and Evans (1990), who refer
to it as the "traditional" approach. They argue that if the traditional
approach were modified to focus on finding specifications that exhibit
non-spherical errors before undertaking tests, then it would be more
palatable than TTT and fragility analysis, both of which they criticize.

Johnston (1984, pp. 498510) has a good description of how the AER
approach ought to be implemented. He stresses the need for the
researcher to talk with experts in the area being modeled, become
familiar with the relevant institutions, actually look at the data,
recognize the data limitations, avoid data mining, use economic theory,
and, of utmost importance, exploit the judgement of an experienced
critic. He gives an amus-
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ing account of his experience on an energy research project; his
specification search did not end until his experienced critic, Alex
Cairncross, stated that he "wouldn't mind getting on a plane and taking
this to Riyadh."

The TTT approach is identified with David Hendry, the most prominent
of its advocates. Hendry (1993) is a selection of papers tracing the
evolution of this econometric methodology, of which Hansen (1996) is
an interesting review and critique. Particularly useful are Hendry's
Introduction (pp. 17), the introductions to each section, the preambles
associated with each article, and the chapter 19 summary which also
describes the PC-GIVE software designed for this type of specification
work in the time series context. A well-known application is Davidson
et al. (1978); a more recent application is Hendry and Ericsson (1991),
with a critique by Friedman and Schwartz (1991). The nomenclature
TTT was chosen with reference to an oft-cited quote from Hendry
(1980, p. 403): "The three golden rules of econometrics are test, test,
and test." This methodology has been developed in the context of a
specific type of time series modeling, called autoregressive distributed
lag models (discussed in chapter 17 under the heading "error-correction
models"), but the general principles apply to other contexts.

What does it mean to say, following TTT, that the model is "congruent"
with the evidence? There are five main criteria.

(1) Data-admissible The model must not be capable of producing
predictions that are not logically possible. For example, if the data to
be explained are proportions, then the model should force all
outcomes into the zero to one range.

(2) Theory-consistent The model must be consistent with the
economic theory from which it is derived; it must make good
economic sense. For example, if economic theory suggests that a
certain long-run equilibrium should characterize a relationship, then
the dynamic formulation of that relationship should be such that its
equilibrium solution yields that long-run equilibrium.

(3) Predictive validity The model should be capable of adequately
predicting observations not used in its estimation/specification. This
is sometimes referred to as parameter constancy. This test is
particularly important because it addresses the concern that
exploring the data to develop a specification implies that those data



cannot be used to test that specification.

(4) Data coherency The residuals from the model should be white
noise (i.e., random), since otherwise some regularity has not yet
been included in the specification. Many econometricians consider
this requirement too strong because it rules out genuine
autocorrelation or heteroskedasticity. A more realistic interpretation
of this requirement is that if the errors are not white noise the
researcher's first reaction should be to check the specification very
carefully, not to adopt GLS.

(5) Encompassing The model should be able to encompass its rivals
in the sense that it can explain other models' results, implying that
these other models contain no information capable of improving the
current model.

The "fragility analysis" approach to specification is identified with Ed
Leamer, its foremost proponent; the standard references are Leamer
(1983a) and Leamer and Leonard (1983). An instructive critique is
McAleer et al. (1985). For applications see Cooley and LeRoy (1981)
and Leamer (1986). Fragility analysis can be undertaken using software
called SEARCH, developed by Leamer. Caudill (1988) suggests that
fragility analysis be reported by presenting a histogram reflecting the
confidence inter-
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vals produced by running the range of regressions associated with that
analysis. Leamer's view of the AER and TTT methodologies is reflected
in the comments of Leamer and Leonard (1983, p. 306):

Empirical results reported in economic journals are selected
from a large set of estimated models. Journals, through their
editorial policies, engage in some selection, which in turn
stimulates extensive model searching and prescreening by
prospective authors. Since this process is well known to
professional readers, the reported results are widely regarded to
overstate the precision of the estimates, and probably to distort
them as well. As a consequence, statistical analyses are either
greatly discounted or completely ignored.



Leamer (1978, p. vi) is refreshingly frank in describing the wide gap
between econometric theory and econometric practice:

We comfortably divide ourselves into a celibate priesthood of
statistical theorists, on the one hand, and a legion of inveterate
sinner-data analysts, on the other. The priests are empowered to
draw up lists of sins and are revered for the special talents they
display. Sinners are not expected to avoid sins; they need only
confess their errors openly.

His description (1978, p. vi) of how he was first led to this view, as a
graduate student, is widely quoted:

As it happens, the econometric modeling was done in the
basement of the building and the econometric theory courses
were taught on the top floor (the third). I was perplexed by the
fact that the same language was used in both places. Even more
amazing was the transmogrification of particular individuals who
wantonly sinned in the basement and metamorphosed into the
highest of high priests as they ascended to the third floor.

Leamer (1978, pp. 513) contains an instructive taxonomy of
specification searches, summarized in Darnell and Evans (1990).

Using techniques that adopt specifications on the basis of searches for
high R2 or high t values, as practitioners of the AER approach are often
accused of doing, is called data mining, fishing, grubbing or number-
crunching. This methodology is described eloquently by Case: "if you
torture the data long enough, Nature will confess." Karni and Shapiro
(1980) is an amusing account of data torturing. In reference to this
unjustified (but unfortunately typical) means of specifying relationships,
Leamer (1983a) is moved to comment: "There are two things you are
better off not watching in the making: sausages and econometric
estimates."

Both searching for high R2 and searching for high t values are known to
be poor mechanisms for model choice; convincing arguments can be
found in T. Mayer (1975, 1980), Peach and Webb (1983) and Lovell
(1983). Mayer focuses on adjusted R2, showing that it does a poor job
of picking out the correct specification, mainly because it capitalizes on
chance, choosing a specification because it is able to explain better the
peculiarities of that particular data set. This underlines the importance
of setting aside some data to use for extra-sample prediction testing
after a tentative specification has been chosen and estimated (as urged



by TTT). Peach and Webb fabricated 50 macroeconomic models at
random and discovered that the majority of these models exhibited very
high R2 and t statistics. Lovell focuses on the search for significant t
values, branding it data mining, and concludes that such searches will
lead to
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inappropriate specifications, mainly owing to a high probability of type I
errors because of the many tests performed. Denton (1985) suggests
that this phenomenon is not confined to individual researchers - that
many independent researchers, working with the same data, will
collectively be performing these many tests, ensuring that journals will
tend to be full of type I errors. All this is summed up nicely by Lovell
(1983, p. 10): "It is ironic that the data mining procedure that is most
likely to produce regression results that appear impressive in terms of
the customary criteria is also likely to be the most misleading in terms of
what it asserts about the underlying process generating the data under
study."

It must be noted that the data mining methodology has one positive
feature: sometimes such experimentation uncovers empirical regularities
that point to errors in theoretical specifications. For example, through
data mining one of my colleagues stumbled across a result that led him
to re-examine the details of the British Columbia stumpage fee system.
He discovered that he had overlooked some features of this tax that had
an important bearing on the behavior of the forest industry. Because of
this, he was able to develop a much more satisfactory theoretical
specification, and thereby to produce better empirical results. I give
John Maynard Keynes (1940, p. 155) the last word on the subject:

It will be remembered that the seventy translators of the
Septuagint were shut up in seventy separate rooms with the
Hebrew text and brought out with them, when they emerged,
seventy identical translations. Would the same miracle be
vouchsafed if seventy multiple correlators were shut up with the
same statistical material?

One important dimension of TTT is that the data should be allowed to
help to determine the specification, especially for model features such
as lag lengths, about which economic theory offers little guidance. The



earlier comments on data mining suggest, however, that letting the data
speak for themselves can be dangerous. It may be necessary to have
certain features in a model for logical consistency, even if a particular
sample of data fails to reflect them, to avoid the common experience of
an apparently well-fitting model performing poorly out-of-sample.
Belsley (1986a) argues for the use of prior information in specification
analysis; discussants of the Belsley paper wonder whether adoption of
an incorrect model based on poor prior information is more dangerous
than letting the data speak for themselves. Belsley (1988a) has a good
general discussion of this issue in the context of forecasting. A balance
must be found between letting the data help with the specification and
not letting the data dominate the specification, which unfortunately
returns use to the "specification is an art that cannot be taught"
phenomenon.

5.3 General Principles for Specification

That economic theory should be at the heart of a specification search is
too often forgotten by practitioners. Belsley and Welsch (1988) provide
a cogent example of the use of such a priori information and note (p.
447): "Don't try to model without understanding the nonstatistical
aspects of the real-life system you are trying to subject to statistical
analysis. Statistical analysis done in ignorance of the subject matter is
just that - ignorant statistical analysis."
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Pagan (1987) calls for a greater integration of competing methodologies,
in much the same spirit as that in which the general principles for
guiding model specification were presented earlier. Since these
principles may not be endorsed by all econometricians, some references
may be warranted. On the issue of requiring white noise residuals see
Darnell and Evans (1990, chapter 4), who defend the traditional (AER)
approach providing it adopts this view. On "testing down" see Harvey
(1990, pp. 1857). On "overtesting" see Bera and Jarque (1982). On
diagnostics and extra sample prediction see Harvey (1990, pp. 1879).
On encompassing see Mizon (1984). On the reporting of bounds and
specification paths see Pagan (1987).

Unusual observations can often be of particular value in specification,
as they prompt researchers to develop their theoretical models more
carefully to explain those observations. For discussion and examples see



Zellner (1981). It should be noted that some robust estimation
procedures (discussed in chapter 18) have a tendency to throw such
"outliers" away, something that should not be done until they have been
carefully examined.

Koenker (1988) suggests that specification is affected by sample size,
noting that as the sample size increases the number of explanatory
variables in published studies tends to increase at a rate proportional to
the sample size raised to the power one-quarter. Larger samples tempt
researchers to ask new questions and refine old ones; implicitly, they
are less and less willing to accept bias in the face of the extra precision
brought by the larger sample size. Koenker notes (p. 139) and
interesting implication for asymptotic theory, claiming that it rests on
the following "willing suspension of disbelief": "Daily an extremely
diligent research assistant arrives with buckets of (independent) new
observations, but our imaginary colleague is so uninspired by curiosity
and convinced of the validity of his original model, that each day he
simply re-estimates his initial model - without alteration - employing
ever-larger samples."

Hogg (1988) suggests a useful rule of thumb for specification: compare
the estimates from OLS and a robust method; if they disagree, take
another hard look at both the data and the model. Note that this could
be viewed as a (casual) variant of the Hausman specification testing
method.

5.4 Misspecification Tests/Diagnostics

Kramer and Sonnberger (1986) have a good exposition of many
misspecification tests, along with examples of their application. Pagan
(1984a) notes that most tests can be written in the form of an OV test,
which he refers to as a variable addition test. McAleer (1994) tabulates
(pp. 330, 331) possible causes of diagnostic failures. Beggs (1988) and
McGuirk, Driscoll and Alway (1993) have good discussions for
practitioners, with examples. MacKinnon (1992) is a very informative
survey of the use of artificial regressions for calculating a wide variety
of specification tests.

Extensive use of diagnostic tests/checks is not universally applauded.
Goldberger (1986) claims a recent empirical study reported more
diagnostic test statistics than the number of observations in the data set;
Oxley (1996, p. 229) opens that "we probably have more papers
creating new test statistics than papers using them." Several complaints
and warnings have been issued:
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(1) their use may decrease the intensity with which researchers
investigate their data and theoretical specifications;

(2) it may be replacing one kind of data mining with another;

(3) many tests are only valid in large samples, something often
forgotten;

(4) inexperienced researchers frequently apply tests in contexts in
which they are inappropriate;

(5) many tests are only valid if the model is "correctly specified";

(6) sequences of tests distort things like the probability of a type I
error;

(7) most of the tests used are not independent of one another;

(8) the properties of pre-test estimators are not well understood.

These points suggest that some care should be taken in applying
diagnostic tests, and that results should be viewed with a healthy degree
of scepticism.

That most researchers do not bother to subject their models to
misspecification tests is illustrated convincingly by Kramer et al. (1985),
who apply a battery of such tests to several empirical studies and find
that these tests are failed with high frequency.

Doran (1993) is a good exposition of non-nested testing. McAleer
(1987) and MacKinnon (1983) are good surveys of the non-nested test
literature; the commentary on the MacKinnon paper provides an
interesting view of controversies in this area. The feature of non-nested
tests that all models under consideration may be rejected (or accepted)
is discussed by Dastoor (1981). Kennedy (1989) uses the Ballentine to
exposit some of the non-nested tests and their common features.

The non-nested F test is regarded as one of the best non-nested testing
procedures, because of its computational ease and its relatively good
performance in Monte Carlo studies. Suppose there are two theories, H0



and H1. According to H0, the independent variables are X and Z;
according to H1, they are X and W. A general model with X, Z, and W
as explanatory variables is formed (without any economic rationale!),
called an artificial nesting model. To test H0 the coefficients of W are

tested against zero, using an F test, and to test H1 the coefficients of Z
are tested against zero, using an F test. Note that if neither H0 nor H1 is
correct it is possible for both hypotheses to be rejected, and if one of H0

and H1 is correct, but X and Z happen to be highly collinear, it is
possible for both to be accepted. It is often the case that degrees-
of-freedom problems (the artificial nesting model could contain a lot of
variables), collinearity problems or nonlinear functional forms make this
test unattractive. There most popular alternatives are the J test and its
variants.

As is made clearer in the technical notes to this section, the J test is akin
to the F test in that it stems from an artificial nesting model. To conduct
this test, the dependent variable y is regressed on the explanatory

variables of hypothesis H0, together with  the estimated y from the

regression associated with H1. If  has some explanatory power beyond

that contributed by the explanatory variables of H0, then H0 cannot be
the "true" model. This question is addressed by using a t test to test if

the coefficient of  is significantly different from zero: if it is, H0 is

rejected; otherwise, H0 is accepted. The roles of H0 and H1 are
reversed and the procedure is repeated to allow H1 to be either
accepted or rejected.

Mizon and Richard (1986) exposit the encompassing principle and use it
to unify several testing procedures. They show that the different
non-nested tests all have different implicit null hypotheses. For
example, the J test is a "variance" encompassing test - they test if a
hypothesis can predict the estimated variance obtained by running the
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regression suggested by the other hypothesis. In contrast, the
non-nested F test is a "mean" encompassing test - it tests if a hypothesis
can predict the coefficient estimate obtained by running the regression
suggested by the other hypothesis. This explains the different degrees of



freedom of the J and non-nested F tests. A third type of encompassing
test is a "forecast" encompassing test. Model 1 forecast encompasses
model 2 if model 2 forecasts can be explained by model 1. The
one-step-ahead forecast errors from model 2 are regressed on the
difference between the one-step-ahead forecasts from models 1 and 2; a
t test on the slope coefficient from this regression is used for the
forecast encompassing test.

Data transformation tests are said to be Hausman-type tests, because
they are based on a principle popularized by Hausman (1978) in the
context of testing for contemporaneous correlation between the
regressor(s) and the error (discussed further in chapters 9 and 10). This
principle is as follows: if the model specification is correct, estimates by
any two consistent methods should be close to one another; if they are
not close to one another, doubt is cast on the model.

Several variants of the data transformation test exist, the more popular
of which are Farebrother (1979), where the transformation groups the
data; Davidson et al. (1985), where the transformation is first
differencing; and Boothe and MacKinnon (1986), where the
transformation is that usually employed for doing GLS. Breusch and
Godfrey (1985) have a good discussion, as do Kramer and Sonnberger
(1986, pp. 1115). See the technical notes for discussion of how such
tests can be operationalized as OV tests.

For examples of situations in which conditional moment tests are easier
to construct than alternatives, see Pagan and Vella (1989). Newey
(1985) and Tauchen (1985) have developed a computationally
attractive way of calculating CM tests by running an artificial
regression. (Regress a column of ones on the moments and the first
derivatives of the log-likelihood with respect to each parameter, and test
the slopes of the moments against zero.) Unfortunately, this method
relies on OPG (outer product of the gradient - see appendix B)
estimates of variance-covariance matrices which cause the type I error
(size) of tests to be far too large. For discussion of CM tests see Godfrey
(1988, pp. 37ene (1997, pp. 534Davidson and MacKinnon (1993, pp.
5718). Although most tests are such that their asymptotic distributions
are not sensitive to the assumption of normal errors, in small samples
this may be of some concern. Rank tests are robust in this respect;
McCabe (1989) suggests several rank tests for use as misspecification
tests and claims that they have good power.

5.5 R2 Again



R2, the adjusted R2, is derived from an interpretation of R2 as I minus
the ratio of the variance of the disturbance term to the variance of the
dependent variable (i.e., it is concerned with variances rather than
variation). Estimation of these variances involves corrections for
degrees of freedom, yielding (after manipulation) the expression
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where K is the number of independent variables and T is the number of
observations. Armstrong (1978, p. 324) discusses some alternative
adjustments to R2. It is interesting to note that, if the true R2 is zero
(i.e., if there is no relationship between the dependent and independent
variables), then the expected value of the unadjusted R2 is K/T, a value
that could be quite large. See Montgomery and Morrison (1973) for the
general formula when the true R2 is not zero.

Both R2 and R2 are biased but consistent estimators of the "true" or

"population" coefficient of determination. R2 has a smaller bias than
R2, though. An unbiased estimator of the population coefficient of
determination has not been developed because the distributions of R2

and R2 are intractable when this population coefficient is nonzero.

The result that the "correct" set of independent variables produces a
higher R2 on average in repeated samples was derived by Theil (1957).

If adding an independent variable increases R2, its t value is greater

than unity. See Edwards (1969). Thus the rule of maximizing R2 is quite
different from the rule of keeping variables only if their t values are
significant at the 5% level.

It is worth reiterating that searching for a high R2 or a high R2 runs the
real danger of finding, through perseverance, an equation that fits the
data well but is incorrect because it captures accidental features of the
particular data set at hand (called "capitalizing on chance") rather than
the true underlying relationship. This is illustrated in convincing fashion
by Mayer (1975) and Bacon (1977).



Aigner (1971, pp. 1017) presents a good critical summary of measures
used to capture the relative importance of independent variables in
determining the dependent variable. He stresses the point that the
relative strength of individual regressors should be discussed in a policy
context, so that, for example, the impact on the dependent variable per
dollar of policy action is what is relevant.

Anderson-Sprecher (1994) offers an interpretation of the R2 measure
that clarifies many of the problems with its use.

Technical Notes

5.2 Three Methodologies

TTT was developed in the context of autoregressive distributed lag
models, where the initial "more general" specification takes the form of
a very generous lag length on all explanatory variables, as well as on the
lagged dependent variable. This is done to reflect the fact that economic
theory typically has very little to say about the nature of the dynamics
of a relationship. Common sense is used to choose the initial lag lengths.
For example, if quarterly data are being used, five lags might be initially
specified, allowing for fourth-differences and first-differences of the
fourth-differenced data. One of the problems this creates is a lack of
degrees of freedom. There is a tendency to solve this problem by
"cheating" a little on the general-to-specific methodology - by not
including at first all explanatory variables under consideration (adding
them in later after the initial over-parameterized model has been
simplified).

The main input to a fragility analysis is a Bayesian prior distribution,
with its vari-
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ance-covariance matrix indexed by a scale parameter. By varying this
scale parameter to reflect different degrees of confidence in this prior
held by different researchers, a range of parameter estimates is
produced, the output of a fragility analysis. An alternative approach,
suggested by Granger and Uhlig (1990), is to modify the extreme-
bounds analysis by considering only specifications that produce R2
values within 10 or 15% of the highest R2.



In "testing down," the size of the overall test (the overall probability of
a type I error), a, can be determined/controlled from the result that (1 -
a) is equal to the product over i of (1 - ai), where ai is the size of the ith
individual test. For example, suppose we are conducting n tests during a
testing down process and we want the overall type I error to be 5%.
What common type I error a* of the individual n tests will accomplish
this? This is calculated from 0.95 = (1 - a*)n, yielding a* = 1- 0.951/n
which becomes smaller and smaller as n grows.

A sixth criterion is often found in the list of criteria used to determine
data congruency, namely that the explanatory variables should be at
least weakly exogenous (i.e., it is valid to condition on these regressors),
since otherwise it will be necessary to model the regress and and the
regressor jointly. This criterion is out of place in general application of
the TTT methodology. What is meant is that exogeneity should be
tested for, not that a model must be such that all its explanatory
variables are exogenous, however convenient that may be. If an
explanatory variable is found not to be exogenous, an alternative
specification may be required, but not necessarily one in which that
variable must be exogenous.

There are three types of exogeneity. Suppose y is thought to be
explained by x. The variable x is said to be weakly exogenous if current
y does not also explain x. This implies that estimation and testing can be
undertaken by conditioning on x. It is strongly exogenous if also the
lagged value of y does not explain x (i.e., there is no "feedback" from y
to x); strong exogeneity has implications mainly for using x to forecast
y. The variable x is "super exogenous" if the x coefficients in the
relationship determining y are not affected by changes in the x values or
by the process generating the x values. This has relevance for policy; it
reflects the "Lucas critique" (Lucas, 1976), which claims that a policy
change will cause rational economic agents to change their behavior,
and questions what meaning one can attach to the assumed-constant
parameters estimated by econometrics. Maddala (1988, pp. 32531) has
a good textbook exposition of exogeneity.

5.4 Misspecification Tests/Diagnostics

The rationale behind the J test is easily seen by structuring the artificial
nesting model on which it rests. Suppose there are two competing linear
hypotheses:



The artificial nesting model
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is formed, combining H0 and H1 with weights (1 - l) and l, respectively.
Under the null hypothesis that H0 is the correct specification, l is zero,
so a specification test of H0 can be formed by testing l = 0. Regressing y
on X Z will permit estimation of (1 - l)b and ld, but not l. Even this
cannot be done if X and Z have a common variable. This dilemma is
resolved by the following two-step procedure:

(1) regress y on Z, obtain dOLS and calculate 1 = ZeOLS, the
estimated y from this regression;

(2) regress y on X and 1 one and test the (single) slope coefficient

estimate  of 1 one against zero by a t test.

This permits H0 to be either accepted or rejected. The roles of H0 and
H1 are then reversed and the procedure is repeated to allow H1 to be
either accepted or rejected. (Why not just test l = 1 from the regression
in (2)? The logic of the test described above is based on H0 being the

null; when H1 is the null  - 1 divided by its standard error turns out
not to be distributed as a t.)

In small samples the type I error of the J test tends to be too large; Fan
and Li (1995) find that bootstrapping eliminates this problem. Bera et
al. (1992) show how non-nested testing can be undertaken
simultaneously with testing for other features of the specification. In
nonlinear contexts Xb and/or Ze above would be replaced with the
relevant nonlinear function. If this creates computational difficulties the
P test is employed. For an exposition see Davidson and MacKinnon
(1993, pp. 3823); Smith and Smyth (1990) is a good example.



Suppose we have specified y = Xb + e and have suggested the
transformation matrix P for the purpose of constructing a data
transformation test. Transforming the data produces Py = PXb + Pe to
which OLS is applied to obtain b* = (X'P'PX)-1X'P'Py. This must be
compared to bOLS = (X'X)-1X'y. Now write y as XbOLS + eOLS where

eOLS is the OLS residual vector, and substitute this in the expression
for b* to get b* = bOLS + (X'P'PX)-1X'P'PeOLS. For this to be
insignificantly different from zero, P'PX must be uncorrelated (or nearly
so) with eOLS. It turns out that this can be tested by using a familiar F
test to test if the coefficient vector on P'PX is zero when y is regressed
on X and P'PX. (For an intuitive explanation of this, see the technical
notes to section 9.2, where the Hausman test for measurement errors is
explained.) Thus a data transformation test can be performed as an OV
test, where the omitted variables are defined by P'PX. Any
redundancies (a column of P'PX equal to a column of X, for example)
created in this way are handled by omitting the offending column of
P'PX and changing the degrees of freedom of the F test accordingly.

An unusual variant of a Hausman-type misspecification test is White's
information matrix test, in which two different estimates of the
information matrix (the inverse of the variance-covariance matrix) are
compared. If the model is correctly specified, these estimates are
asymptotically equivalent. One estimate is based on the matrix of
second derivatives of the log-likelihood (the Hessian form), while the
other is obtained by adding up the outer products of the vector of first
derivatives of the log-likelihood (the OPG, or outer product of the
gradient form). Hall (1989) provides a computationally feasible way of
calculating this test statistic.
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6
Violating Assumption One: Wrong Regressors, Nonlinearities, and
Parameter Inconstancy

6.1 Introduction



The first assumption of the CLR model states that the conditional
expectation of the dependent variable is an unchanging linear function
of known independent variables. It is usually referred to as the ''model
specification." Chapter 5 discussed in general terms the question of how
to go about finding a model specification that is in accord, or
"congruent," with the data. The purpose of this chapter is to be more
specific on this issue, examining the three major ways in which this first
assumption can be violated. First is the case in which the specified set
of independent variables omits relevant variables or includes irrelevant
variables. Second is the case of a nonlinear functional form. And third is
the case in which the parameters do not remain constant.

6.2 Incorrect Set of Independent Variables

The consequences of using an incorrect set of independent variables fall
into two categories. Intuitive explanations for these results are given in
the general notes to this section.

(1) Omission of a relevant independent variable

(a) In general, the OLS estimator of the coefficients of the
remaining variables is biased. If by luck (or experimental design,
should the researcher be fortunate enough to have control over the
data) the observations on the omitted variables(s) are uncorrelated
in the sample with the observations on the other independent
variables (i.e., if the
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omitted variable is orthogonal to the included variables), the slope
coefficient estimator will be unbiased; the intercept estimator will
retain its bias unless the mean of the observations on the omitted
variable is zero.

(b) The variance-covariance matrix of bOLS becomes smaller
(unless the omitted variable is orthogonal to the included variables,
in which case it remains unchanged). This result, in conjunction with
the bias noted in (a) above, implies that omitting a relevant variable
can either raise or lower an estimator's MSE, depending on the
relative magnitudes of the variance reduction and the bias.



(c) The estimator of the (now smaller) variance-covariance matrix
of bOLS is biased upward, because the estimator of s2, the variance
of the error term, is biased upward. This causes inferences
concerning these parameters to be inaccurate. This is the case even
if the omitted variable is orthogonal to the others.

(2) Inclusion of an irrelevant variable

(a) bOLS and the estimator of its variance-covariance matrix remain
unbiased.

(b) Unless the irrelevant variable is orthogonal to the other
independent variables, the variance-covariance matrix bOLS
becomes larger; the OLS estimator is not as efficient. Thus is this
case the MSE of the estimator is unequivocally raised.

At first glance a strategy of "throwing in everything but the kitchen sink
as regressors" seems to be a good way of avoiding bias. This creates
what is sometimes referred to as the "kitchen sink" dilemma - omitted
variables, and the bias they cause, will be avoided, but the irrelevant
variables that will inevitably be present will cause high variances.

There is no easy way out of this dilemma. The first and foremost
ingredient in a search for the correct set of explanatory variables is
economic theory. If economic theory cannot defend the use of a
variable as an explanatory variable, it should not be included in the set
of potential independent variables. Such theorizing should take place
before any empirical testing of the appropriateness of potential
independent variables; this guards against the adoption of an
independent variable just because it happens to "explain" a significant
portion of the variation in the dependent variable in the particular
sample at hand. Unfortunately, there is a limit to the information that
economic theory can provide in this respect. For example, economic
theory can suggest that lagged values of an explanatory variable should
be included, but will seldom suggest how many such variables should be
included. Because of this, economic theory must be supplemented by
some additional mechanism for determining the correct set of
explanatory variables.

According to the TTT methodology discussed in chapter 5, this should
be done by including more variables than thought necessary and then
"testing
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down" to obtain a final specification. If this approach is followed, the
question arises as to what critical value of the relevant t or F statistic
should be employed to operationalize the testing procedure. An obvious
possibility is the traditional 5% value, perhaps adjusted downwards if
several tests are to be performed. An alternative, as mentioned in the
general notes to section 4.5, is to use a critical value of unity, implying
maximization of adjusted R2. Several other suggestions for critical
values correspond to maximization of alternative adjusted forms of R2,
with slightly different trade-offs between goodness of fit and parsimony
(number of explanatory variables). These are usually formalized in
terms of finding the set of explanatory variables that minimizes a
specific function of the sum of squared errors and the number of
explanatory variables. The more popular of these model selection
criteria are the Akaike information criterion (AIC), Amemiya's
prediction criterion (PC), and the Schwarz criterion (SC), which are
discussed in the general notes.

Unfortunately there are no unequivocal means of testing for whether an
unknown explanatory variable has been omitted, mainly because other
misspecifications, such as incorrect functional form, affect available
tests. Many of the misspecification tests discussed in chapter 5 are used
to check for an omitted explanatory variable. Particularly popular in this
regard are tests for serial correlation in the errors (discussed in chapter
8), since any cyclical movement in an omitted variable will be
transmitted to the OLS residuals.

Also popular is the RESET test. When a relevant variable is omitted
from a model, the "disturbance" term of the false model incorporates
the influence of the omitted variable. If some variable or set of variables
Z can be used as a proxy for the (unknown) omitted variable(s), a
specification error test can be formed by examining Z's relationship to
the false model's error term. The RESET (regression specification error
test) does this by adding Z to the set of regressors and then testing Z's
set of coefficient estimates against the zero vector by means of a
traditional F test. There are two popular choices of Z: the squares,
cubes and fourth powers of the predicted dependent variable, and the
squares, cubes and fourth powers of the explanatory variables.

6.3 Nonlinearity



The first assumption of the CLR model specifies that the functional
form of the relationship to be estimated is linear. Running an OLS
regression when this is not true is clearly unsatisfactory, since parameter
estimates not only are biased but also are without meaning except in so
far as the linear functional form can be interpreted as an approximation
to a nonlinear functional form. Functional forms popular in applied
econometric work are summarized in the technical notes to this section.

The OLS procedure must be revised to handle a nonlinear functional
form. These revisions fall into two categories.
 

page_96

Page 97

(1) Transformations

If by transforming one or more variables a nonlinear function can be
translated into a linear function in the transformed variables, OLS
estimation procedures can be applied to transformed data. These
transformations are of two types.

(a) Transforming only independent variables If, for example, the
nonlinear functional form is

a linear function

can be created by structuring a new independent variable z whose
observations are the squares of the observations on x. This is an
example of an equation nonlinear in variables but linear in parameters.
The dependent variable y can be regressed on the independent variables
x and z using bOLS to estimate the parameters. The OLS estimator has

its CLR model properties, the R2 statistic retains its traditional
properties, and the standard hypothesis tests are valid.

(b) Transforming the entire equation When transforming only
independent variables cannot create a linear functional form, it is
sometimes possible to create a linear function in transformed variables
by transforming the entire equation. If, for example, the nonlinear



function is the Cobb-Douglas production function (with a multiplicative
disturbance)

then transforming the entire equation by taking natural logarithms of
both sides creates

or

a linear function in the transformed variables Y*, K* and L*. If this new
relationship meets the CLR model assumptions, which econometricians
usually assume is the case, the OLS estimates from a regression using
these transformed variables have their traditional desirable properties.
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(2) Computer-Assisted Numerical Techniques

Some nonlinear functions cannot be transformed into a linear form. The
CES production function is an example of this, as is the Cobb-Douglas
function with an additive, rather than a multiplicative, disturbance. In
these cases econometricians turn to either nonlinear least squares or
maximum likelihood methods, both of which require computer search
procedures. In nonlinear least squares the computer uses an iterative
technique to find those values of the parameters in the relationship that
cause the sum of squared residuals to be minimized. It starts with
approximate guesses of the parameter values and computes the
residuals and then the sum of squared residuals; next, it changes one of
the parameter values slightly, recomputes the residuals and sees if the
sum of squared residuals becomes larger or smaller. It keeps changing
parameter values in directions that lead to smaller sums of squared
residuals until it finds the set of parameter values that, when changed
slightly in any direction, causes the sum of squared residuals to rise.
These parameter values are the least squares estimates in the nonlinear
context. A good initial guess of the parameter values is necessary to
ensure that the procedure reaches a global and not a local minimum for



the sum of squared residuals. For maximum likelihood estimation a
similar computer search technique is used to find parameter values that
maximize the likelihood function. See the technical notes for a
discussion of the way in which computer searches are structured, some
of which have led to the development of new estimators.

In general, the desirable properties of the OLS estimator in the CLR
model do not carry over to the nonlinear least squares estimator. For
this reason the maximum likelihood estimator is usually chosen in
preference to the nonlinear least squares estimator. The two techniques
are identical whenever the dependent variable is determined by a
nonlinear function of the independent variables plus a normally
distributed, additive disturbance.

There are five main methods of testing for nonlinearity.

(1) RESET Although the Regression Equation Specification Error Test
was designed to be used to test for missing regressors, it turns out to be
powerful for detecting nonlinearities. This weakens its overall
attractiveness, since rejection of a model could be due to either a
nonlinearity or an omitted explanatory variable. (No test can
discriminate between unknown omitted variables and unknown
functional form; a strong case can be made that the RESET test can
only test for functional form.)

(2) Recursive residuals The nth recursive residual is the error in
predicting the nth observation using parameters estimated from a linear
regression employing the first n - 1 observations. If the true functional
form is non-linear, then, if the data are ordered according to the variable
entering non-linearly, these residuals could become either all positive or
all negative, a result that can be exploited to test for nonlinearity.
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(3) General functional forms Some functional forms contain particular
forms, such as linearity or log-linearity, as special cases corresponding
to specific values of a parameter. These particular functional forms can
then be tested by testing the estimate of this parameter against these
specific values.

(4) Non-nested tests Variants of the non-nested testing methodology
discussed in chapter 5 can be used to test functional form.



(5) Structural change tests Because a nonlinear function can be
approximated by two or more linear segments, the structural change
tests discussed in the next section can be interpreted as tests for
nonlinearity.

6.4 Changing Parameter Values

A common criticism of econometricians concerns their assumption that
the parameters are constants. In time series estimation, changing
institutions and social mores have surely caused the parameter values
characterizing the economy to change over time, and in cross-section
estimation it is surely unrealistic to assume that the parameters for every
individual or every region are exactly the same. Although most
econometricians usually ignore these criticisms, maintaining that with
small sample sizes they are forced to make these simplifying
assumptions to obtain estimates of any sort, several techniques are
available for addressing this problem.

(1) Switching Regimes

It may be known that at a particular point in time the economic
structure changed. For example, the date of the Canada-USA auto pact
might mark a change in parameter values associated with the Canadian
or US auto industries. In such a case we need run only two regressions,
one for each "regime." More often than not, however, the point in time
at which the parameter values changed is unknown and must be
estimated. If the error variances are the same for both regimes, this can
be done by selecting several likely points of change, running pairs of
regressions for each and then choosing among these points of change by
determining which corresponds to the smallest total sum of squared
residuals. (If the error variances cannot be assumed equal, a maximum
likelihood technique must be used.) This approach has been extended in
several directions:

(a) to accommodate more than two regimes;

(b) to permit continuous switching back and forth, either randomly or
according to a critical value of an unknown function of some additional
variables;

(c) to eliminate discontinuities, so that the function describing one
regime blends into the function describing the next regime over an
adjustment period.
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(2) Parameters Determined by Other Variables

It could be that b is itself determined by variables outside the model.
For example, the extent to which a firm reacts to demand changes may
depend on government policy parameters such as tax rates. This
problem is most easily resolved by substituting the relationship
determining b directly into the originating estimating function. Thus if
we have, for example,

and b2, say, is determined as

we can combine these relationships to get

so that estimation should be undertaken by including the new variable
(x2z2) as an additional regressor. If the relationship for b2 includes an
error term, the error term attached to the final estimating question is
more complicated, and although the OLS estimator remains unbiased, a
maximum likelihood estimating procedure is required for efficiency.

(3) Random Coefficients

Instead of being determined by specific variables, the parameters may
be random variables. This could be viewed as an alternative way of
injecting a stochastic element into a relationship, or it could reflect
specific recognition of the fact that the parameters being estimated are
not the same for every observation. In this case the estimating equation
can be rewritten, substituting for the random b its mean plus a
disturbance term, to yield a new estimating equation, with a somewhat
more complicated error term, in which the parameter to be estimated is
the mean value of the random coefficient b. Although OLS estimation
of the mean of b is unbiased, the more complicated nature of the error
term requires a more sophisticated estimation procedure for efficiency
(such as a maximum likelihood method or a weighted least squares



technique: see chapter 8). This approach has been extended in two
directions:

(a) b is allowed to "drift" according to a random walk (i.e., b is equated
to its value in the previous time period, plus a disturbance);

(b) b is random and "drifts," but converges on an unknown fixed value.

Four types of test have become particularly popular for testing for
structural change/parameter inconstancy.
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(1) The Chow test, discussed in the technical notes to this section, is
used to test whether or not a parameter or parameters are unchanged
from one data set to another. Variants are required for special cases,
such as if the variance of the error term has also changed.

(2) Predictive failure tests, also called extra-sample prediction tests,
are tests for whether or not a new observation lies inside the forecast
confidence interval. Most such tests are variants of the Chow test, as is
the "rainbow" test, both of which can be interpreted as tests for
structural change.

(3) Tests based on recursive residuals The cusum and cusum of squares
tests, with the data ordered chronologically, rather than according to the
value of an explanatory variable (as is done for a functional form test)
can be used to test for structural stability.

(4) Tests based on recursive parameter estimates The methodology
used to calculate recursive residuals can be used to estimate parameter
estimates recursively. These estimates should not fluctuate too much (or
their first differences should be close to zero) if the structure is stable.

General Notes

6.1 Introduction

A potential violation of the first assumption that is not mentioned in this
chapter is the possibility that the stochastic ingredient of the relationship
does not manifest itself as an additive error term. There are three main
alternatives entertained in the literature. The case of a multiplicative



disturbance can be reformulated as an additive heteroskedastic error, as
discussed in chapter 8. The case of random coefficients is considered in
this chapter. And the case of measurement error is discussed in chapter
9.

6.2 Incorrect Set of Independent Variables

Kennedy (1981b) employs the Ballentine to exposit the consequences
of omitting a relevant variable or adding an irrelevant variable. In figure
6.1 the real world is such that Y is determined by X and Z but the
variable (or set of variables) Z is erroneously omitted from the
regression. Several results can be noted.

(a) Since Y is regressed on only X, the blue-plus-red area is used to
estimate bx. But the red area reflects variation in Y due to both X
and Z, so the resulting estimate of bx will be biased.

(b) If Z has been included in the regression, only the blue area
would have been used in estimating bx. Omitting Z thus increases

the information used to estimate bx by the red area, implying that
the resulting estimate, although biased, will have a smaller variance.
Thus it is possible that by omitting Z the mean square error of the
estimate of bx may be reduced.

(c) The magnitude of the yellow area reflects the magnitude of s2.
But when Z is omitted, s2 is estimated using the yellow-plus-green
area, resulting in an overes-
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Figure 6.1
Omitting a relevant variable Z

timate of s2 (i.e., the green area influence of Z is erroneously
attributed to the error term). This overestimate of s2 causes an
overestimate of the variance-covariance matrix of the estimate of
bx.

(d) If Z is orthogonal to X the red area does not exist, so the bias
noted above disappears.

In figure 6.2 the real world is such that Y is determined by X but the
irrelevant variable Z is erroneously added to the regression. The overlap
of Z with Y comes about virtually entirely because of its collinearity
with X; in this case the red area reflects variation in Y explained 100%
by X and 0% by Z. The shaded area is negligible in size because only
with finite degrees of freedom will Z be able to explain a small amount
of variation in Y independently of X. Using the correct specification, Y is
regressed on X and the blue-plus-red area is employed to create an
unbiased estimate of bx. Including Z in the regression implies that only
the blue area is used to estimate bx. Several results follow.

(a) The blue area reflects variation in Y due entirely to X, so this
estimate of bx is unbiased. Thus, adding an irrelevant variable does
not bias coefficient estimates.



(b) Since the blue area is smaller than the blue-plus-red area, the
variance of the estimate of bx becomes larger; there is a loss of
efficiency.

(c) The usual estimator of s2, using the yellow area, remains
unbiased because the negligible shaded area is offset by the change
in the degrees of freedom. Thus the usual estimator of the variance-
covariance matrix of bx remains unbiased. (It does become bigger,
though, as noted in (b) above.)

(d) If Z is orthogonal to X, the red area disappears and there is no
efficiency loss.

Iterative techniques used to find the set of independent variables
meeting some t test criterion are not always reliable. Consider the
"forward selection" technique, for example. It augments the set of
regressors one by one, by selecting the new variable with the highest t
value, until no more variables with t values higher than the critical t
value can be found. Unfortunately, a variable included in an early step
may have its
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Figure 6.2
Adding an irrelevant variable Z

usefulness negated by the inclusion of new variables, whose joint
influence is more effective in explaining the variation in the dependent
variable that the variable included earlier had explained. Only if at each
step the iterative procedure pauses and rechecks all the already
included variables will this be caught. (Note that it will never be caught
if the new variables, whose joint influence is more effective than an
already included variable, are never included in the set of regressors
because their individual t values are too low.) In summary, these
methods tend to select sets of variables that are relatively uncorrelated,
a result difficult to justify, particularly since, as noted above, omitting a
correlated explanatory variable leads to bias in the estimation of the
remaining parameters. For a summary discussion of this problem see
Maddala (1977, pp. 124-7).

When using a t or F criterion the "too-large" sample size phenomenon
should be kept in mind.

Of the several different ways of trading off goodness of fit and
parsimony, adjusted R2 has the least amount of adjustment for extra
explanatory variables. The most popular alternatives are

AIC (Akaike information criterion), which minimizes ln (SSE/T) +
2K/T
SC (Schwarz criterion), which minimizes ln (SSE/T) + (Kln T)/T
and
PC (Amemiya's prediction criterion), which minimizes SSE(1 +
K/T)/(T - K),

where T is the sample size and K is the number of regressors. Each is
defended on the basis of the loss function on which its derivation rests.
The SC, which is derived using Bayesian arguments, has performed well
in Monte Carlo studies. Mills and Prasad (1992), for example, have
examined several model selection criteria with an eye to seeing how
well they stand up to complications such as non-normal errors and
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collinearity, and recommend the Schwarz criterion. Amemiya (1980)
has an extensive discussion of these criteria, the relationships among
them, and their relative merits. See also Judge et al. (1985, chapter 21).
Having so many such criteria, differing by so little, creates a dilemma of
choice, reflected by Amemiya's comment that ''all the criteria
considered are based on a somewhat arbitrary assumption which cannot
be fully justified, and that by slightly varying the loss function and the
decision strategy one can indefinitely go on inventing new criteria."

Any method that selects regressors on the basis of a sample statistic
such as R2 is likely to "capitalize on chance" - to select a regressor
because of an accidental feature of the particular sample at hand.
Cross-validation is designed to overcome this problem. In this
technique, half the sample is used to obtain parameter estimates that are
used to forecast the other half of the sample, allowing computation of
an R2. If this R2 is not too far below the R2 from the first half of the
sample, the specification is said to be satisfactory. Unfortunately,
however, satisfactory methods for predicting the degree of shrinkage in
R2 when moving to the new data are not available, so that no formal
statistical tests have been structured to formalize this technique; its use
is subjective. (It should be noted, however, that all statistical testing is
to some degree subjective, through the choice of such things as the
significance level.) Uhl and Eisenberg (1970) examine shrinkage in R2.
Snee (1977) discusses the optimal way to split a sample for cross-
validation. Because of these difficulties, this procedure should be
operationalized by post-sample predictive tests, which are discussed in
this chapter in the context of parameter stability, and mentioned in
chapter 5 as one of the basic principles that should guide specification
searches.

Leamer (1983b) notes that one form of cross-validation via sample
splitting is equivalent to minimizing the sum of squared errors with a
penalty for coefficient instability. He suggests that a proper means of
accommodating coefficient instability be employed instead. He also
shows that cross-validation done by deleting one observation at a time
(i.e., using all observations but one to estimate and then predict that

missing observation) is inferior to the traditional  criterion.

Thursby and Schmidt (1977) suggest that the best variant of RESET is
one in which the additional regressors Z are the squares, cubes and
fourth powers of the explanatory variables. Thursby (1979, 1981, 1982)
has examined how RESET can be combined with a variety of other tests
to aid in specification.



6.3 Nonlinearity

Although the linear functional form is convenient, it should not be
accepted unquestioningly, as is done too frequently. Hunderwasser (as
quoted by Peitgen and Richter, 1986) has an extreme expression of this
view:

In 1953 I realized that the straight line leads to the downfall of
mankind. The straight line has become an absolute tyranny. The
straight line is something cowardly drawn with a rule, without
thought or feeling; it is the line which does not exist in nature.
And that line is the rotten foundation of our doomed civilization.
Even if there are places where it is recognized that this line is
rapidly leading to perdition, its course continues to be plotted.

Lau (1986) has a useful survey of functional forms in econometrics. He
suggests five criteria for choosing a functional form: theoretical
consistency, domain of applica-
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bility, flexibility, computational facility, and factual conformity.
Granger (1993) offers advice on modeling nonlinear time series.

The properties of the OLS estimator applied to a situation in which the
true functional form is nonlinear can be analysed in terms of omitted
relevant variables. A nonlinear function can be restated, via a Taylor
series expansion, as a polynomial. Estimating a linear function is in
effect omitting the higher-order terms of this polynomial.

Transforming an equation into a linear form sometimes creates an error
term for that linear function that does not meet all of the CLR model
assumptions. See chapter 7 for an example.

A multiplicative error term for some nonlinear functional forms (such as
the Cobb-Douglas production function) facilitates the transformation of
the equation to a linear estimating form. It is not obvious, however, that
this error term need necessarily be multiplicative. Leech (1975)
addresses the problem of testing this error specification.



A distinct danger in using the highest  criterion to choose the
functional form is that, if the dependent variables are not the same, the
R2 is not directly comparable. For example, the R2 from a regression of
the logarithm of the dependent variable on the logarithms of the
independent variables gives the proportion of the variation in the
logarithm of the dependent variable explained, not the proportion of the
variation in the dependent variable itself. Estimated values of the
dependent variable must be used to construct a comparable R2, or some
transformation must be applied to the data to assure compatibility. (An
example of such a transformation for a popular application is given in
Rao and Miller, 1971, pp. 108-9.) Note, however, that Granger and
Newbold (1976) suggest that under general conditions this entire
problem of the comparability of the R2s can be ignored. See Haessel
(1978) on measuring goodness of fit in nonlinear models.

Recursive residuals are standardized one-step-ahead prediction errors.
Suppose the observations are ordered by the size of the explanatory
variable and the true relationship is U-shaped. Use, say, the first ten
observations to estimate via OLS a linear relationship. When this
estimated relationship is employed to predict the eleventh observation,
it will probably underpredict because of the U-shaped nonlinearity; the
recursive residual for the eleventh observation is this (probably positive)
prediction error, standardized by dividing by its variance. To obtain the
twelfth recursive residual, the first eleven observations are used to
estimate the linear relationship. Doing this will tilt the estimating line up
a bit from what it was before, but not nearly by enough to prevent
another underprediction; once again, the recursive residual, because of
the nonlinearity, is likely to be positive. Thus a string of positive
recursive residuals indicates a U-shaped nonlinearity and a string of
negative recursive residuals indicates a hill-shaped nonlinearity. Harvey
and Collier (1977) advocate the use of recursive residuals to test for
nonlinearity, using the cusum (cumulative sum) and cusum-of-squares
tests introduced by Brown et al. (1975).

The cusum test is based on a plot of the sum of the recursive residuals.
If this sum goes outside a critical bound, one concludes that there was a
structural break at the point at which the sum began its movement
toward the bound. Kramer et al. (1988) show that the cusum test can be
used with lagged values of dependent variable as regressor. The cusum-
of-squares test is similar to the cusum test, but plots the cumulative sum
of squared recursive residuals, expressed as a fraction of these squared
residuals summed over all observations. Edgerton and Wells (1994)
provide critical values.
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Practical experience has shown that cusum of squares is sensitive to
outliers and severe non-normality.

Unlike OLS residuals, recursive residuals are homoskedastic (because
they are standardized) and are independent of one another (because a
recursive residual's own observation is not involved in estimating the
prediction line from which it is calculated). These attractive properties
have made them a popular alternative to OLS residuals for use in
calculating a variety of regression diagnostics. For a good review of
their uses in this regard, see Galpin and Hawkins (1984). Because the
behavior of recursive residuals in a misspecified model is very different
from that of the OLS residuals, as should be evident from the discussion
of the cusum test, test procedures based on recursive residuals should
be viewed as complementary to tests based on OLS residuals.

A related way of testing for linearity to break the data into sub-groups
based on the magnitude of the independent variable being tested for
nonlinearity and then run separate regressions for each sub-group. If
these separate regressions are significantly different from one another,
there is good reason to believe the functional form is not linear.

The most popular general functional form used for testing nonlinearity is
that associated with the Box-Cox transformation, in which a variable Z

is transformed to (Zl - 1)/l. Since the limit of this as l approaches zero is
ln Z, it is defined to be ln Z when l = 0. If all variables in a linear
functional form are transformed in this way and then l is estimated (in
conjunction with the other parameters) via a maximum likelihood
technique, significance tests can be performed on l to check for special
cases. If l = 0, for example, the functional form becomes Cobb-Douglas
in nature; if l = 1 it is linear. Aigner (1971, pp. 1669) and Johnston
(1984, pp. 6174) have good discussions of this approach. Spitzer (1982)
is a particularly useful reference. Estimating the variance of a Box-Cox
estimate can be a problem: see Spitzer (1984). Park 1990 suggests a
means of testing for the appropriateness of the Box-Cox transformation.
Although the Box-Cox transformation is very popular, it has the
disadvantage that it breaks down when zero or negative values must be
transformed. Burbridge, Magee and Robb (1988) note that the inverse
hyperbolic sine function sinh-1 can circumvent this problem and has



additional advantages over the Box-Cox transformation. Sinh-1(qy)/q
transforms y to In [qy + (q2y2 + 1)0.5]/q and to y when q = 0. See also
MacKinnon and Magee (1990) and Wooldridge (1992).

The Box-Cox technique has been generalized in several ways to permit
testing of functional form simultaneously with testing for other
violations of the CNLR model. All of these studies have concluded that
there is much to gain (in terms of power) and little to lose from pursuing
a policy of "overtesting" in this respect. For a survey of some of these
studies, see Seaks and Layson (1983). The most general of these
approaches is that of Bera and Jarque (1982), in which functional form,
normality of the error term, heteroskedasticity, and autocorrelated
errors are tested for simultaneously. Bera et al. (1992) extend this
procedure to the context of testing non-tested models.

The "rainbow" test, suggested by Utts (1982), can be used to test for
nonlinearity. In this test "central" data points are used to estimate a
linear relationship, which is used to predict the outlying data points. A
Chow test (described in section 14.5 technical notes in chapter 14) is
employed to test whether these predictions collectively lie within their
confidence limits.
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Godfrey et al. (1988) have an excellent review of tests for linear versus
log-linear functional form. On the basis of a Monte Carlo study they
recommend the RESET test.

Thursby (1989) finds that DW, RESET, Chow and differencing tests
perform well against the specific alternative against which they were
designed to perform well, but typically do not do well against general
alternatives.

Amemiya (1983) shows that OV tests for the nonlinear regression model
of the form y = (X,b) + e can be undertaken by regressing the residuals
from this nonlinear regression on the matrix of observations on the
partial derivatives of with respect to b (evaluated at the nonlinear least-
squares estimate), and the usual set of omitted variables, employing the
usual F test for the significance of the OVs.



In some contexts it is known that a differenced form of a time series
should be estimated, but it is not clear whether the first difference form
or the percentage change form is appropriate. For discussion and
references see Seaks and Vines (1990).

6.4 Changing Parameter Values

It has long been suspected that parameter values do not remain constant
over time. For example, as quoted in Swamy et al. (1988a), in 1938
Keynes commented on a proof copy of Tinbergen's Business Cycles in
the United States of America that "The coefficients arrived at are
apparently assumed to be constant for 10 years or for a longer period.
Yet, surely we know that they are not constant. There is no reason at all
why they should not be different every year."

Surveys of regime-switching can be found in Goldfeld and Quandt
(1976, chapter 1) and Poirier (1976, chapter 7). In some cases it is
reasonable to suppose that a regime change involves a transition period
during which the relationship changes smoothly from the old to the new
regime. Goldfeld and Quandt model this by using an S-curve
(cumulative density) as do Lin and Terasvirta (1994); Wilton (1975)
uses a polynomial in time. Disequilibrium models are popular examples
of continuous regime-switching. If observations are generated by the
minimum of the quantities supplied and demanded, for example, then
some observations come from a supply curve (one regime) and the other
observations come from a demand curve (the other regime). Estimation
in this context exploits some kind of an indicator variable; for example,
was the most recent price change positive or negative? Work in this
area stems from Fair and Jaffee (1972). For surveys see Fomby et al.
(1984, pp. 567-75), Quandt (1982), and Maddala (1986). Shaban (1980)
and Hackl and Westlund (1989) are annotated bibliographies.

Random parameter models create a regression equation with a
nonspherical error term (chapter 8 discusses nonspherical errors).
Estimation techniques begin by deriving the nature of this
nonsphericalness, i.e., the variance-covariance matrix of the regression's
error term. Then this is either built into a maximum likelihood
estimation procedure or somehow estimated and employed as input to
an EGLS estimator (see chapter 8). Tests for heteroskedasticity (see
chapter 8) are often used to test for whether parameters are random.
Maddala (1977, chapter 17) has a good textbook exposition of changing
parameter models. Swamy and Tavlas (1995) survey random coefficient
models. Raj and Ullah (1981) exposit the role of varying parameters in
several econometric contexts.
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Machak et al. (1985) has a good discussion of time-varying random
parameter models. Watson and Engle (1985) examine the case in which
parameters follow an AR(1) structure. Flexible least squares allows the
parameters to evolve slowly over time by minimizing a weighted sum of
the sum of squared residuals and the sum of squared changes in the
parameters over time. See Dorfman and Foster (1991) and Kalaha and
Tesfatison (1989).

Pesaran et al. (1985) is a good survey of variants of the Chow test and
predictive failure tests. Ashley (1984) suggests an attractive
generalization of the Chow test, along with a diagrammatic means of
examining the model for structural change. Kramer and Sonnberger
(1986, pp. 4378) has a good review of tests using recursive residuals
and recursive parameter estimates. Dufour (1982) suggests several
extensions of the recursive methodology. Bleaney (1990) compares
several tests for structural change, recommending that of Farley et al.
(1975), which models each parameter as a linear function of time and
then tests for whether the slope of this relationship is zero.

An important application of random parameters, called the random
effects model, is used in the context of panel data (a time series of
cross-sectional data); it is discussed in chapter 14, where it is seen to be
a competitor to a dummy variable formulation.

Cadsby and Stengos (1986) and Hsu (1982) give examples of tests for
structural stability that are robust to some other possible
misspecifications. The former allows for autocorrelated errors; the latter
is robust against departures from normality.

Spline theory, an approach to the regime-switching problem in which
functions are spliced together at points of structural change, is applied
to economics by Poirier (1976). Suits et al. (1978) have a good
exposition. Robb (1980) extends its application to seasonal data.

Technical Notes

6.3 Nonlinearity



Below is a summary of the more popular nonlinear functional forms. To
be used for econometric purposes these equations must somehow
incorporate an error term.

(1) Log-linear, also called log-log, exponential, constant elasticity,
and Cobb-Douglas: lnY = a + blnL + glnK. The parameters b and g
are elasticities, the elasticity of substitution is unity, and b + g is the
returns-to-scale parameter.

(2) Semi-log, with two forms:

(a) Y = a + blnX Note b gives DY due to %DX. Popular for Engle
curves.

(b) In Y = a + bX Note b gives %DY due to DX, unless X is a

dummy, in which case %DY is given by eb - 1.

(3) Inverse, also called reciprocal: Y = a + bX-1. Popular for Phillips
curve estimation. One of many variants is Y = a + b(X + d)-1.

(4) Polynomial: Y = a + bX + gX2.

(5) CES, constant elasticity of substitution:

The elasticity of substitution is (1 + q)-1 and the scale parameter is
f.

(6) Transcendental: lnY = a0 + a1lnL + a2lnK + a3L + a4K.
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(7) Translog, transcendental logarithmic, considered the most
flexible functional form for production function estimation:



(8) Box-Cox: (Yl - 1)/l = a + bX. A similar transformation, with the
same or a different l, can be applied to X. Note that as l approaches
zero, the LHS approaches lnY, and as l approaches one, the LHS
approaches Y.

(9) Logit:  This functional form should be used
whenever y is constrained to lie in the zero-one interval, such as
when it is a proportion.

With the exception of the CES, the Box-Cox, and the variant of the
inverse, all of the above can be estimated by running a linear regression
assuming an additive error term. Estimation for the logit is undertaken
by transforming y to the log-odds ratio ln[y/(1 - y)] = a + bx and adding
an error.

Computer search routines can sometimes be simplified by exploiting the
fact that often if one parameter is known the others can be estimated by
OLS. For example, suppose that y = a + b(x + d)-1. If d were known, w
= (x + d)-1 could be calculated, implying that a and b could be
estimated by regressing y on an intercept and w. This suggests
simplifying the search process by looking for the d value for which the
SSE from the secondary regression is minimized.

Most iterative schemes for minimizing a nonlinear function F(q) with
respect to the k × 1 parameter vector q are of the form

where q** is the updated estimate of q, q* is the estimate from the

previous iteration, l is a positive scalar called the step-length, and d(q*)
is a k × 1 direction vector. Once d(q*) has been chosen, the best value
of l can be found easily by searching over l values to minimize F[q* +

ld(q*)], so the real distinction between different iterative methods is the
choice of d(q*).

A popular method is the Newton-Raphson, or Newton, method, which is
based on approximating F(q) by a quadratic function from a Taylor
series expansion around the unknown value qm that maximizes F. For
the case of q a scalar we have



where g(qm) is the gradient, or first derivative of F evaluated at qm, and

H(qm) is the second derivative, also evaluated at qm. Note that g(qm) =
0, because qm is the point at which F is maximized, so the second term
disappears. Differentiating this with respect to q yields g(q) = H(qm)(q -

qm), which can be rearranged to give qm = q - H-1(qm)g(q), suggesting
the iterative scheme q** = q* - H-1g, where the step-length is one and
the direction vector is -H-1g, with H and g both evaluated at q*.
Iteration continues until some convergence criterion, such as a
sufficiently small change in F, a sufficiently small change in q, or g(q)
sufficiently close to zero, is met. The choice of convergence criterion is
made on the basis of what works well for the problem at hand.
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Figure 6.3
IIIustrating the Newton Method

This is illustrated in figure 6.3 for the case of q a scalar. The line g is the
derivative of F, so the value of q that we seek is qm, where g cuts the
horizontal axis. Consider a starting value q1. The corresponding value
of g is g(q1), at which the tangent line has slope H(q1). The updating

formula creates q2 by extending the tangent down to the horizontal axis.
Then we move in the next iteration to q3, eventually ending up at qm.
Note that if F were a quadratic function, g would be linear and qm
would be found in one iteration. Harvey (1990, chapter 4) and Greene
(1997, pp. 198218) are good discussions of nonlinear optimization. See
also Judge et al. (1985, appendix B), Gallant (1975), and Quandt
(1983).

When q is a vector the Taylor series expansion is

with g the gradient vector and H the matrix of second derivatives, the
Hessian.

Whenever F is a log-likelihood function the expected value of the
negative of the Hessian is the information matrix, and so sometimes
alternative estimates of the information matrix are used in the updating
formula in place of - H. One alternative is the method of scoring, which
uses the formula for the expected value of the second derivative matrix.
Another is BHHH, the method of Berndt, Hall, Hall and Hausman,
which uses the OPG (outer product of the gradient) - the sum over all
observations of gg', where g is the gradient of the log-likelihood.
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MacKinnon (1992) and Davidson and MacKinnon (1993, chapter 6)
exposit the Gauss-Newton regression, an artificial OLS regression useful
for computing a variety of results relating to nonlinear estimation, such
as checks on satisfaction of first-order conditions, estimated covariance
matrices, test statistics, one-step efficient estimates, and inputs to
numerical optimization. Suppose that y = G(X,b) + e where G(X,b) is a
nonlinear function of parameters b and the explanatory variables X.



Expanding in a Taylor series around b* we get

where g(X,b*) is the matrix of derivatives of G with respect to b,
evaluated at b*. This is rewritten as

to produce the Gauss-Newton regression: Regress the estimated errors
using b* on the estimated first derivatives to estimate d, the extent to

which b* differs from b.

To check your understanding of this, note that if G is linear and b* is
bOLS, then g is X and d should be estimated by the zero vector because
the Gauss-Newton equation just reflects the first-order conditions for
minimizing the sum of squared errors. Similarly, when G is nonlinear
and b* is the nonlinear least squares estimate of b, the Gauss-Newton
equation also reflects the first-order conditions for minimizing the sum
of squared errors and the resulting estimate of d should be zero.
Running the Gauss-Newton regression is therefore a useful check on
whether these first-order conditions are satisfied by a particular b*. It is
also easily seen that the estimated variance-covariance matrix of d from
running the Gauss-Newton regression is an estimate of the variance-
covariance matrix of b*. The references cited earlier provide several
examples of other uses of this regression, such as producing
computationally convenient means of minimizing the sum of squared
errors or producing two-step estimates for awkward maximum
likelihood problems. An example of the latter appears in the general
notes of section 9.4 in chapter 9.

6.4 Changing Parameter Values

The Chow test is best undertaken by using dummy variables; an
exposition of how this is done appears in chapter 14.

In the Chow test s2 is assumed to be the same in both periods although
its estimate is allowed to differ between periods in the unconstrained
version; if s2 actually differs between the two periods, the Chow test is
no longer suitable. Suppose b1 and b2 are the OLS estimates of the



vector b from the first and second data sets, respectively, and 

and  are their respective variance-covariance estimates. We
wish to test (b1 - b2) against the zero vector. A Wald test for this takes
the form

where Q is the variance-covariance matrix of (b1 - b2). In this example
Q is easily seen to be estimated by the sum of the estimated variance-
covariance matrices of b1
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and b2. Unfortunately, this test rejects the null more often than it
should. Ohtani and Kobiyashi (1986) suggest a correction. Thursby
(1992) finds that some alternatives to the Chow test perform much
better than the Chow test when error variances are unequal, and only
slightly worse than the Chow test when error variances are equal. A
possible alternative to deal with this problem is to transform the data to
eliminate the heteroskedasticity and then perform the Chow test.
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7
Violating Assumption two: Nonzero Expected Disturbance

The second assumption of the CLR model states that the population
from which the disturbance or error term is drawn has mean zero.
Violation of this assumption may or may not be of concern, depending
on specific circumstances.

Constant Nonzero Mean

The disturbance may have a nonzero mean because of systematically
positive or systematically negative errors of measurement in calculating
the dependent variable. This problem is most easily analyzed if the



estimating equation is rearranged by removing the nonzero mean from
the error term and adding it to the intercept term. This creates an
estimating equation obeying all the CLR model assumptions; in
particular, the mean of the new error term is zero. The only problem is
that OLS estimation gives an unbiased estimate of the new intercept,
which is the sum of the original intercept and the mean of the original
error term; it is therefore a biased estimate of the original intercept (the
bias being exactly equal to the mean of the original error term). Thus
the only implication of this violation of the second assumption of the
CLR model is that the OLS estimate of the intercept is biased; the slope
coefficient estimates are unaffected. This biased estimate is often
welcomed by the econometrician since for prediction purposes he or she
would want to incorporate the mean of the error term into the
prediction.

Zero Intercept

Sometimes economic theory suggests that the intercept in a regression is
zero. An example is transforming for heteroskedasticity (discussed in
chapter 8) resulting in a regression on transformed variables without an
intercept. Practitioners usually include an intercept, though, because it
is possible that a relevant explanatory variable was omitted, creating
bias which can be alleviated by including an intercept term.
Furthermore, no bias is created by including an unnecessary intercept to
guard against this.
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Limited Dependent Variable

When the nonzero expected value of the error term is not constant,
problems can arise. Consider, for example, the case of a limited
dependent variable, discussed in chapter 16. Suppose an observation is
included in the sample only if the dependent variable y is less than K.
For example, data may have been gathered only on people whose
income fell below some poverty level K. This means that the data will
not contain errors large enough to cause the dependent variable to be
greater than K. Thus in this example the right-hand tail of the
distribution of the error terms is chopped off (the error comes from a
''truncated" distribution), implying that the expected value of the error
term is negative, rather than zero. But this negative expected value of
the error term is not the same for all observations. People with



characteristics such that their expected y values are greater than K
cannot have positive errors - they are only included in the sample if
their error terms are sufficiently negative, so for these observations the
expected value of the error is a relatively high negative number. On the
other hand, people whose characteristics are such that their expected y
values are well below K will be included in the sample if their error
terms are negative or positive numbers, excepting only very high
positive errors, so for these observations the expected value of the error
term is a low negative number.

This suggests that the expected value of the error term varies from
observation to observation, and in a way that is affected by the values
of the explanatory variables (characteristics of the individuals). The
impact of this on the OLS estimator can be deduced by viewing the
expected value of the error term as an omitted explanatory variable,
discussed in chapter 6. Since this "omitted variable" is correlated with
the other explanatory variables, the OLS estimator for all coefficients,
not just the intercept, is biased.

Frontier Production Function

In economic theory a frontier production function determines the
maximum output that can be produced with given inputs. Firms could
be less than fully efficient and thus produce inside the production
frontier, but they cannot produce more than the output given by this
frontier. This suggests that the error should be negative, or at best zero,
causing its expected value to be negative.

Econometricians model this by specifying two error terms. The first of
these error terms is a traditional error (with both positive and negative
values) reflecting errors in measuring output or factors over which the
firm has no control such as weather. When added to the frontier
production function formula it creates a stochastic frontier production
function, saying in effect that not all observations have exactly the same
frontier production function. The second error is a non-positive error
reflecting the degree to which a firm is inside its stochastic frontier. The
two errors together form a composite error which has a negative
expected value. It is common to assume that the first error is distributed
normal-
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ly and the second error is distributed as a half-normal, allowing
estimation to be undertaken with maximum likelihood.

Logarithmic Transformation

Estimation is often facilitated by performing a logarithmic
transformation of variables to create a linear estimating equation. A
popular example of this is the Cobb-Douglas functional form, which
requires a multiplicative disturbance if the logarithmic transformation is
to create a linear estimating form in transformed variables. Now if, as is
traditional, the nonlinear function without the disturbance is to
represent the expected value of the dependent variable given the
independent variables, the expected value of this multiplicative
disturbance must be unity. The logarithm of this disturbance, which is
the "disturbance" associated with the linear estimating form, does not
have a zero expectation. This means that the OLS estimator of the
constant in the linear estimating equation (the logarithm of the original
Cobb-Douglas constant) is biased.

General Notes

If a relevant explanatory variable is omitted from a regression, the
"error" of the misspecified equation will not have a constant, zero mean.
This should be viewed as a violation of the first assumption of the CLR
model, however, not the second.

Since the OLS estimation procedure is such as automatically to create
residuals whose mean is zero, the only way in which the assumption of
zero expected disturbance can be tested is through theoretical means
(such as that illustrated by the Cobb-Douglas example).

Forsund et al. (1980) and Bauer (1990) are surveys of frontier
production functions. LIMDEP can be used for estimation. DEA, data
envelopment analysis, is an alternative to the econometric approach,
popular in many other disciplines. It uses mathematical programming
techniques with the advantage that no functional form is imposed on the
data. In this approach all deviations from the frontier are attributed to
firm inefficiency; an advantage of the econometric approach is that in
fortuitous circumstances (a favorable error) firms can produce beyond
the frontier, so that such errors do not dictate the frontier. See Charnes
et al. (1995).



The multiplicative error used for the Cobb-Douglas function is usually
assumed to be distributed log-normally; this implies that the logarithm
of this error is distributed normally. It is interesting to note that
assuming that the logarithm of this multiplicative disturbance has zero
mean implies that the Cobb-Douglas function without the disturbance
represents the median (rather than the mean) value of the dependent
variable given the independent variables. This example of the
Cobb-Douglas production function is discussed at length in Goldberger
(1968a).
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8
Violating Assumption Three: Nonspherical Disturbances

8.1 Introduction

The third assumption of the CLR model is that the disturbances are
spherical: they have uniform variance and are not correlated with one
another. These characteristics are usually described in terms of the

variance-covariance matrix of the disturbance vector. Recall that the 
of parameter estimates is a matrix with the variances of the individual
parameter estimates along the diagonal and the covariances between
these individual estimates in the off-diagonal positions. The disturbance
vector is simply a vector containing the (unobserved) disturbance terms
for the given data set (i.e., if the sample is of size T, the disturbance
vector is of length T, containing T "observations" on the disturbance
term). The variance-covariance matrix of the disturbance vector is a
matrix with T columns and T rows. The diagonal terms are the variances
of the individual disturbances, and the off-diagonal terms are the
covariances between them.

Each diagonal term gives the variance of the disturbance associated
with one of the sample observations (i.e., the first diagonal term gives
the variance of the disturbance associated with the first observation,
and the last diagonal term gives the variance of the disturbance
association with the Tth observation). If all these diagonal terms are the
same, the disturbances are said to have uniform variance or to be
homoskedastic. If the diagonal terms are not all the same, the



disturbances are said to be heteroskedastic; the disturbance term is then
thought of as being drawn from a different distribution for each
observation. This case of heteroskedasticity is discussed in detail in
section 8.3.

Each off-diagonal element of the variance-covariance matrix gives the
covariance between the disturbances associated with two of the sample
observations (i.e., the element in the second column and the fifth row
gives the covariance between the disturbance associated with the
second observation and the disturbance associated with the fifth
observation). If all these off-diagonal terms are zero, the disturbances
are said to be uncorrelated. This means that in repeated samples there is
no tendency for the disturbance associated with one observation
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(corresponding, for example, to one time period or one individual) to be
related to the disturbance associated with any other. If the off-diagonal
terms are not all zero, the disturbances are said to be autocorrelated:
the disturbance term for one observation is correlated with the
disturbance term for another observation. This case of autocorrelated
disturbances is discussed in detail in section 8.4.

If either heteroskedasticity or autocorrelated disturbances are present,
assumption 3 of the CLR model is said to be violated. In mathematical
terminology, if assumption 3 is satisfied, the variance-covariance matrix
of the disturbance vector e, written as Eee', is given by s2I where s2 is
the uniform variance of the individual disturbance terms and I is an
identity matrix of size T (i.e., a matrix with T rows and T columns, with
ones along the diagonal and zeros on the off-diagonal). When
assumption 3 is violated, by either heteroskedasticity or autocorrelated
errors, the variance-covariance matrix of the disturbance vector does
not take this special form, and must be written as a general matrix G.
The disturbances in this case are said to be nonspherical, and the CLR
model in this context is referred to as the generalized linear regression
model (GLR model).

8.2 Consequences of Violation

If assumption 3 is violated and the variance-covariance matrix of the
disturbance vector must be written as a general matrix G, the CLR



model becomes the GLR model. There are three major consequences of
this for the OLS estimator.

(1) Efficiency In the GLR model, although bOLS remains unbiased, it
no longer has minimum variance among all linear unbiased estimators.
A different estimator, called the generalized least squares (GLS)
estimator, and denoted bGLS, can be shown to be the BLUE. This
estimator involves the matrix G in its formulation; by explicitly
recognizing the nonsphericalness of the disturbances, it is possible to
produce a linear unbiased estimator with a "smaller" variance-
covariance matrix (i.e., a more efficient estimator).

This is accomplished by making use of the information (in the
heteroskedasticity case) that some disturbances are likely to be large
because their variances are large or the information (in the
autocorrelated disturbances case) that when, for example, one
disturbance is large and positive then another disturbance is likely to be
large and positive. Instead of minimizing the sum of squared residuals
(OLS estimation), an appropriately weighted sum of squared residuals is
minimized. Observations that are expected to have large residuals
because the variances of their associated disturbances are known to be
large are given a smaller weight. Observations whose residuals are
expected to be large because other residuals are large (owing to
correlation between the disturbances) are also given smaller weights.
The GLS procedure thus produces a more efficient estimator by
minimizing a weighted sum of squared residuals (hence the name
"generalized least squares") where the weights are determined by the
elements of the variance-covariance matrix G of the disturbance vector.
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(2) Inference In the GLR model the usual formula for the variance-
covariance matrix of bOLS is incorrect and therefore the usual
estimator of V(bOLS) is biased. Thus, although bOLS is unbiased in the
GLR model, interval estimation and hypothesis testing using bOLS can

no longer be trusted in this context. The correct formula for V(bOLS) in
the GLR model involves the matrix G and is quite complicated. Only in
some special cases, noted in the technical notes to this section, can it be
determined whether the usual estimator of V(bOLS) is biased upwards
or downwards. It is this second problem that causes econometricians the



most concern. Often it is difficult to tell whether the GLR model rather
than the CLR model is applicable, so there is a distinct danger of faulty
inference from using the OLS estimator. To address this problem,
"heteroskedasticity-consistent" and "autocorrelation-consistent"
variance-covariance matrix estimators for the OLS estimator have been
developed, correcting for the influence of nonspherical errors and
thereby allowing OLS to be employed for inference with more
confidence.

(3) Maximum likelihood In the GLR model with the additional
assumption that the disturbances are distributed joint-normally, bOLS is
not the maximum likelihood estimator (as it was in the CNLR model).
bGLS turns out to be the maximum likelihood estimator in this context.

These consequences of using bOLS in the GLR model suggest that
bGLS should be used in this situation. The problem with this proposal is
that to calculate bGLS the matrix G must be known to a factor of
proportionality. In actual estimating situations, of course, G is rarely
known. Faced with this dilemma, it is tempting simply to forget about
bGLS and employ bOLS. (After all, bOLS is unbiased, produces the
highest R2 and has low computational cost.)

Econometricians have not done this, however. Instead they have used

the data at hand to estimate G (by , say) and then have used  in
place of the unknown G in the bGLS formula. This creates a new
estimator, called the EGLS (estimated GLS) or FGLS (feasible GLS)
estimator, denoted here by bEGLS. This new estimator is no longer

linear or unbiased, but if  is a consistent estimator of G, it can be
shown to have desirable asymptotic properties corresponding to the
small-sample properties of bGLS. Intuitively it would seem that because
this new estimator at least tries to account for the nonsphericalness of
the disturbances, it should produce a better estimate of b than does
bOLS. Monte Carlo studies have shown that bEGLS is in many
circumstances (described in the general notes to this section) superior to
bOLS on the criteria on which bGLS can be shown mathematically to
be superior to bOLS. Thus econometricians often adopt bEGLS as the
appropriate estimator to employ in a GLR model estimating context.

There remains the problem of estimating G. This is not a trivial problem.
The matrix G contains T2 elements, ½T(T + 1) of which are



conceptually different. (The off-diagonal elements below the diagonal
are identical to those above the diagonal.) But there are only T
observations, implying that it is impossible to estimate the matrix G in
its general form. This dilemma is resolved by specifying (assuming) that
the nonsphericalness of the disturbances takes a specific
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form within one of the general categories of heteroskedasticity or
autocorrelated disturbances. This reduces the problem to one of finding
the appropriate specific form, estimating the small number of
parameters (usually only one) that characterize that specific form, and
then using these estimates to produce the required estimate of G. This
approach should become clear in the discussions below of
heteroskedasticity and autocorrelated disturbances.

8.3 Heteroskedasticity

One way of resolving the problem of estimating G is to assume that the
nonsphericalness is exclusively that of heteroskedasticity, and that this
heteroskedasticity bears a particular relationship to a set of known
variables, usually chosen to be a single independent variable. This
means that the off-diagonal elements of the variance-covariance matrix
of the disturbance term are assumed to be zero, but that the diagonal
elements are not all equal, varying in size with an independent variable.
This is not an unreasonable specification - often, the larger an
independent variable, the larger the variance of the associated
disturbance. For example, if consumption is a function of the level of
income, at higher levels of income (the independent variable) there is a
greater scope for the consumer to act on whims and deviate by larger
amounts from the specified consumption relationship. In addition, it
may also be the case that errors associated with measuring consumption
are greater at higher levels of income.

Figure 8.1 illustrates how this type of heteroskedasticity affects the
properties of the OLS estimator. The higher absolute values of the
residuals to the right in this graph indicate that there is a positive
relationship between the error variance and the independent variable.
With this kind of error pattern, a few additional large positive errors
near the right in this graph would tilt the OLS regression



Figure 8.1
Illustrating heteroskedasticity
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line considerably. A few additional large negative errors would tilt it in
the opposite direction considerably. In repeated sampling these unusual
cases would average out, leaving the OLS estimator unbiased, but the
variation of the OLS regression line around its mean will be greater -
i.e., the variance of bOLS will be greater. The GLS technique pays less
attention to the residuals associated with high-variance observations (by
assigning them a low weight in the weighted sum of squared residuals it
minimizes) since these observations give a less precise indication of
where the true regression line lies. This avoids these large tilts, making
the variance of bGLS smaller than that of bOLS.

The usual first step in attacking this problem is to determine whether or
not heteroskedasticity actually exists. There are several tests for this,
the more prominent of which are discussed below.

(1) Visual Inspection of Residuals

The residuals are plotted on a graph against the independent variable to
which it is suspected the disturbance variance is related. (Many
econometric computer packages can produce this graph with simple
instructions.) If it appears that the absolute magnitudes of the residuals
are on average the same regardless of the values of the independent
variables, then heteroskedasticity probably does not exist. However, if it
appears that the absolute magnitude of the residuals is related to the



independent variable (for example, if the residuals are quite small for
low values of the independent variable, but noticeably larger for high
values of the independent variable), then a more formal check for
heteroskedasticity is in order.

(2) The Goldfeld-Quandt Test

In this test the observations are ordered according to the magnitude of
the independent variable thought to be related to the variance of the
disturbances. A certain number of central observations are omitted,
leaving two equal-sized groups of observations, one group
corresponding to low values of the chosen independent variable and the
other group corresponding to high values. Separate regressions are run
for each of the two groups of observations and the ratio of their sums of
squared residuals is formed. This ratio is an F statistic, which should be
approximately unity if the disturbances are homoskedastic. A critical
value from the F-distribution table can be used to test this hypothesis.

(3) The Breusch-Pagan Test

This test is relevant for a very wide class of alternative hypotheses,
namely that the variance is some function of a linear combination of
known variables. An LM test is employed, for which a computationally
convenient means of calculation exists (see the technical notes). The
generality of this test is both its strength (it does not require prior
knowledge of the functional form involved) and its weakness (more
powerful tests could be employed if this functional form were
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known). Tests utilizing specific functional forms are discussed in the
general notes.

(4) The White Test

This test examines whether the error variance is affected by any of the
regressors, their squares or their cross-products. The strength of this test
is that it tests specifically for whether or not any heteroskedasticity
present causes the variance-covariance matrix of the OLS estimator to
differ from its usual formula. It also has a computationally convenient
formula (see the technical notes).



Once the presence of heteroskedasticity has been confirmed, steps must
be taken to calculate bEGLS. The first step in this process is to
determine the specific form taken by the heteroskedasticity; i.e., to find
the functional form of the relationship determining the variance. This
relationship is then estimated and used to form an estimate of the
variance of each disturbance term and thus an estimate of the variance-

covariance matrix G of the disturbance term. Using this estimate ,
the estimator bEGLS can be calculated.

In most applications, however,  is not calculated. This is because

using  to calculate bEGLS is computationally difficult, owing

primarily to the fact that  is usually such a large matrix. Instead, an
alternative, and fully equivalent, way of calculating bEGLS is
employed. This alternative way involves transforming the original
equation to create an estimating relationship, in transformed variables,
that has spherical disturbances (i.e., the original disturbance, when
transformed, is spherical). Then the OLS estimator is applied to the
transformed data, producing the GLS estimator. In the case of
heteroskedasticity, the appropriate transformation is obtained by
dividing each observation (including the constant unit observation on
the intercept term) by the square root of the estimated variance of the
disturbance term. An example of this appears in the technical notes to
this section.

8.4 Autocorrelated Disturbances

When the off-diagonal elements of the variance-covariance matrix G of
the disturbance term are nonzero, the disturbances are said to be
autocorrelated. This could arise for several reasons.

(1) Spatial autocorrelation In regional cross-section data, a random
shock affecting economic activity in one region may cause economic
activity in an adjacent region to change because of close economic ties
between the regions. Shocks due to weather similarities might also tend
to cause the error terms between adjacent regions to be related.

(2) Prolonged influence of shocks In time series data, random shocks
(disturbances) have effects that often persist over more than one time
period. An
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earthquake, flood, strike or war, for example, will probably affect the
economy's operation in periods following the period in which it occurs.
Disturbances on a smaller scale could have similar effects.

(3) Inertia Owing to inertia or psychological conditioning, past actions
often have a strong effect on current actions, so that a positive
disturbance in one period is likely to influence activity in succeeding
periods.

(4) Data manipulation Published data often undergo interpolation or
smoothing, procedures that average true disturbances over successive
time periods.

(5) Misspecification An omitted relevant independent variable that is
autocorrelated will make the disturbance (associated with the
misspecified model) autocorrelated. An incorrect functional form or a
misspecification of the equation's dynamics could do the same. In these
instances the appropriate procedure is to correct the misspecification;
the methods proposed in this chapter cannot be justified if
autocorrelated errors arise in this way.

Since autocorrelated errors arise most frequently in time series models,
for ease of exposition the discussion in the rest of this chapter is
couched in terms of time series data. Furthermore, throughout the rest
of this chapter the correlation between the error terms is assumed, in
line with most econometric work, to take a specific form called
first-order autocorrelation. Econometricians make this assumption
because it makes tractable the otherwise impossible task of estimating
the very large number of off-diagonal elements of G, the variance-
covariance matrix of the disturbance vector. First-order autocorrelation
occurs when the disturbance in one time period is a proportion of the
disturbance in the previous time period, plus a spherical disturbance. In
mathematical terms, this is written as et = ret-1 + ut where r (rho), a
parameter less than 1 in absolute value, is called the autocorrelation
coefficient and ut is a traditional spherical disturbance.

The consequences for OLS estimation in a situation of positive (i.e., r
positive) first-order autocorrelation are illustrated in figure 8.2. The first
error term



Figure 8.2
Illustrating positive autocorrelated errors
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was arbitrarily chosen to be positive. With positive first-order
autocorrelated errors this implies that several succeeding error terms are
likely also to be positive, and once the error term becomes negative it is
likely to remain negative for a while. Thus the data pattern portrayed is
not atypical of the autocorrelated error case if the independent variable
is growing over time. Fitting an OLS estimating line to these data clearly
gives an estimate quite wide of the mark. In repeated samples these
poor estimates will average out, since we are as likely to start with a
negative error as with a positive one, leaving the OLS estimator
unbiased, but the high variation in these estimates will cause the
variance of bOLS to be greater than it would have been had the errors
been distributed randomly. The GLS technique pays less attention to
large residuals that follow large residuals (by assigning them a low
weight in the weighted sum of squared residuals it minimizes) since
these residuals are likely to be large simply because the preceding
residual is large. This causes the GLS estimator to miss the true value by
less in situations such as that portrayed on the graph, making the
variance of bGLS smaller than that of bOLS. Notice that the OLS
estimating line gives a better fit to the data than the true relationship.
This reveals why in this context R2 is overestimated and s2 (and the

variance of bOLS) is underestimated.



The great appeal of the first-order autocorrelation assumption is that if
the disturbance term takes this form all the off-diagonal elements of G
can be expressed in terms of r so that estimation of a single parameter
(r) permits estimation of G and allows calculation of bEGLS. A "good"
estimate of r may make bEGLS superior to bOLS; a "poor" estimate of r
may do the opposite.

Before calculation of bEGLS, however, it must first be determined that
the disturbances actually are autocorrelated. There are several ways of
doing this, the most popular of which, the Durbin-Watson test, is
described below; some of the less common tests are described in the
general notes to this section.

The Durbin-Watson (DW) test Most packaged computer regression
programs and most research reports provide the DW or d statistic in
their output. This statistic is calculated from the residuals of an OLS
regression and is used to test for first-order autocorrelation. When the
parameter r of the first-order autocorrelation case is zero (reflecting no
autocorrelation) the d statistic is approximately 2.0. The further away
the d statistic is from 2.0, the less confident one can be that there is no
autocorrelation in the disturbances. Unfortunately, the exact distribution
of this d statistic, on the hypothesis of zero autocorrelation, depends on
the particular observations on the independent variables (i.e., on the X
matrix), so that a table giving critical values of the d statistic is not
available. However, it turns out that the actual distribution of the d
statistic can be shown to lie between two limiting distributions for which
critical values have been tabulated. These limiting distributions, labeled
"lower distribution" and "upper distribution," are shown in figure 8.3.
The 95% critical levels are marked off for each distribution and denoted
by A, B, C, and D. Now suppose the value of the d statistic lies to the
left of A. Then, regardless of whether the d statistic for this case is
distributed as the lower or upper distribution, or anywhere in between,
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Figure 8.3
The Durbin-Watson statistic

the hypothesis of no autocorrelation will be rejected. Similarly, if the
value of the d statistic lies to the right of D, the hypothesis of no
autocorrelation will be rejected, regardless of the actual distribution of
the d statistic for this particular estimating problem. Similar reasoning
shows that, if the d statistic lies between B and C, the hypothesis of no
autocorrelation will be accepted, regardless of the actual distribution of
d. It is the cases in which the d statistic falls between A and B or
between C and D that cause trouble. Suppose d falls between A and B.
If the actual distribution of the d statistic for this problem were the
lower distribution, the hypothesis of no autocorrelation would be
accepted, but if the actual distribution were the upper distribution, it
would be rejected. Since the actual distribution is unknown, the DW test
in this case must be considered inconclusive. The existence of these two
inconclusive regions is the most serious weakness of the DW test. (This
weakness is disappearing as more computer routines automatically
calculate the appropriate critical values for the data to hand.) Another
weakness is that the test is biased towards acceptance of the hypothesis
of no autocorrelation if a lagged value of the dependent variable is
included among the regressors. (This case is discussed further in section
9.3.)

Suppose the DW test indicates autocorrelated errors. What then? It is
typically concluded that estimation via EGLS is called for. This is not
always appropriate, however, for reasons made clear in chapter 5: the
significant value of the DW statistic could result from an omitted
explanatory variable, an incorrect functional form, or a dynamic
misspecification. Only if a researcher is satisfied that none of these



phenomena are responsible for the significant DW should estimation via
EGLS proceed.

Once the presence of first-order autocorrelation has been confirmed,
attention is turned to the estimation of r. Once r has been estimated, an

estimate  of G can be calculated and used to produce bEGLS.
However, as in the case of heteroskedastic disturbances, it is
computationally far easier to transform the vari-
 

page_124

Page 125

ables and apply OLS to obtain bEGLS than to estimate G and employ
this estimate in the bEGLS formula. The estimating equation must be
transformed so as to create a new estimating equation, in the
transformed variables, whose disturbance vector is spherical (i.e., the
original disturbance, when transformed, is spherical). Applications of
OLS to the transformed variables then creates bEGLS. The appropriate
transformation in the context of first-order autocorrelation is to replace
each observation by that observation minus the estimated value of r

times the previous period's observation (i.e., replace xt with ).
To avoid losing one observation by this procedure, the first observation

x1 should be transformed to . The rationale for this is
discussed in the technical notes to this section.

There are several different techniques employed to produce bEGLS, all
of them following the method outlined above, essentially differing only
in the way in which they estimate r. (Some methods do not bother to do
the special transformation of the first observation, but should be revised
to do so.) The most popular techniques used to produce bEGLS are
described briefly below; all appear frequently in packaged computer
regression programs.

(1) Cochrane-Orcutt Iterative Least Squares

Regressing the OLS residuals on themselves lagged one period provides
an estimate of r. Using this estimate, the dependent and independent
variables can be transformed as described earlier and an OLS regression
on these transformed variables gives bEGLS. Using this bEGLS, new
estimates of the original disturbances can be made, by substituting



bEGLS into the original (untransformed) relationship, which should be
''better" than the OLS residuals (since bEGLS is supposed to be "better"
than bOLS in this context). Regressing these new residuals on
themselves lagged one period provides a new (and presumably "better")
estimate of r. This procedure can be repeated until successive estimates
of r are arbitrarily close.

(2) Durbin's Two-Stage Method

The dependent variable is regressed on itself lagged, all the independent
variables and all the independent variables lagged. This estimating
relationship results from mathematical manipulations designed to
transform the original estimating form into one with a spherical
disturbance. This is illustrated in the technical notes to this section. The
estimated coefficient of the lagged dependent variable in this new
relation provides an estimate of r. This estimate is then used to
transform the variables, as described earlier, and an OLS regression on
these transformed variables generates bEGLS.

(3) Hildreth-Lu Search Procedure

For any particular value of r, the dependent and independent variables
can be transformed as described earlier and an OLS regression on
transformed variables
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will generate a bEGLS. The sum of squared residuals from this
regression on transformed variables will be different for different values
of r. The Hildreth-Lu procedure searches for the particular value of r
that minimizes the sum of these squared residuals and adopts its
corresponding bEGLS as the estimator of b.

(4) Maximum Likelihood

If the spherical disturbance u (from et = ret-1 + ut) can be assumed to
have a specific distribution (a normal distribution, for example), the
maximum likelihood technique can be applied to estimate r and b
simultaneously. When u is distributed normally, it turns out that all four
of the methods discussed here are asymptotically equivalent.



Recent Monte Carlo evidence indicates that all of these estimators are
markedly inferior to a Bayesian estimator; when this Bayesian estimator
is available as an option in the popular computer software packages, it
should become the estimator of choice. The basic difference between
the Bayesian estimator and the estimators above is that each of the
estimators above is calculated on the basis of a single estimated value of
r, whereas the Bayesian estimator "hedges its bets" by taking a weighted
average of the EGLS estimates corresponding to several values of r.

General Notes

8.1 Introduction

Many textbooks spell heteroskedasticity with a c in place of the k;
McCulloch (1985) has shown that heteroskedasticity is the correct
spelling.

Applications of the GLS or EGLS estimating procedure are relevant in a
variety of estimating contexts not discussed in this chapter, but covered
in other parts of this book. Some examples are SURE (seemingly
unrelated estimation, chapter 10), 3SLS (three stage least squares,
chapter 10), mixed estimation (chapter 12), and random effects models
(chapter 14).

8.2 Consequences of Violation

The OLS estimator, by definition, maximizes R2. The GLS estimator
can be used to produce estimates of the dependent variables that can
then be used to calculate an R2 that must be less than the R2 from OLS.
In the context of the GLR model, however, since the GLS procedure
minimizes a generalized sum of squared residuals, it is more appropriate
to redefine the R2 statistic so that it represents the proportion of the
"generalized variation" of the dependent variable explained by the
independent variables. Fortunately, in many instances (but not all) the
GLS technique of regressing on transformed variables (discussed in
sections 8.3 and 8.4) automatically produces this new R2. See Buse
(1973) for a discussion of this.
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Although GLS is BLUE in the GLR model, EGLS is not; in fact, EGLS
is neither linear nor unbiased, and may have a higher variance than the
OLS estimator if G is not much different from a constant times the
identity matrix, or if a poor estimate of G is being employed. Monte
Carlo studies, for example, indicate that for the case of a first-order
autocorrelated error with coefficient r, for typical sample sizes, OLS is
superior to EGLS for absolute values of r less than about 0.3. Grubb and
Magee (1988) suggest some rules of thumb for determining when EGLS
is likely to be superior to OLS.

The true variance of bEGLS is underestimated if the formula for the

variance of bEGLS is used with  in place of G. This is because the
formula for the variance of bGLS does not incorporate the additional

variability of bEGLS (in repeated samples) owing to  varying in
repeated samples. This has implications for hypothesis testing using
bEGLS.

Although the presence of heteroskedasticity or autocorrelated errors
does not create bias in estimating b, whenever all other assumptions of
the CLR model hold, interaction of nonspherical errors with other
violations of the CLR model can cause problems. A classic example is
autocorrelated errors in conjunction with the lagged value of the
dependent variable serving as a regressor, as described in chapter 9.
Examples for heteroskedasticity are models of qualitative and limited
dependent variables, discussed in chapters 15 and 16, and estimation of
frontier production functions (see chapter 7) and related measures such
as firm-specific inefficiency, discussed by Caudill, Ford and Gropper
(1995).

8.3 Heteroskedasticity

Although it is usually the case that econometricians think in terms of
error variances being positively related to independent variables, this is
not necessarily the case. Error-learning models suggest that as time
passes (and independent variables grow in size) errors will become
smaller. Similarly, over time, data-collecting techniques improve so that
errors from this source should decline in importance. In addition, it has
been suggested that assuming an error-term variance that is declining
over time could be useful since the correction procedure would
explicitly give a heavier weight to recent data, which may more
accurately reflect the world as it is today.



Not all sources of heteroskedasticity can or should be captured via a
relationship with an independent variable. For example, using grouped
data leads to heteroskedasticity if the groups are not all the same size. In
this case the error variances are proportional to the group sizes, so
appropriate weighting factors can easily be deduced. However Dickens
(1990) warns that errors in grouped data are likely to be correlated
within groups so that weighting by the square root of group size may be
inappropriate. Binkley (1992) assesses tests for grouped
heteroskedasticity.

Theory can sometimes suggest that an estimating relationship will be
characterized by heteroskedasticity. The case of grouping data, noted
earlier, is one example. As a second example, consider the case of a
random coefficient. Suppose that Yt = a + btXt + et where the random

slope coefficient is given by bt = b + ut with ut an error with mean zero

and variance . The estimating relationship becomes

where the composite error term has variance . As a third
example, suppose
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the error term is multiplicative rather than additive. Suppose Yt = (a +

bXt)et where et = 1 + ut and ut has mean zero and variance . The
estimating form

is such that the composite error term has variance .

The Goldfeld-Quandt test is usually performed by omitting the middle
third of the observations. Giles and Saxton (1993) find that the "omit
one-third" rule is suitable for a sample size of about 20, but for larger
sample sizes a smaller fraction of observations should be omitted. Since
the common sense of this test is to split the observations into a group
thought to have a relatively high error variance and a group thought to



have a relatively low error variance, removing observations from the
middle of the data set should not be a hard-and-fast rule. As usually
employed, the Goldfeld-Quandt test allows the parameter vectors to
differ between the two sub-data sets employed by the test. An LR
version of the test can avoid this, as described in Zaman (1996, pp.
2557).

The tests for heteroskedasticity described in the body of this chapter are
general in that they do not use a specific functional form for the
relationship between the error variance and the variables thought to
determine that variance. To construct bEGLS, a specific functional
form is required (although it should be noted that Monte Carlo studies
suggest that precise knowledge of this functional form is not crucial).
One popular way to be more specific is through the Glejser (1969) test.
In this test the absolute values of the OLS residuals are regressed, using
several functional forms, on the variable(s) to which the variance of the
disturbance term is thought to be related. Whether or not
heteroskedasticity exists depends on whether or not the coefficient(s) of
these regressions tests significantly different from zero. A variant of this
approach, the modified Glejser test, is to use the squared values of the
OLS residuals, rather than their absolute values, as the dependent
variable. Another popular functional form was suggested by Park
(1966); see the technical notes. If the relevant functional form is known
(from testing using the Glejser method, for example, or because theory
has suggested a specific form), the maximum likelihood approach is
possible. Here the parameters in the equation being estimated (i.e., b)
and the parameter(s) in the relationship determining the error variances
are estimated simultaneously. For elucidation, see Rutemiller and
Bowers (1968). If the prerequisites for using the MLE approach are
known to be valid (namely, knowledge of the distributional form of the
error and the functional form of the relationship between the error
variance and variable(s) determining that variance), this approach is
attractive. Chapter 11 of Judge et al. (1985) is an extensive survey of
heteroskedasticity.

There is mounting evidence that Bayesian estimators for
heteroskedasticity are superior to traditional EGLS estimators, as
claimed for example by Ohtani (1982), Surekha and Griffiths (1984),
and Kennedy and Adjibolosoo (1990). Their superiority comes from
taking a weighted average of several EGLS estimators, each
corresponding to a different value of the parameter representing the
heteroskedasticity, rather than selecting a single EGLS estimate based
on a single, poorly estimated value of that parameter.



A popular form of heteroskedasticity for time series data is ARCH -
autoregressive conditional heteroskedasticity - developed by Engle
(1982). Engle noticed that in many time series, particularly those
involving financial data, large and small residuals
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tend to come in clusters, suggesting that the variance of an error may
depend on the size of the preceding error. This is formalized by writing
the variance of et, conditional on et-1, as a linear function of the square
of et-1. The unconditional variance is constant, so OLS is BLUE, but
because the conditional variance is heteroskedastic it is possible to find
a nonlinear estimator, based on MLE considerations, that is more
efficient. Greene (1993, pp. 43840) has an exposition of the likelihood
and of a simple method of creating an estimate that is asymptotically
equivalent to the MLE. Despite this, many practitioners estimate by
regressing the squared OLS residuals on themselves lagged to get a
means of estimating G, and then apply EGLS. Bollerslev (1986) has
generalized ARCH to form GARCH, in which the conditional variance
is also a function of past conditional variances. The easiest test for
ARCH is an LM test in which the square of the OLS residual is
regressed on an intercept and its lagged values, with the sample size
times the R2 distributed as a chi-square with degrees of freedom equal
to the number of lags. Engle et al. (1985) report some Monte Carlo
results examining the small-sample properties of ARCH estimates and
tests for ARCH. Bera and Higgins (1993) survey ARCH models: Enders
(1995, pp. 1625) and Darnell (1994, pp. 48) are good textbook
expositions.

Heteroskedasticity has been examined in conjunction with other
violations of the CLR model. For example, Lahiri and Egy (1981)
address the problem of nonlinear functional form and
heteroskedasticity. Examples of its conjunction with autocorrelated
errors are cited in the next section.

Transforming an equation to correct for heteroskedasticity usually
creates an estimating equation without an intercept term. Care must be
taken in interpreting the R2 from the resulting regression. Most
researchers include an intercept anyway; this does little harm and
avoids potential problems.



Before correcting for heteroskedasticity, each variable should be
examined for possible transformations (e.g., changing aggregate to per
capita or changing nominal to real) that might be appropriate in the
context of the relationship in question. This may uncover the source of
the heteroskedasticity. More generally, the heteroskedasticity may be
due to an omitted explanatory variable or an incorrect functional form;
Thursby (1982) suggests a means of discriminating between
heteroskedasticity and misspecification.

8.4 Autocorrelated Disturbances

A first-order autocorrelated error is referred to as an AR(1) error; an
AR(p) error is an error depending on the first p lagged values of that
error. The most popular alternative to this type of autocorrelated error is
the moving average error; an MA(1) error is written et = ut + qut-1
where u is a spherical error. An MA(q) error involves the first q lagged
us. Combining the two types produces an ARMA(p,q) error; for further
discussion see chapter 17.

It was stressed in chapter 5 that misspecification can give rise to a
significant DW statistic. Because of this it is important to check for
misspecification before concluding that EGLS estimation is suitable.
Godfrey (1987) suggests an appropriate test strategy for this, beginning
with a RESET test using an autocorrelation-consistent estimate of the
variance-covariance matrix, moving to a test of AR(1) versus AR(p)
errors, and then to a test of independent versus AR(1) errors.
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If autocorrelated errors are thought to exist, an MA(1) error may be as a
priori plausible as an AR(1) error, but is seldom employed in empirical
work. This is because techniques for estimating with MA(1) errors are
computationally burdensome relative to those available fro AR(1)
errors. MacDonald and MacKinnon (1985) present a computationally
attractive estimation technique for the context of an MA(1) error and
argue that the common practice of ignoring the possibility of MA(1)
errors cannot be justified. Choudhury et al. (1987) also present an
attractive means of estimation in this context. Nicholls et al. (1975) give
several arguments in favor of the use of MA(1) errors. Burke et al.
(1990) suggest an attractive way of testing for MA(1) versus AR(1)
errors. See also Sivapulle and King (1991).



The DW test is by far the most popular test for autocorrelated errors, in
spite of its inconclusive region. Many practitioners resolve the
inconclusiveness by using the critical values associated with the upper
distribution, since it is a good approximation to the actual distribution if,
as is likely with economic time series, the regressors are changing
slowly. The best way to deal with this problem, however, is to use a
software package, such as SHAZAM, to calculate the appropriate
critical value for the specific data set being employed. Maddala (1988,
pp. 2023) cites several sources providing extended DW tables suitable
for cases of more explanatory variables, quarterly data, monthly data,
etc. Strictly speaking the DW test is appropriate only if residuals from
an OLS regression are used in its calculation. For discussion of its use in
the context of nonlinear regression see White (1992).

Several alternatives to the DW test exist (some of which are noted in
the first edition of this book, pp. 878), but are seldom used. King (1987)
is a survey of testing for autocorrelated errors. One attractive
alternative is an LM test, due to Godfrey (1978) and Breusch (1978),
for the case of an alternative hypothesis of either AR(p) or MA(p)
errors. It can be calculated by re-running the regression using p lagged
OLS residuals as extra explanatory variables, and testing their
coefficients against the zero vector with an F test. Equivalent results are
obtained using the OLS residual as the dependent variable, in which
case F could be calculated as [(T - K)/p] × R2. In light of this F

statistic's asymptotic justification, often pF, or TR2, is used as a
chi-square statistic with p degrees of freedom. See Maddala (1988, pp.
2067) for a textbook exposition. One of its advantages is that it is
appropriate even when a lagged value of the dependent variable serves
as a regressor.

The DW test is not reliable whenever a lagged value of the dependent
variable appears as a regressor (or for any case in which the error is not
uncorrelated with a regressor). The Durbin h test has traditionally been
used in this context, but recent work, such as Inder (1984), has shown
this to be unwise. The Breusch-Godfrey test described above, which for
p = 1 is sometimes called the Durbin m test, is recommended. See
Breusch and Godfrey (1981), Dezhbakhsh (1990) and Dezhbakhsh and
Thursby (1994). Godfrey (1994) and Davidson and MacKinnon (1993,
pp. 3701) show how to modify the m test when using instrumental
variable estimation. Rayner (1993) advocates using a bootstrap
procedure to test for autocorrelated errors when lagged dependent
variables serve as regressors.



Estimating the variance-covariance matrix of the EGLS estimator for
the case of auto-correlated errors is not easy; see for example Miyazaki
and Griffiths (1984). There are further problems estimating this
variance-covariance matrix whenever there are lagged values of the
dependent variable appearing as regressors. Prescott and Stengos (1987)
recommend the estimate suggested by Davidson and MacKinnon
(1980).
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Many Monte Carlo studies have addressed the question of
autocorrelated errors. A few general conclusions seem evident from
these studies.

(a) The possible gain from using EGLS rather than OLS can be
considerable whereas the possible loss is small.

(b) The special transformation for the first observation is important.

(c) Standard errors for the EGLS estimator are usually
underestimated.

(d) The relative performance of estimating techniques is sensitive to
the nature of the data matrix X.

(e) Improvement in current techniques is most likely to be achieved
through better estimates of the autocorrelation coefficient r.

Chapter 8 of Judge et al. (1985) is an extensive textbook survey of
autocorrelated errors. Beach and MacKinnon (1978a) present a
convincing case for the MLE, noting that it retains the first observation
and automatically incorporates the restriction that r be less than one in
absolute value.

Kennedy and Simons (1991) report on the basis of Monte Carlo studies
that a Bayesian estimator for the case of AR(1) errors outperforms
traditional EGLS estimators by a substantial margin. Their Bayesian
estimator is operationalized as a weighted average of 40 GLS estimates
corresponding to 40 values of r, equally spaced over the zero to one
interval. The weights are the Bayesian probabilities that the true value
of r is close to those values, obtained from the posterior distribution for
r. The relative success of this estimator stems from the notoriously poor



estimates of r that characterize estimation in this context. Chapter 13
discusses the Bayesian approach.

Autocorrelated errors is one violation of the CLR that has been
examined in conjunction with other violations. Epps and Epps (1977)
investigate autocorrelation and heteroskedasticity together. Savin and
White (1978) and Tse (1984) address autocorrelated errors and
nonlinear functional forms. Bera and Jarque (1982) examine the
conjunction of autocorrelated errors, heteroskedasticity nonlinearity and
non-normality. Further examples are found in chapters 9 and 10.

Most of the tests used to detect autocorrelation only test for first-order
autocorrelation. This should not blind one to other possibilities. It is
quite possible, for example, that in models using quarterly data the
errors are correlated with themselves lagged four periods. On this see
Wallis (1972). Although it might seem reasonable to suppose that
treating the residuals as first-order autocorrelated, when they are in fact
second-order autocorrelated, would be better than just applying OLS,
this is not necessarily the case: see Engle (1974). Beach and
MacKinnon (1978b) examine the MLE for second-order
autocorrelation. Greene (1990, p. 440) has an exposition of the special
transformations for the first two observations for this case.

The case of positively autocorrelated errors usually leads to an upward
bias in the R2 statistic. A high R2 in conjunction with a low DW
statistic suggests that something funny is going on. See chapter 17.
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Technical Notes

8.1 Introduction

The matrix G is usually normalized by rewriting it as s2GN where s2 is
chosen so as to make the trace of GN (the sum of the diagonal elements

of GN) equal T. This makes it comparable to the CLR case in which the
variance-covariance matrix of e is s2I, where I has trace T.

The method of moments was introduced in the technical notes to
section 2.11, but discussion there was confined to the case in which the
number of moment conditions equalled the number of parameters to be



estimated. Whenever the number of moment conditions exceeds the
number of parameters to be estimated, it is not possible to find
parameter values that cause all of the moment conditions to be satisfied
by the data. For example, if there are six moment conditions and only
four parameters, only four of these moment conditions can be satisfied.
This could be dealt with by choosing which four of the six moment
conditions to satisfy, but this is undesirable because it ignores
information inherent in the two abandoned moment conditions - more
efficient estimates can be produced by incorporating this information,
and model specification testing can be enhanced by testing its validity.
The alternative is to choose the four parameter values so as to minimize
the "total extent" to which the six moment conditions are violated, even
though this may mean that none of the six conditions is exactly
satisfied. This approach is called the generalized method of moments
(GMM).

What is meant by "total extent" to which the moment conditions are
violated? In the grand tradition of least squares this could be measured
by the sum of the squares of the differences between each moment
condition and its corresponding sample measure. Traditionally the ith

moment condition is written as mi(q) = 0 where q is the vector of
parameters, and all the moment conditions are placed together in a
vector to form m(q) = 0. The parameter estimate q* could be chosen to
minimize m(q*)'m(q*). But this is a case in which the grand tradition of

least squares can be improved upon. The individual mi(q*) are random
variables with unequal variances, so generalized least squares is
appropriate, as we have learned in this chapter. In fact, because q*
appears in each moment condition the covariances between the
estimated moment conditions are non-zero, so the complete variance-
covariance matrix Vm of m(q*) is relevant. In summary, the GMM

procedure produces q* by minimizing m(q*)'Vm-1m(q*). In practice
Vm is unknown so an estimate of it is employed.

Notice that m(q*)'Vm-1m(q*) is in exactly the form of a chi-square

statistic for testing if m(q*) is significantly different from zero, allowing
a test of the overidentifying moment conditions, a natural general model

specification test.

GMM has several attractive features. First, it avoids having to specify a
likelihood function; consistency depends only on correct specification
of the residuals and the conditioning variables. Second, it provides a



unifying framework for analysis of many familiar estimators such as
OLS and IV. And third, it offers a convenient method of estimation for
cases in which traditional estimation methods are computationally
burdensome. For examples, such as nonlinear dynamic rational
expectations models or Euler equation models, see Hall (1993).
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8.2 Consequences of Violation

The formula for bGLS is given by (X'G-1X)-1X'G-1Y and the formula

for its variance is given by (X'G-1X) or s2(X'GN-1X)-1. This variance-
covariance matrix is "smaller" than the variance-covariance matrix of

bOLS, given by the formula s(X'X)-1(X'GNX)(X'X)-1. Employing the

usual formula S2(X'X)-1 to estimate this variance-covariance matrix of
bOLS gives a biased estimator, because the expected value of S2 in the
GLR model is no longer equal to s2, and because (X'X)-1 does not equal

(X'X)-1(X'GNX)(X'X)-1. Goldberger (1964, pp. 23942) traces through
two special cases to show that in the case of only one independent
variable (in addition to the constant term) the usual estimator is biased
downward (a) if high variances correspond to high values of the
independent variable, or (b) if the independent variable is positively
serially correlated in the case of positive first-order autocorrelated
errors (described in section 8.4).

The "weighted" or "generalized" sum of squared errors minimized by
the GLS technique is given by . The GLS estimator of s2 is given

by /(T-K) where  is the GLS estimator of e. The maximum
likelihood estimate of s2, for joint normally distributed errors, is given

by /T.

The heteroskedasticity-consistent estimator of the variance-covariance
matrix of the OLS estimator, due to White (1980), is recommended
whenever OLS estimates are being used for inference in a situation in
which heteroskedasticity is suspected but the researcher is not able to
find an adequate transformation to purge the data of this
heteroskedasticity. The variance-covariance matrix of OLS in the GLR
model is (X'X)-1X'GX(X'X)-1. The heteroskedasticity-consistent
estimator of this results from estimating G by a diagonal matrix with the



squared OLS residuals along the diagonal. Leamer (1988) refers to this
as "White-washing" heteroskedasticity. For computational
considerations see Messer and White (1984); Erlat (1987) shows how to
get heteroskedasticity-consistent test statistics for testing linear
restrictions by using differences in SSEs. MacKinnon and White (1985)
have proposed some alternative heteroskedasticity-consistent variance
matrix estimators which have improved small-sample properties.

The rationale behind the autocorrelation-consistent estimator of the
variance-covariance matrix of the OLS estimator is similar to that
described earlier for the heteroskedasticity case. It takes the general
form (X'X)-1X'G*X(X'X)-1 where G* is an estimate of the unknown
variance-covariance matrix of the error term. Newey and West (1987)
provide a very general estimator (which is also heteroskedasticity-
consistent); see Greene (1990, p. 493) for a textbook exposition.
Godfrey (1987) uses a simpler version, available in the software
package SHAZAM; it consists of filling in the diagonal of G* with the
squares of the residuals (rendering it heteroskedasticity-consistent as
well), estimating the first few elements beside the diagonal with the
products of the relevant residuals, and setting elements well-removed
from the diagonal equal to zero. The Newey-West version is similar, but
the off-diagonal elements are shrunk towards zero by a shrinking factor
that grows with the distance from the diagonal. For computational
simplifications see Wooldridge (1989).
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8.3 Heteroskedasticity

Breusch and Pagan (1979) show that their test statistic can be computed
as one-half the regression (i.e., explained) sum of squares from a linear

regression of  on a constant and the variables thought to affect the

error variance. Here  is the OLS residual, is the average of the ,
and the statistic is distributed asymptotically as a chi-square with
degrees of freedom equal to the number of variables thought to affect
the error variance.

The Breusch-Pagan test is a rare example of a test in which
non-normality of the disturbances affects the asymptotic distribution of
the test statistic. Koenker (1981) notes that the Breusch-Pagan test is



sensitive in small samples to its assumption that the errors are

distributed normally (because it uses the result that the variance of  is
2s4; this is where the ½ in this statistic comes from). He suggests

replacing 2s4 by  where N is the sample size. The
Breusch-Pagan statistic then becomes N times the R2 in the regression

of  on a constant and the variables thought to affect the error
variance. In this form it is seen that the White test (see below) is a
special case of this "studentized" Breusch-Pagan test, as noted by
Waldman (1983).

White (1980) shows that his test statistic can be computed as the sample

size N times the R2 from a regression of  the squares of the OLS
residuals on a constant, the regressors from the equation being
estimated, their squares and their cross-products. It is distributed
asymptotically as a chi-square with degrees of freedom equal to the
number of regressors (not counting the constant) in the regression used
to obtain the statistic. This test is based on testing whether V(OLS) =
V(GLS); it detects heteroskedasticity only if it affects the consistency of
the usual estimator of the variance-covariance matrix of the OLS
estimator. It is possible to have heteroskedasticity which does not affect
this consistency but nonetheless causes OLS to be less efficient than
GLS (or EGLS). This could happen if the heteroskedasticity were
related to a variable orthogonal to the regressors, their squares and their
cross-products.

When the error variance is proportional to a variable, so that, for

example,  it is not necessary to estimate K to calculate bEGLS.
In fact, if the heteroskedasticity does actually take that form, the

appropriate transformation is to divide all observations by  yielding
a transformed relationship whose error is homoskedastic with variance
K. The actual value of K is not needed; in this case bEGLS is bGLS.
One way in which this correction can be upset is if there is "mixed"

heteroskedasticity so that  = g+KX where g is some nonzero

constant. Now the appropriate transformation is to divide by 
so that it becomes necessary to estimate g and K. But our estimates of g

and K are notoriously poor. This is because the "observation" for  is

the squared OLS residual  so that this observation on  is in effect



an estimate of  from a sample size of one. If we have such poor
estimates of g and K, might we be better off ignoring the fact that g is

nonzero and continuing to use the transformation of division of 

Kennedy (1985a) suggests that, as a rule of thumb, division by 
should be employed unless g exceeds 15% of the average variance of
the error terms.

A wide variety of functional forms for the relationship between the
error variance and the relevant independent variable are used in the
Glejser and maximum likelihood contexts. One popular general form

was suggested by Park (1966). Assume that s2 = kxa where s2 is the
error variance, k is a constant and x is a relevant independent
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variable. This is estimated by adding a multiplicative disturbance term

en, a log-normally distributed disturbance. Specific values of the
parameter a correspond to specific relationships between the error
variance and the independent variable. In particular, the case of a = 0
corresponds to homoskedasticity.

8.4 Autocorrelated Disturbances

In the simple model with only one independent variable and a first-order
autocorrelated error term with autocorrelation coefficient r, the relative
efficiency of bGLS versus bOLS (i.e., the ratio of the variance of bGLS
to that of bOLS) is roughly (1 - r2)/(1 + r2).

The transformation of the dependent and independent variables used in
obtaining the GLS estimates is derived as follows. Suppose the equation
to be estimated is

Lagging and multiplying through by r, we get



Subtracting this second equation from the first, we get

or

This same technique can be used to derive the transformation required
if the errors have a more complicated autocorrelation structure. For
example, if the errors have a second-order autocorrelated structure so
that et = r1et-1 + r2et-2 + ut, then xt must be transformed to xt - r1xt-1

- r2xt-2.

The special transformation for the first observation is deduced by
nothing that only if this transformation of the first observation is made
will the general formula for bGLS (in the context of first-order
autocorrelation) correspond to the OLS regression in the transformed
data. See Kadiyala (1968).

The rationale behind Durbin's two-stage method is easily explained.
Suppose that the equation being estimated is

Lagging and multiplying through by r we get

Subtracting the latter from the former we get
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which upon rearrangement becomes



This is a linear estimating function with a spherical disturbance u.
Although the estimate of the coefficient of yt-1 is a biased estimate of r
(see section 9.3), it is consistent. It might be thought that this estimate
could be improved by incorporating the knowledge that the coefficient
of xt-1 is minus the product of the coefficient of yt-1 and the coefficient
of xt. Monte Carlo studies have shown that this is not worth while.
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9
Violating Assumption Four: Measurement Errors and Autoregression

9.1 Introduction

The fourth assumption of the CLR model specifies that the observations
on the independent variables can be considered fixed in repeated
samples. In many economic contexts the independent variables are
themselves random (or stochastic) variables and thus could not have the
same values in repeated samples. For example, suppose, as is common
in econometric work, that a lagged value of the dependent variable
appears as one of the independent variables. Because it is in part
determined by the previous period's disturbance, it is stochastic and
cannot be considered as fixed in repeated samples. (Recall that in
repeated sampling new disturbance terms are drawn to create each
repeated sample.)

This assumption of fixed regressors is made mainly for mathematical
convenience; if the regressors can be considered to be fixed in repeated
samples, the desirable properties of the OLS estimator can be derived
quite straightforwardly. The essence of this assumption is that, if the
regressors are nonstochastic, they are distributed independently of the
disturbances. If this assumption is weakened to allow the explanatory
variables to be stochastic but to be distributed independently of the
error term, all the desirable properties of the OLS estimator are
maintained; their algebraic derivation is more complicated, however,
and their interpretation in some instances must be changed (for



example, in this circumstance bOLS is not, strictly speaking, a linear
estimator). Even the maximum likelihood property of bOLS is
maintained if the disturbances are distributed normally and the
distribution of the regressors does not involve either the parameter b or
the variance of the disturbances, s2.

This fourth assumption can be further weakened at the expense of the
small-sample properties of bOLS. If the regressors are
contemporaneously uncorrelated with the disturbance vector, the OLS
estimator is biased but retains its desirable asymptotic properties.
Contemporaneous uncorrelation in this context means that the nth
observations on the regressors must be uncorrelated with the nth
disturbance term, although they may be correlated with the disturbance
terms
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Figure 9.1
Positive contemporaneous correlation

associated with other regressor observations. In general, no alternative
estimators are available with superior small-sample properties, so the
OLS estimator is retained on the basis of its desirable asymptotic
properties.



If the regressors are contemporaneously correlated with the error term,
the OLS estimator is even asymptotically biased. This is because the
OLS procedure, in assigning ''credit" to regressors for explaining
variation in the dependent variable, assigns, in error, some of the
disturbance-generated variation of the dependent variable to the
regressor with which that disturbance is contemporaneously correlated.
Consider as an example the case in which the correlation between the
regressor and the disturbance is positive. When the disturbance is higher
the dependent variable is higher, and owing to the correlation between
the disturbance and the regressor, the regressor is likely to be higher,
implying that too much credit for making the dependent variable higher
is likely to be assigned to the regressor. This is illustrated in figure 9.1. If
the error term and the independent variable are positively correlated,
negative values of the disturbance will tend to correspond to low values
of the independent variable and positive values of the disturbance will
tend to correspond to high values of the independent variable, creating
data patterns similar to that shown in the diagram. The OLS estimating
line clearly overestimates the slope of the true relationship. This result
of overestimation with positive correlation between the disturbance and
regressor does not necessarily hold when there is more than one
explanatory variable, however. Note that the estimating line provides a
much better fit to the sample data than does the true relationship; this
causes the variance of the error term to be underestimated.

How does one know when there is contemporaneous correlation
between the
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errors and the regressors? A testing methodology popularized by
Hausman (1978) is used for this purpose. Consider an example of a
regressor measured with error, which as discussed later gives rise to
contemporaneous correlation between the error and this regressor. Two
estimators are compared, one consistent (and efficient) under the null
but inconsistent under the alternative, and the other consistent under
both the null and the alternative. For example, OLS is consistent (and
efficient) under the null of no measurement error, but is inconsistent in
the presence of measurement error, whereas the consistency of an IV
estimator (described later) is not affected by measurement error. This
suggests that if the null hypothesis is true (no measurement error) both
estimators should produce similar estimates, whereas if the null



hypothesis is false (there is measurement error) these estimates should
differ. The Hausman test is a test of equality of the estimates produced
by these two estimators. See the technical notes for further discussion.

When there exists contemporaneous correlation between the
disturbance and a regressor, alternative estimators with desirable small-
sample properties cannot in general be found; as a consequence, the
search for alternative estimators is conducted on the basis of their
asymptotic properties. The most common estimator used in this context
is the instrumental variable (IV) estimator.

9.2 Instrumental Variable Estimation

The IV procedure produces a consistent estimator in a situation in which
a regressor is contemporaneously correlated with the error, but as noted
later, not without cost. To use the IV estimator one must first find an
"instrument" for each regressor that is contemporaneously correlated
with the error. This is a new independent variable which must have two
characteristics. First, it must be contemporaneously uncorrelated with
the error; and second, it must be correlated (preferably highly so) with
the regressor for which it is to serve as an instrument. The IV estimator
is then found using a formula involving both the original variables and
the instrumental variables, as explained in the general notes.

Although it is sometimes difficult to find suitable instrumental variables,
economic theory can be very helpful in this regard, as will become
evident in later discussion of contexts in which IV estimation is
common. The major drawback to IV estimation is that the variance-
covariance matrix of the IV estimator is larger than that of the OLS
estimator, by an amount that is inversely related to the correlation
between the instrument and the regressor (this is why the "preferably
highly so" was included earlier). This is the price paid for avoiding the
asymptotic bias of OLS; the OLS estimator could be preferred on the
MSE criterion.

Often there will exist more than one instrumental variable for a
regressor. Suppose both x and w are suitable instruments for p. This
embarrassment of choice is resolved by using a linear combination of x
and w. Since both x and w
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are uncorrelated with the error, any linear combination of them will be
uncorrelated with the error. Since the variance of the IV estimator is
smaller the higher is the correlation of the instrument with p, we should
choose the linear combination of x and w that is most highly correlated
with p. This is p*, the estimated, or predicted, p obtained from
regressing p on x and w. This procedure is called generalized
instrumental variable estimation (GIVE).

The rest of this chapter discusses two major examples of
contemporaneous correlation between the error and a regressor, the
case of errors in measuring the regressors and the case of autocorrelated
errors in conjunction with a lagged value of the dependent variable
serving as a regressor. The next chapter examines a third major case,
that of simultaneous equations.

9.3 Errors in Variables

Many economists feel that the greatest drawback to econometrics is the
fact that the data with which econometricians must work are so poor. A
well-known quotation expressing this feeling is due to Josiah Stamp:

The Government are very keen on amassing statistics - they
collect them, add them, raise them to the nth power, take the
cube root and prepare wonderful diagrams. But what you must
never forget is that every one of those figures comes in the first
instance from the village watchman, who just puts down what he
damn pleases. (1929, pp. 2589)

The errors-in-variables problem is concerned with the implication of
using incorrectly measured variables, whether these measurement errors
arise from the whims of the village watchman or from the use by
econometricians of a proxy variable in place of an unobservable
variable suggested by economic theory.

Errors in measuring the dependent variables are incorporated in the
disturbance term; their existence causes no problems. When there are
errors in measuring an independent variable, however, the fourth
assumption of the CLR model is violated, since these measurement
errors make this independent variable stochastic; the seriousness of this
depends on whether or not this regressor is distributed independently of
the disturbance. The original estimating equation, with correctly
measured regressors, has a disturbance term independent of the



regressors. Replacing one of these regressors by its incorrectly
measured counterpart creates a new disturbance term, which, as shown
in the technical notes to this section, involves the measurement error
embodied in the new regressor. Because this measurement error appears
in both the new regressor (the incorrectly measured independent
variable) and the new disturbance term, this new estimating equation
has a disturbance that is contemporaneously correlated with a regressor;
thus the OLS estimator is biased even asymptotically.
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Figure 9.2
Illustrating weighted regression

There are three basic approaches to estimation in the presence of errors
in variables.

(1) Weighted Regression

The OLS procedure minimizes the sum of squared errors where these
errors are measured in the vertical direction (the distance A in figure
9.2). But if we have errors in measuring the independent variable, there
exist errors in the horizontal direction as well (i.e., the data point D in
figure 9.2 could be off the true line either because of a traditional error
A or because of an error of size B in measuring the independent variable
- or, as is most likely, because of a combination of both these types of
errors). The least squares procedure should be modified to incorporate



these horizontal errors; the problem in doing this is how to weight these
two types of errors. This weighting is usually determined on the basis of
the ratio of the variances of the two errors. Several special cases arise:

(a) If the variance of the vertical error is extremely large relative to the
variance of the horizontal error, OLS is appropriate.

(b) If the variance of the horizontal error is extremely large relative to
the variance of the vertical error, inverse least squares (in which x is
regressed on y and the inverse of the coefficient estimate for y is used as
the estimate of b) is appropriate.

(c) If the ratio of the variance of the vertical error to the variance of the
horizontal error is equal to the ratio of the variances of the dependent
and independent variables, we have the case of "diagonal" regression, in
which a consistent estimate turns out to be the geometric mean of the
OLS and inverse least squares estimators.
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(d) If the ratio of these error variances is unity, we have the case of
"orthogonal" regression, in which the sum of squared errors measured
along a line perpendicular to the estimating line is minimized.

The great drawback of this procedure is that the ratio of the error
variances is not usually known and cannot usually be estimated. This
problem also characterizes the usually reliable maximum likelihood
method. If the errors are all normally distributed (and independent of
one another), the maximum likelihood estimates cannot be calculated
without extra information (such as knowledge of the ratio of the error
variances or knowledge of the variance of the measurement error).

(2) Instrumental Variables

There are several candidates for instrumental variables that are common
in the context of measurement errors.

(a) It may be possible to use as an instrument the lagged value of the
independent variable in question; it is usually correlated with the
original independent variable, and, although it is correlated with the
disturbance vector, because it is lagged it is not contemporaneously
correlated with the disturbance (assuming the disturbance is not



autocorrelated).

(b) The two-group method, in which the observations are split into two
equalsized groups on the basis of the size of the regressor and then the
slope coefficient is estimated by the line joining the arithmetic means of
the two groups, can be interpreted as an instrumental variables
estimator with the instrumental variable taking the value -1 if the
regressor value is below its median value and +1 if above its median
value. The rationale behind this method is that by averaging the data in
this way the measurement errors are also averaged, reducing their
impact. This does not work well if the measurement error variance is
large, causing the division into two groups not to correspond to a
division based on the true values of the regressor. The three-group
method is advanced to address this problem.

(c) The three-group method, a variation of the two-group method in
which the middle third of the observations is ignored, corresponds to
using an instrumental variable with values - 1, 0 and + 1.

(d) In the Durbin method the independent variable is ranked by size and
an instrumental variable is defined as the rank order (i.e., with values 1,
2, 3, . . . T).

(3) Linear Structural Relations

Psychologists and sociologists often model using unobserved "latent"
variables, equivalent to economists' unobserved "measured-with-error"
variables. Their modeling procedure, called linear structural relations,
avoids the asymptotic bias created by measurement error by
incorporating additional information such as knowledge of the variance
of a measurement error or zero covariance between latent variables.
Estimation is undertaken by minimizing the difference between
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the actual covariance matrix of the observations and the covariance
matrix implied by estimates of the unknowns. An example given in the
technical notes illustrates how this is accomplished.

Economists do not use this estimation procedure much. One reason is
that econometric software does not incorporate this modeling/estimation
procedure. A second reason is that in many econometric contexts it is



not reasonable to view variables as distributed normally as this analysis
usually assumes. (This was particularly unsettling in older variants of
linear structural relations in which dummy variables had to be treated
just like continuous variables.) A third reason is that econometricians
are seldom in the position of knowing the variance of the measurement
error. This seems an odd objection given that econometricians so often
are comfortable assuming it is zero! In the spirit of fragility analysis
econometricians should report a range of estimates corresponding to a
range of values of the measurement error variance.

9.4 Autoregression

It is not uncommon in economics for a variable to be influenced by its
own value in previous periods. For example, the habit-persistence
theory of consumption suggests that consumption depends on the
previous period's consumption, among other things. Whenever a lagged
value of the dependent variable appears as a regressor in an estimating
relationship, we have the case of autoregression. Because a lagged
value of the dependent variable is stochastic (i.e., it was in part
determined by a disturbance), using it as an independent variable
(regressor) violates assumption 4 of the CLR model. The critical
question is whether or not the lagged dependent variable is independent
of the disturbance vector, or, failing that, contemporaneously
independent of the disturbance.

The lagged dependent variable cannot be independent of the entire
disturbance vector because the dependent variable is in part determined
by the disturbance term. In particular, in the tth period the lagged
dependent variable (i.e., the dependent variable value from the (t - 1)th
period) is correlated with the (t - 1)th period's disturbance because this
disturbance was one of the determinants of the dependent variable in
that period. Furthermore, if this lagged dependent variable was in turn
determined in part by the dependent variable value of the (t - 2)th
period, then it will be correlated with the disturbance of the (t - 2)th
period since that disturbance in part determined that period's dependent
variable value. This reasoning can be extended to show that the lagged
dependent variable is correlated with all of the past disturbances.
However, it is not correlated with the current or future disturbances;
thus, although the lagged dependent variable is not independent of the
disturbance vector, it is contemporaneously independent of the
disturbance. This means that, although bOLS is a biased estimator of b,
it is consistent and is on these grounds usually adopted as the most
appropriate estimator.
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It often happens that the autoregressive estimation problem arises not
directly from specification of a habit-persistence theory, but indirectly
through mathematical manipulations designed to transform an equation
with estimation problems into a new estimating equation that is free of
those problems. The following examples are typical of this.

(1) Durbin two-stage method The first stage of the Durbin two-stage
method for dealing with autocorrelated errors (discussed in section 8.4
and its associated technical notes) transforms the original estimating
equation into one with a lagged dependent variable as a regressor. The
coefficient estimate of this lagged dependent variable produces an
estimate of r, the error autocorrelation coefficient, which is used in the
second stage. Although this estimate is biased, it is consistent.

(2) Koyck distributed lag Sometimes a dependent variable is
determined by many or all past values of an independent variable, in
addition to the current value of that independent variable. Estimating
this distributed lag proves difficult, either because there are too many
regressors relative to the number of observations (a degrees-of-freedom
problem) or because the lagged values of the independent variable are
collinear with one another (the multicollinearity problem - see chapter
11). To circumvent these estimating problems the distributed lag
coefficients are usually assumed to follow some specific pattern. A
popular specification is the Koyck distributed lag in which these
coefficients decline geometrically. This relationship can be
mathematically manipulated (see the technical notes) to produce an
estimating relationship that contains as independent variables only the
current value of the original independent variable and the lagged value
of the dependent variable. Thus a large estimating equation has been
transformed into a much smaller autoregressive equation.

(3) The partial-adjustment model Sometimes economic theory specifies
that the desired rather than the actual value of the dependent variable is
determined by the independent variable(s). This relationship cannot be
estimated directly because the desired level of the dependent variable is
unknown. This dilemma is usually resolved by specifying that the actual
value of the dependent variable adjusts or is adjusted to the desired
level according to some simple rule. In the partial-adjustment or



rigidity model the actual adjusts by some constant fraction of the
difference between the actual and desired values. This is justified by
citing increasing costs associated with rapid change, or noting
technological, institutional or psychological inertia. As shown in the
technical notes, mathematical manipulation of these two relationships
(one determining the desired level and the second determining the
adjustment of the actual level) creates an estimating equation that is
autoregressive.

(4) Adaptive expectations model Sometimes economic theory specifies
that the dependent variable is determined by the anticipated or
"expected" value of the independent variable rather than by the current
value of the independent variable. This relationship cannot be estimated
directly because the anticipated
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values of the independent variables are unknown. This dilemma is
usually resolved by specifying that the anticipated value of the
independent variable is formed by some simple rule. In the adaptive
expectations model the anticipated value of the independent variable is
formed by taking the last period's anticipated value and adding to it a
constant fraction of the difference between last period's anticipated and
actual values. This is justified by appealing to uncertainty and claiming
that current information is discounted. As shown in the technical notes,
mathematical manipulation of these two relationships (one determining
the dependent variable and the second determining how anticipations
are formed) creates an estimating equation that is autoregressive.

In each of these examples the lagged value of the dependent variable
became a regressor in an estimating relationship through mathematical
manipulation. When an estimating equation is created in this way, it is
important to ensure that the disturbance term is included in the
mathematical manipulations so that the character of the disturbance
term in this final estimating equation is known. Too often researchers
ignore the original disturbance and simply tack a spherical disturbance
on to the relationship derived for estimating purposes. This leads to the
adoption of the OLS estimator, which may be inappropriate.



In the second and fourth examples given above it happens that the
mathematical manipulations create a disturbance term for the ultimate
estimating relationship that is autocorrelated. This creates an estimating
problem in which two assumptions of the CLR model are violated
simultaneously - autocorrelated errors and a lagged dependent variable
as a regressor. Unfortunately, it is not the case that the problem of
simultaneous violation of two assumptions of the CLR model can be
treated as two separate problems. The interaction of these two
violations produces new problems. In this case the OLS estimator,
although unbiased in the presence of autocorrelated errors alone, and
consistent in the presence of a lagged dependent variable as a regressor
alone, is asymptotically biased in the presence of both together. This
asymptotic bias results because the lagged dependent variable is
contemporaneously correlated with the autocorrelated disturbance; the
tth period's disturbance is determined in part by the (t - 1)th period's
disturbance and it in turn was one of the determinants of the lagged
(i.e., (t - 1)th period's) dependent variable.

In this case there is an obvious choice of an instrumental variable. The
lagged value of an exogenous regressor appearing in this equation, say
xt-1, will not be correlated with the error (because xt-1 is an exogenous
variable), but will be correlated with the lagged value of the dependent
variable yt-1 (because xt-1 appears as an explanatory variable when the
equation for yt is lagged). If there is another exogenous variable
appearing in the equation, say w, then there is a dilemma, since wt-1

also will be eligible to serve as an instrument for yt-1. This
embarrassment of choice is resolved by using y*t-1, the estimated yt-1
obtained from regressing yt-1 on xt-1 and wt-1, as the instrument for

yt-1. This is the GIVE procedure described earlier.
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The technique described in the preceding paragraph produces a
consistent estimator via the instrumental variables methodology, but it
lacks efficiency because it does not account for the autocorrelated
error. Two-step linearized maximum likelihood estimators, described in
the general notes, are used to improve efficiency.

General Notes



9.1 Introduction

Binkley and Abbott (1987) note that when the regressors are stochastic
many of the standard results valid in the context of fixed regressors no
longer hold. For example, when regressors are stochastic omission of a
relevant regressor could increase the variance of estimates of the
coefficients of remaining variables.

9.2 Instrumental Variable Estimation

The Ballentine of figure 9.3 can be used to illustrate the rationale
behind the instrumental variable (IV) estimator. Suppose that Y is
determined by X and an error term e (ignore the dashed circle Z for the
moment), but that X and e are not independent. The lack of
independence between X and e means that the yellow area (representing
the influence of the error term) must now overlap with the X circle. This
is represented by the red area. Variation in Y in the red area is due to the
influence of both the error term and the explanatory variable X. If Y
were regressed on X, the information in the red-plus-blue-plus-purple
area would be used to estimate bx. This estimate is biased

Figure 9.3
Using an instrumental

variable Z
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because the red area does not reflect variation in Y arising solely from
variation in X. Some way must be found to get rid of the red area.

The circle Z represents an instrumental variable for X. It is drawn to
reflect the two properties it must possess:

(1) It must be independent of the error term, so it is drawn such that
it does not intersect the yellow or red areas.

(2) It must be as highly correlated as possible with X, so it is drawn
with a large overlap with the X circle.

Suppose X is regressed on Z. The predicted X from this regression, , is

represented by the purple-plus-orange area. Now regress Y on  to
produce an estimate of bx; this in fact defines the IV estimator. The
overlap of the Y circle with the purple-plus-orange area is the purple
area, so information in the purple area is used to form this estimate;
since the purple area corresponds to variation in Y arising entirely from
variation in X, the resulting estimate of bx is unbiased (strictly speaking,
asymptotically unbiased).

Notice that, in constructing this estimate, although the bias arising from
the red area is eliminated, the information set used to estimate bx has
shrunk from the red-plus-blue-plus-purple area to just the purple area.
This implies that the variance of the IV estimator will be considerably
higher than the variance of the OLS estimator, a reason why many
researchers prefer to stick with OLS in spite of its asymptotic bias. It
should now be apparent why the instrumental variable should be as
highly correlated with X as possible: this makes the purple area as large
as possible (at the expense of the blue area), reducing the variance of
the IV estimator.

It is tempting to use the purple area by regressing Y on Z. This would
produce an estimate of the "coefficient" of Z rather than the coefficient
of X which is desired. Suppose, for example, that y = bx + e and x = qz
+ u. Substituting the second equation into the first gives y = bqz + bu +
e so that regressing y on z will produce an estimate of bq rather than an
estimate of b.

9.3 Errors in Variables



Morgenstern (1963) wrote an entire book examining the accuracy of
economic data. Some spectacular examples of data fudging by
government agencies can be found in Streissler (1970, pp. 27-9).
(Example: a large overstatement of housing starts in Austria was
compensated for by deliberately understating several subsequent
housing start figures.) Streissler claims that often the econometrician
more or less completely misunderstands what the statistics he works
with really mean. A joke popular with graduate students illustrates this.
After running many regressions a professor had discovered that the
nation's output of soybeans followed a semi-logarithmic production
function. He had just finished writing up his paper when on a visit to the
office of the bureaucrat in charge of soybean statistics he noticed a sign
which read, "When in Doubt Use the Semi-Log." A more serious
example of this is provided by Shourie (1972). He notes that value
added by the construction industry in Sri Lanka is usually estimated by
the national accounts statistician as a constant multiple of imports of
construction materials, so that a regression postulating that imports of
construction materials were linearly related to value added in the
construction industry would fit
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quite well. As a last example consider Abraham's (1976) description of
Ethiopia's figures for grain production, which are calculated as a base
year figure extrapolated by an assumed rate of population growth. The
base year figure was obtained from ''a group of experts assembled by a
planning minister many years ago and locked up in a room until they
could agree on a set of estimates."

Griliches (1985) offers four responses to Morgenstern: "1. The data are
not that bad. 2. The data are lousy but it doesn't matter. 3. The data are
bad but we have learned how to live with them and adjust for their
foibles. 4. That is all there is - it is the only game in town and we have
to make the best of it."

Although the coefficient estimates are biased (even asymptotically) in
the errors-in-variables case, OLS is still appropriate for predicting the
expected value of y given the measured value of x.

In some instances it could be argued that economic agents respond to
the measured rather than the true variables, implying that the original
estimating equation should be specified in terms of the measured rather



than the true values of the regressors. This eliminates the errors-
in-variables problem.

In the case of a single explanatory variable, errors in measuring this
variable lead to negative correlation between the error term and the
incorrectly measured regressor, causing bOLS to be biased downward.
When there is more than one independent variable, the direction of bias
is more difficult to determine. See Levi (1973).

Inverse least squares, in which the dependent variable becomes a
regressor and the incorrectly measured independent variable becomes
the regressand, provides an unbiased estimate of the inverse of b when
there is no error in the vertical direction. The inverse of this estimate is
a biased but consistent estimate of b. (Recall the technical notes to
section 2.8.)

When both vertical and horizontal errors exist, in large samples the OLS
and inverse least squares estimates contain the value of b between
them. Levi (1977) discusses bounded estimates. When the interval
between these two estimates of b is small, it can be concluded that
measurement errors are not a serious problem.

Kmenta (1986, pp. 352-6) discusses how estimation can be undertaken
if the ratio of the two error variances is known, which includes
orthogonal and diagonal least squares as special cases. Boggs et al.
(1988) find in a Monte Carlo study that orthogonal least squares
performs quite well relative to OLS.

Feldstein (1974) suggests forming a weighted average of OLS and
instrumental variable estimators to help reduce (at the expense of some
bias) the inevitably large variance associated with instrumental variable
estimation. Feldstein shows his estimator to be desirable on the mean
square error criterion.

For discussion of and references for the two- and three-group methods
and the Durbin method, see Johnston (1984, pp. 430-2). All three
methods produce consistent estimates under fairly general conditions;
the two-group method is the least efficient of these, while the Durbin
method is the most efficient. The intercept estimator for all these
methods is found by passing a line with the estimated slope through the
mean of all the observations.



Often an explanatory variable is unobservable, but a proxy for it can be
constructed. The proxy by definition contains measurement errors, and
thus a biased estimate results. Forgoing the proxy and simply omitting
the unobservable regressor also creates bias. McCallum (1972) and
Wickens (1972) show that, on the criterion of asymptotic bias, using
even a poor proxy is better than omitting the unobservable regressor.
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Using the MSE criterion, Aigner (1974) shows that using the proxy is
preferred in most, but not all, circumstances. Ohtani (1985) and
Kakimoto and Ohtani (1985) show that it is better to include a proxy if
interest focuses on testing. A popular proxy in econometric work is to
use a forecast or an estimated error, both used frequently in empirical
work on rational expectations. Pagan (1984b) investigates this. Oxley
and McAleer (1993) is a survey of issues arising from using such
generated regressors. A main conclusion is that variances are
underestimated because they do not take into account the stochastic
nature of the generated regressor. For examples of how to correct for
this, see Murphy and Topel (1985), Gauger (1989) and Greene (1997,
pp. 140-5). How strong does the correlation between a variable and its
proxy need to be to ensure that the sign on the OLS coefficient estimate
from using the proxy is correct? Krasker and Pratt (1986) address this
question.

The maximum likelihood technique breaks down in the errors-
in-variables context, basically because each observation carries with it
an extra unknown (the true value of the unobservable variable),
referred to as an incidental parameter. Johnston (1984, pp. 432-5)
discusses how extra information in the form of knowledge of a variance
or of a ratio of variances can be used to salvage the maximum
likelihood approach. For more on the MLE approach see Maddala
(1977, pp. 294-6).

Missing data can be viewed as an extreme form of measurement error.
What should be done about missing data varies depending on why the
data are missing. If there is a known reason for why they are missing,
this must be built into the estimation procedure. Chapter 16 on limited
dependent variables describes how analysis of missing dependent
variable (y) values is undertaken to avoid selection bias. It is tempting
to deal with missing explanatory variable (x) values by just omitting
each observation for which one or more of the x values are missing.



This is acceptable so long as these observations can be viewed as
occurring randomly. If not, their omission causes sample selection bias,
discussed in chapter 16. Even if these missing data occur randomly,
however, a researcher may be reluctant to discard these observations
because of a small sample size. A popular way of retaining these
observations is to replace the missing x values with suitable proxy
values and so allow the remaining information to improve estimation.
The most defensible way of proxying a missing x value is to forecast
this x value by regressing this variable on all the other independent
variables. This technique leaves unaffected the coefficient estimate of
the variable with missing observations, but can improve estimation of
the remaining coefficients (because of the larger sample size) despite
introducing some bias because of its measurement error. If this is done,
however, it is wise to redo the estimation using a variety of forecasted x
values from the hypothetical distribution of forecasts, to check for
fragility and to produce suitable standard errors. Little (1992) surveys
methods of dealing with missing x values. It is better not to replace
missing y values with proxies.

9.4 Autoregression

For the extremely simple case in which yt = byt-1 + et with e a spherical
disturbance, the bias of the OLS estimator is approximately - 2b/T,
which disappears as T becomes large. The presence of extra regressors
in the model also decreases this bias. Several suggestions for correcting
for this bias (such as using the estimator [(T/(T - 2)]bOLS) have been
suggested, but the correction factors increase the variance of the
estimator
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and run the danger of increasing the mean square error. A Monte Carlo
study by Copas (1966) suggests that bOLS is better than the suggested
alternatives. When the model has an intercept so that yt = a + byt-1 +
et, then the bias in bOLS is given by -(1 + 3b)/T. A suggested corrected

estimator is (TbOLS + 1)/(T - 3), which Orcutt and Winokur (1969), on
the basis of a Monte Carlo study, claim is superior.

It may well be the case that the real world is characterized by some
combination of the partial adjustment and adaptive expectation models.
Waud (1968) discusses the estimation problems associated with



misspecification related to this possibility.

The DW test is biased towards not finding autocorrelated errors
whenever a lagged value of the dependent variable appears as a
regressor. In the general notes to section 8.4 the Durbin m test was
recommended for this case. McNown and Hunter (1980) have
suggested an alternative test, which is easy to calculate, has desirable
asymptotic properties and, on the basis of their Monte Carlo study,
appears to perform well in small samples. See the technical notes.

In the autoregressive model with first-order autocorrelated errors the
asymptotic bias in bOLS is positive if r > 0 and negative if r < 0. This
bias becomes smaller if more regressors are involved. In the simple
model in which yt = byt-1 + et and et = ret-1 + ut, the OLS bias in
estimating b is exactly the negative of the OLS bias in estimating r. See
Malinvaud (1966, pp. 45965).

A two-step Gauss-Newton estimator is suggested for the case of
autocorrelated errors in conjunction with a lagged dependent variable
serving as a regressor. For the case of AR(1) errors a convenient way of
calculating this is via a method suggested by Hatanaka (1974). First,
estimated by IV, obtain the residuals, and use them in the usual way to
estimate the autocorrelation coefficient as r*. Second, transform the
variables in the usual way and regress on the transformed variables, but
add as an extra regressor the lagged residual. The slope coefficient
estimates from this regression are the two-step estimates; the two-step
estimate of r is r* plus the coefficient on the lagged residual. That this
method is equivalent to one iteration of Gauss-Newton is shown by
Harvey (1990, p. 271). The two-step Gauss-Newton estimator for the
case of an MA(1) error is explained in Harvey (1990, p. 273).

Technical Notes

9.1 Introduction

The Hausman test appears in two forms. (Some of what follows rests on
asymptotic arguments which are suppressed for expository purposes.)
Suppose Y = Xb + e and W is a set of instruments for X. Then bIV =

(W'X)-1W'Y = (W'X)-1W'(XbOLS + eOLS) = bOLS + (W'X)-1W'eOLS
so that bIV - bOLS = (W'X)-1W'eOLS. Straightforward algebra on this
yields V(bIV - bOLS = V(bIV) - V(bOLS). This suggests that a test of

equality between bIV and bOLS could be formed by using the statistic



which is distributed as a chi-square with degrees of freedom equal to the
number of elements in b. This is the original form of the Hausman test.
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Unfortunately, there are two problems with this form of the Hausman
test, one theoretical, the other practical. First, it turns out that in many
cases [V(bIV) - V(bOLS)] cannot be inverted in the normal way. This
arises, for example, when only one of the regressors is
contemporaneously correlated with the error, so that we should really
only be comparing its OLS and IV coefficient estimates, rather than the
full vector of coefficient estimates. In this case we should only have one
degree of freedom, and we should be using only a part of [V(bIV) -
V(bOLS)]. Second, the estimated [V(bIV) - V(bOLS)] often turns out to

have incorrect signs (although in theory V(bOLS) is "smaller" than
V(bIV), their estimates may not preserve this result). Both these
problems are avoided with the second variant of the Hausman test.

From above we have that bIV - bOLS = (W'X)-1W'eOLS. This will be
zero if W and eOLS are uncorrelated, which suggests testing if W and

eOLS are uncorrelated. This can be done by running the regression: Y =
Xb + Wq + e and testing q = 0 with an F test.

The intuition behind this is straightforward. Without W the regression
would produce residuals eOLS. If W is to have a nonzero coefficient, it
will have to "steal" some explanatory power from eOLS. (Try drawing a
Ballentine to see this.) So if W has a nonzero coefficient, it must be the
case that W and eOLS are correlated. Thus a test of q = 0 is a test of W

and eOLS being correlated which in turn is a test of bIV - bOLS = 0,
which in turn is a test of contemporaneous correlation between the error
and the regressors.

This is called the OV, or omitted variables, version of the Hausman test.
It is computationally attractive, and there is no problem in figuring out
the degrees of freedom because to run the OV regression W will have to
be stripped of any variables that are serving as their own instruments
(i.e., to avoid perfect multicollinearity if X and W have some elements



in common). Equivalent forms of the OV version of this test use the
errors from a regression of X on W, or the estimated X from this
regression, as the omitted variable.

Because the Hausman test is sensitive to several types of
misspecification, Godfrey and Hutton (1994) recommend testing for
general misspecification before applying the Hausman test, and
recommend a test for doing so. Wong (1996) finds that bootstrapping
the Hausman test improves its performance.

9.2 Instrumental Variable Estimation

Suppose y = Xb + e where X contains K1 columns of observations on
variables which are contemporaneously uncorrelated with e, including a
column of ones for the intercept, and K2 columns of observations on
variables which are contemporaneously correlated with e. The intercept
and the variables contemporaneously uncorrelated with the error can
serve as their own (perfect) instruments, K1 in number. New variables
must be found to serve as instruments for the remaining explanatory
variables. K3 > K2 such variables are required for the instrumental
variable technique to work, i.e., at least one instrument for each
explanatory variable correlated with the error term. This produces K1 +
K3 instruments which are gathered together in a matrix Z. By regressing

each column of X on Z we get  the desired matrix of final instruments
- the K1 columns of X that are contemporaneously uncorrelated with e
have
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themselves as their instruments (because variables in X that are also in
Z will be predicted perfectly by the regression of X on Z), and the K2
columns of X that are contemporaneously correlated with e have as
instruments from this regression the best linear combination of all the
possible instruments. Our earlier Ballentine discussion suggests that bIV

can be produced by regressing y on  so that

If Z is the same dimension as X, so that there is one instrument for each
variable in X, then algebraic manipulation of the formula above



produces bIV = (Z'X)-1Z'y. Note that this is not (repeat, not) the same
as (Z'Z)-1Z'y which is what many students want to use. (This same
warning, with an example, was given at the end of the Ballentine
discussion in the general notes.) This IV formula can also be derived as
a method of moments estimator, using the moment conditions Z'e = Z'(y
- Xb) = 0, just as the OLS estimator can be derived as a method of
moments estimator using the moment conditions X'e = 0.

When Z has more columns than X because there are more than exactly
enough instruments, the moments Z'e = 0 are too numerous and so the
GMM (generalized method of moments - see the technical notes to
section 8.2) estimator must be used. This requires minimizing (with
respect to b)

because V(Z'e) = Z'V(e)Z = s2Z'Z.

This minimization produces exactly the IV formula given earlier.

This result is of interest for two reasons. First, it suggests that in the
GLS model when V(e) = s2W, with W known, the IV estimator can be
found by minimizing

And second, it suggests that when y = f(X,b) + e where f is a nonlinear
function, the IV estimator can be found by minimizing

Following Amemiya (1974), this is sometimes called nonlinear
two-stage least squares, because if f is linear the estimator coincides
with the two-stage least squares method of chapter 10. The choice of
instruments is not clear here, as it is in the linear case, because the
connection between instruments and explanatory variables may itself be
nonlinear.

The variance-covariance matrix of bIV is estimated by



which, when Z and X are of the same dimension, is written as
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It is tempting to estimate s2 by

where K is the number of regressors. This is incorrect, however,

because it is y - XbIV which estimates e, not . Consequently,

s2 is estimated using

This has an important implication for F tests using the regression of y on

. The numerator can continue to be the restricted minus unrestricted
sums of squares divided by the number of restrictions, but now the

denominator must be  rather than s2.

How many instruments should be found? This turns out to be an
awkward question. On the one hand, if the number of instruments
(including variables that can serve as their own instrument) is just equal
to the number of explanatory variables (i.e., one instrument for each
explanatory variable) bIV has neither mean nor variance so we would
expect it in some cases to have poor properties in finite samples, as
evidenced in Nelson and Startz (1990a, 1990b). Adding an extra
instrument allows it to have a mean, and one more allows it to have a
variance, so it would seem desirable to have at least two more
instruments than explanatory variables. On the other hand, as we add

more and more instruments, in small samples  becomes closer and
closer to X and so begins to introduce the bias that the IV procedure is
trying to eliminate.

The use of extra instruments beyond the bare minimum of one for each
explanatory variable should be tested. Davidson and MacKinnon (1993,



pp. 232-7) suggest a means of doing so by testing the joint hypothesis
that the model is correctly specified and that the instruments used are
valid. This test statistic is calculated as N times the uncentered R2 from
regressing the IV residuals on all the instruments, and is distributed as a
chi-square with degrees of freedom equal to the number of instruments
in excess of the number of explanatory variables. (The uncentered R2 is

1 - Se2/Sy2 instead of 

Bound et al. (1995) find that whenever there is weak correlation
between the error and an explanatory variable, and also weak
correlation between the instrument and this explanatory variable, OLS
outperforms IV estimation, even when the sample size is very large.
They recommend that the quality of the instrument be checked, for
example by testing significance of the instrument in the first stage of IV
estimation. Bartels (1991) reaches a related conclusion, noting that even
if an instrument is not independent of the error it may be superior on the
mean square error criterion to an instrument that is independent of the
error.

9.3 Errors in Variables

Suppose that the true relationship is

but that x2 is measured with error as z2 where
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This implies that x2 can be written as z2 - u, and the first equation then
becomes



The new disturbance contains u, the error in measuring x2, as does z2.
Notice that the correlation between z2 and this new disturbance is
negative, implying that bOLS calculated by regressing y on z2 will be
biased downward.

The linear structural relations modeling/estimation technique is best
exposited via a simple example. Suppose the classical linear regression
model applies to y = bx + e, except that x is measured as xm = x + ex

where ex is a measurement error. In the linear structural relations
approach, the raw data (in this case the observations on y and xm) are
used to estimate the unique elements of the variance-covariance matrix
of the vector of observed variables, namely V(y), V(xm) and C(y,xm),
which in theory can be written as

The left-hand sides of these equations are measured using the raw data,
whereas the right-hand sides are functions of unknown parameters,
variances and covariances. Invoking the usual assumptions that x and e
are independent, and that the measurement error is independent of x
and e, this becomes

There are three equations in four unknowns b, V(x), V(e) and V(ex),
suggesting that these unknowns cannot be estimated consistently. If the
variance of the measurement error, V(ex) is known, however, this
problem is resolved and the resulting three equations in three unknowns
can be used to produce a consistent estimate of the remaining
unknowns, most notably b. If there were no measurement error so that
V(ex) were zero, these three equations would be solved to estimate b as
C(y,x)/V(x), the OLS formula i.e., OLS is a special case of linear
structural relations in which measurement error is zero.

Extending this to multiple regression is straightforward: an extra
explanatory variable w, measured without error, would create six



equations in seven unknowns, one of which is V(ex); if w were also
measured with error there would be six equations in eight unknowns,
the extra unknown being the variance of the w measurement error. The
unknown "true" values of a variable are called latent variables, and their
measured counterparts "indicators." In its general form, linear structural
relations can model simultaneous or non-simultaneous sets of equations,
with both dependent and independent variables measured with or
without error, with multiple indicators for a single latent variable, with
indicators being linear functions of several latent variables
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and with zero or non zero covariances between errors or between latent
variables. In these more general forms it is possible for the parameters
to be unidentified (more unknowns than equations, in which case no
consistent estimates can be produced), just identified (the same number
of unknowns as equations, in which case there is a unique way to use
the covariance structure to produce parameter estimates) or
overidentified (more equations than unknowns, in which case there is
more than one way to produce coefficient estimates from the raw data
covariance matrix).

In the overidentified case estimates of the unknowns are chosen to
minimize the "distance" between the raw data covariance matrix (the
left-hand sides of the equations above) and the covariance matrix
calculated by plugging these estimates into the right-hand sides of these
equations. Seen in this light this method can be interpreted as a GMM
technique. Different ways of defining "distance" in this context give rise
to different estimation procedures; the most popular is a maximum
likelihood procedure assuming normally-distributed errors and
normally-distributed latent variables. Because the linear structural
relations estimation procedure involves "fitting" a covariance matrix, it
is often referred to as analysis of covariance structures. This
modeling/estimation technique was introduced to economists by
Goldberger (1972). For textbook expositions see Hayduk (1987), Bollen
(1989) and Mueller (1996); two attractive software packages exist for
modeling and estimation, LISREL (Joreskog and Sorbom, 1993) and
EQS (Bentler, 1992).

Instrumental variable estimation is a special case of linear structural
relations in which an instrument appears as an extra indicator of a



variable measured with error. In the example above, suppose we have
observations on z = dx + ez where ez is independent of x, e and ex. The
linear structural relations estimate of b turns out to be the instrumental
variable estimate of b using z as an instrument for x. In practice, this is
what most econometricians do instead of using linear structural relations
assuming knowledge of the variance of the measurement error.

9.4 Autoregression

The Koyck distributed lag model may be written as

where 0 < l < 1 so that the influence of lagged values of the
independent variable x declines geometrically. Lagging this equation
one period and multiplying through by l, we get

Subtracting the second equation from the first, we get

an estimating equation of the autogressive form, in which the number of
regressors has shrunk to only two and there is an MA(1) error.
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In the partial adjustment model the desired level of the dependent
variable y*, is determined by x, so that

and the actual adjusts by some fraction of the difference between the
desired and the actual so that



Substituting  from the first equation into the second equation
we get, after manipulation,

an estimating equation of the autogressive form. In this case the error
term is spherical.

In the adaptive expectations model the dependent variable is
determined by the anticipated value of the independent variable, x*, so
that

The anticipated value is formed by updating last period's anticipated
value by a fraction of its prediction error. Thus

From the first equation  and .
Substituting these expressions into the second equation and simplifying,
we get

an estimating equation of the autoregressive form. In this case the error
is of the moving-average type, similar to that found in the Koyck
example.

The test of McNown and Hunter is suggested through algebraic
manipulation of yt = byt-1 + axt + et with et = ret-1 + ut. If the y
equation is lagged one period, multiplied through by r and then
subtracted from the original relationship, the result can be rearranged to
produce

An OLS regression on this equation can be used to test against zero the

coefficient of xt-1. If a  0, this coefficient will be zero if r = 0.



Construction of the likelihood function usually assumes that the y
values are drawn independently of one another, which is clearly not the
case when a lagged value of the dependent variable appears as a
regressor. Because a joint density can be written as p(y2, y1) =
p(y2/y1)p(y1), the likelihood function for an autoregression can be
written as the product of the conditional densities of the last T - 1
observations times the unconditional density for the first observation y1.
Operationally, the term corresponding to this first observation is either
omitted or approximated, simplifying the calculation of the MLE,
usually in a way that does not affect its asymptotic properties. See
Harvey (1990, pp. 104-11) for discussion and examples.
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10
Violating Assumption Four: Simultaneous Equations

10.1 Introduction

In a system of simultaneous equations, all the endogenous variables are
random variables - a change in any disturbance term changes all the
endogenous variables since they are determined simultaneously. (An
exception is a recursive system, discussed in the general notes.) Since
the typical equation in a set of simultaneous equations has at least one
endogenous variable as an independent variable, it does not fit the CLR
mold: this endogenous variable cannot be considered as fixed in
repeated samples. Assumption 4 of the CLR model is violated.

The character of the OLS estimator in this context depends on whether
or not the endogenous variables used as regressors are distributed
independently of the disturbance term in that equation. As noted above,
though, when this disturbance term changes, the endogenous variable it
determines directly changes, which in turn changes all of the other
endogenous variables since they are determined simultaneously; this
means that the endogenous variables used as regressors are
contemporaneously correlated with the disturbance term in this
equation (as well as with the disturbance term in all other equations). As
a consequence, the OLS estimator is biased, even asymptotically, so



that an alternative estimator is usually thought necessary.

A popular example used to illustrate this is a simple Keynesian system
consisting of a consumption function

and an equilibrium condition

where C (consumption) and Y (income) are endogenous variables and I
(investment) is an exogenous variable. Consider the problem of
estimating the consumption function, regressing consumption on
income. Suppose the disturbance in the consumption function jumps up.
This directly increases consumption,
 

page_157

Page 158

which through the equilibrium condition increases income. But income
is the independent variable in the consumption function. Thus, the
disturbance in the consumption function and the regressor are positively
correlated. An increase in the disturbance term (directly implying an
increase in consumption) is accompanied by an increase in income (also
implying an increase in consumption). When estimating the influence of
income on consumption, however, the OLS technique attributes both of
these increases in consumption (instead of just the latter) to the
accompanying increase in income. This implies that the OLS estimator
of the marginal propensity to consume is biased upward, even
asymptotically.

A natural response to this estimating problem is to suggest that the
simultaneous system be solved and put into its reduced form. This
means that every endogenous variable is expressed as a linear function
of all the exogenous variables (and lagged endogenous variables, which
are considered exogenous in this context). For the simple Keynesian
example, the structural equations given above can be solved to give the
reduced-form equations



which can be rewritten in more general form as

where the p are parameters that are (nonlinear) functions of the
structural form parameters and the n are the reduced-form disturbances,
functions of the structural form disturbances.

Because no endogenous variables appear as independent variables in
these reduced-form equations, if each reduced-form equation is
estimated by OLS, these estimators of the reduced-form parameters, the
p, are consistent (and if no lagged endogenous variables appear among
the exogenous variables, these estimators are unbiased). Economic
theory tells us that these reduced-form parameters are the long-run
multipliers associated with the model. If a researcher is only interested
in predicting the endogenous variables, or only wishes to estimate the
size of these multipliers, he can simply use these estimators. If,
however, he is interested in estimating the parameter values of the
original equations (the structural parameters), estimates of the
reduced-form parameters are of help only if they can be used to derive
estimates of the structural parameters (i.e., one suggested way of
obtaining estimates of the structural parameters is to calculate them
using estimates of the reduced-form parameters). Unfortunately, this is
not always possible; this problem is one way of viewing the
identification problem.
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10.2 Identification



If you know that your estimate of a structural parameter is in fact an
estimate of that parameter and not an estimate of something else, then
that parameter is said to be identified: identification is knowing that
something is what you say it is.

The identification problem is a mathematical (as opposed to statistical)
problem associated with simultaneous equation systems. It is concerned
with the question of the possibility or impossibility of obtaining
meaningful estimates of the structural parameters. There are two basic
ways of describing this problem.

(1) Can the reduced-form parameters be used to deduce unique values
of the structural parameters? In general, different sets of structural
parameter values can give rise to the same set of reduced-form
parameters, so that knowledge of the reduced-form parameters does not
allow the correct set of structural parameter values to be identified.
(Hence the name ''identification" problem.) The set of equations
representing the simultaneous equation system can be multiplied
through by a transformation matrix to form a new set of equations with
the same variables but different (i.e., transformed) parameters and a
transformed disturbance. Mathematical manipulation shows that the
reduced form of this new set of simultaneous equations (i.e., with a new
set of structural parameters) is identical to the reduced form of the old
set. This means that, if the reduced-form parameters were known, it
would be impossible to determine which of the two sets of structural
parameters was the "true" set. Since in general a large number of
possible transformations exists, it is usually impossible to identify the
correct set of structural parameters given values of the reduced-form
parameters.

(2) Can one equation be distinguished from a linear combination of all
equations in the simultaneous system? If it is possible to form a linear
combination of the system's equations that looks just like one of the
equations in the system (in the sense that they both include and exclude
the same variables), a researcher estimating that equation would not
know if the parameters he or she estimates should be identified with the
parameters of the equation he or she wishes to estimate, or with the
parameters of the linear combination. Since in general it is possible to
find such linear combinations, it is usually impossible to identify the
correct set of structural parameters.

The identification problem can be resolved if economic theory and
extraneous information can be used to place restrictions on the set of
simultaneous equations. These restrictions can take a variety of forms



(such as use of extraneous estimates of parameters, knowledge of exact
relationships among parameters, knowledge of the relative variances of
disturbances, knowledge of zero correlation between disturbances in
different equations, etc.), but the restrictions usually employed, called
zero restrictions, take the form of specifying that certain structural
parameters are zero, i.e., that certain endogenous variables and certain
exogenous variables do not appear in certain equations. Placing a
restriction on the structural parameters makes it more difficult to find a
transformation of the
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structural equations that corresponds to the same reduced form, since
that transformation must maintain the restriction. Similarly, the
existence of the restriction makes it more difficult to find a linear
combination of the equations that is indistinguishable from an original
equation. If the econometrician is fortunate, there will be enough of
these restrictions to eliminate all of the possible transformations and
(what is equivalent) make it impossible to find one of those linear
combinations. In this case the structural parameters are identified and
can therefore be estimated.

A favorite example used to illustrate the identification problem,
originally analyzed by Working (1927), is the case of a supply and a
demand curve for some good, each written in the normal fashion -
quantity as a function of price. This, along with an equilibrium
condition, represents a simultaneous system; observations on quantity
and price reflect the intersection of these two curves in each
observation period. The positions of the supply and demand curves in
each period are determined by shifting the true supply and demand
curves by the amount of their respective disturbances for that period.
The observation points, then, are likely to be a cluster of points around
the true equilibrium position, representing the intersections of the
supply and demand curves as they jump around randomly in response to
each period's disturbance terms. This is illustrated in figure 10.1. The
scatter of data in figure 10.1(b) suggests that it is impossible to estimate
either the supply or the demand curve.

The supply and demand curves have the same included and excluded
variables, so that regressing quantity on price generates estimates that
could be estimates of the supply parameters, the demand parameters or,
as is most likely, some combination of these sets of parameters.



Now suppose that an exogenous variable, say the level of income, is
introduced as an independent variable in the demand function, and that
it is postulated that this variable does not appear in the supply function
(i.e., the coefficient

Figure 10.1
Neither supply nor demand identified
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Figure 10.2
Supply curve identified



of this exogenous variable in the supply function is zero). It is now the
case that the demand function shifts in response to changes in this
exogenous variable (to form D1, D2, D3, etc. in figure 10.2a) as well as
to changes in the disturbance term. This creates a scatter of
observations as illustrated in figure 10.2. This scatter of observations
suggests that the supply curve can be estimated from the data (i.e., it is
identified), but the demand curve cannot (i.e., it is unidentified). This is
reflected in the fact that any linear combination of the supply and
demand curves gives an equation that looks like the demand curve, but
no combination can be found that looks like the supply curve. Note,
however, that it is not necessarily the case that a scatter of observations
like this corresponds to an identified case; it is possible, for example,
that the supply curve could itself have shifted with changes in the
exogenous variable income, as illustrated in figure 10.3. This
emphasizes the role of the restriction that the exogenous variable must
not affect the supply curve; in general, identification results only
through an appropriate set of restrictions.

In a simple example such as the foregoing, it is easy to check for
identification; in more complicated systems, however, it is not so easy.
In general, how does an econometrician know whether or not his or her
system of simultaneous equations contains enough restrictions to
circumvent the identification problem? This task is made a little simpler
by the fact that each equation in a system of simultaneous equations can
be checked separately to see if its structural parameters are identified.
Mathematical investigation has shown that in the case of zero
restrictions on structural parameters each equation can be checked for
identification by using a rule called the rank condition. It turns out,
however, that this rule is quite awkward to employ (see the technical
notes to this section for further discussion of this rule), and as a result a
simpler rule, called the order condition, is used in its stead. This rule
only requires counting included and excluded variables in each equation
(see the general notes to this section). Unfortunately, this order
condition is only a necessary condition, not a sufficient one, so that,
tech-
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Figure 10.3
Neither supply nor demand identified

nically speaking, the rank condition must also be checked. Many
econometricians do not bother doing this, however, gambling that the
rank condition will be satisfied (as it usually is) if the order condition is
satisfied. This procedure is not recommended.

If all equations in a system are identified, the system or model is said to
be identified. If only some equations are identified, only the structural
parameters associated with those equations can be estimated; structural
parameters associated with unidentified equations cannot be estimated;
i.e., there does not exist a meaningful way of estimating these
parameters. The only way in which the structural parameters of these
unidentified equations can be identified (and thus be capable of being
estimated) is through imposition of further restrictions, or use of more
extraneous information. Such restrictions, of course, must be imposed
only if their validity can be defended.

If an equation is identified, it may be either "just-identified" or "over-
identified." An equation is just-identified if the number of identifying
restrictions placed on the model is the minimum needed to identify the
equation; an equation is over-identified if there are some extra
restrictions beyond the minimum necessary to identify the equation. The
case of over-identification seems to be the most prevalent. The
relevance of this distinction relates to the choice of estimator. In some
cases, applying a complicated estimation technique to a just-identified
equation is no different from applying a simpler (and thus less costly)
estimation technique. One technique (the indirect least squares
estimator) can be applied only to just-identified equations. Discussion of



the various estimators used in the simultaneous equations context
should clarify this.
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10.3 Single-Equation Methods

The estimators described in this section are called "single-equation"
methods because they are used to estimate a system of simultaneous
equations by estimating each equation (provided it is identified)
separately. The "systems" methods discussed in section 10.4 estimate all
the (identified) equations in a system simultaneously; they are
sometimes called "full information" methods because they incorporate
knowledge of all the restrictions in the system when estimating each
parameter. Single-equation methods are sometimes called ''limited
information" methods because they only utilize knowledge of the
restrictions in the particular equation being estimated. Five single-
equation methods are discussed in this section:

(1) Ordinary least squares (OLS).

(2) Indirect least squares (ILS).

(3) Instrumental variables (IV).

(4) Two-stage least squares (2SLS).

(5) Limited information, maximum likelihood (LI/ML).

Of all these methods, 2SLS is by far the most popular. The brief
discussions of the other methods provide a useful perspective from
which to view 2SLS and simultaneous equation estimation in general.

(I) Ordinary Least Squares (OLS)

It is possible to use the OLS estimator and simply accept its asymptotic
bias. This can be defended in several ways.

(a) Although the OLS estimator is biased, in small samples so also are
all alternative estimators. Furthermore, the OLS estimator has minimum
variance among these alternative estimators. Thus it is quite possible
that in small samples the OLS estimator has minimum mean square
error. Monte Carlo studies have shown, however, that this is true only in



very small samples.

(b) According to Monte Carlo studies, the properties of the OLS
estimator are less sensitive than the alternative estimators to the
presence of estimation problems such as multicollinearity, errors in
variables or misspecifications, particularly in small samples.

(c) Predictions from simultaneous equation models estimated by OLS
often compare quite favorably with predictions from the same models
estimated by alternative means.

(d) OLS can be useful as a preliminary or exploratory estimator.

(e) If a simultaneous equation system is recursive (described in the
general notes to section 10.1), OLS is no longer asymptotically biased
and is unbiased if there are no lagged endogenous variables and no
correlation
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between disturbances in different equations. This is discussed in the
general notes to section 10.1.

(2) Indirect Least Squares (ILS)

Suppose we wish to estimate a structural equation containing, say, three
endogenous variables. The first step of the ILS technique is to estimate
the reduced-form equations for these three endogenous variables. If the
structural equation in question is just identified, there will be only one
way of calculating the desired estimates of the structural equation
parameters from the reduced-form parameter estimates. The structural
parameters are expressed in terms of the reduced-form parameters, and
the OLS estimates of the reduced-form parameters are plugged in these
expressions to produce estimates of the structural parameters. Because
these expressions are nonlinear, however, unbiased estimates of the
reduced-form parameters produce only consistent estimates of the
structural parameters, not unbiased estimates (recall the discussion of
this in the technical notes to section 2.8). If an equation is
over-identified, the extra identifying restrictions provide additional
ways of calculating the structural parameters from the reduced-form
parameters, all of which are supposed to lead to the same values of the
structural parameters. But because the estimates of the reduced-form



parameters do not embody these extra restrictions, these different ways
of calculating the structural parameters create different estimates of
these parameters. (This is because unrestricted estimates rather than
actual values of the parameters are being used for these calculations, as
illustrated in the technical notes to this section.) Because there is no
way of determining which of these different estimates is the most
appropriate, ILS is not used for over-identified equations. The other
simultaneous equation estimating techniques have been designed to
estimate structural parameters in the over-identified case; many of these
can be shown to be equivalent to ILS in the context of a just-identified
equation, and to be weighted averages of the different estimates
produced by ILS in the context of over-identified equations.

(3) Instrumental Variables (IV)

As seen in section 9.3, the instrumental variable technique is a general
estimation procedure applicable to situations in which the independent
variable is not independent of the disturbance. If an appropriate
instrumental variable can be found for each endogenous variable that
appears as a regressor in a simultaneous equation, the instrumental
variable technique provides consistent estimates. The big problem with
this approach, of course, is finding appropriate instrumental variables;
exogenous variables in the system of simultaneous equations are
considered the best candidates since they are correlated with the
endogenous variables (through the interaction of the simultaneous
system) and are uncorrelated with the disturbances (by the assumption
of exogeneity).
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(4) Two-Stage Least Squares (2SLS)

This technique is a special case of the instrumental variable technique in
which the "best" instrumental variables are used. As noted above, the
exogenous variables are all good candidates for instrumental variables;
which is the best is difficult to determine. A natural suggestion is to
combine all the exogenous variables to create a combined variable to
act as a "best" instrumental variable. A good instrumental variable is
one that is highly correlated with the regressor for which it is acting as
an instrument. This suggests regressing each endogenous variable being
used as a regressor on all the exogenous variables in the system and
using the estimated values of these endogenous variables from this



regression as the required instrumental variables. (Each estimated value
is the "best" instrumental variable in the sense that, of all combinations
of the exogenous variables, it has highest correlation with the
endogenous variable.) This defines the 2SLS procedure:

Stage 1: regress each endogenous variable acting as a regressor in the
equation being estimated on all the exogenous variables in the system
of simultaneous equations (i.e., estimate the reduced form), and
calculate the estimated values of these endogenous variables.

Stage 2: use these estimated values as instrumental variables for these
endogenous variables or simply use these estimated values and the
included exogenous variables as regressors in an OLS regression. (It
happens that these two versions of the second stage give identical
coefficient estimates.)

Because the 2SLS estimator is a legitimate instrumental variable
estimator, we know that it is consistent. Monte Carlo studies have
shown it to have small-sample properties superior on most criteria to all
other estimators. They have also shown it to be quite robust (i.e., its
desirable properties are insensitive to the presence of other estimating
problems such as multicollinearity and specification errors). These
results, combined with its low computational cost, have made the 2SLS
estimator the most popular of all simultaneous equations estimators.
Since it is equivalent to ILS in the just-identified case, 2SLS is usually
applied uniformly to all identified equations in the system.

(5) Limited Information, Maximum Likelihood (LI/ML)

In this technique, estimates of the reduced-form parameters are created
by maximizing the likelihood function of the reduced-form disturbances
subject to the zero restrictions on the structural parameters in the
equation being estimated. (Only that part of the reduced form
corresponding to the endogenous variables appearing in the structural
equation in question need be estimated.) These estimates of the
reduced-form parameters are then used, as in ILS, to create estimates of
the structural parameters; because the zero restrictions have been built
into the reduced-form estimates, the multiple ILS estimates of the
over-identified case all turn out to be the same. In the just-identified
case LI/ML is identical
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to ILS and 2SLS if the errors are distributed normally. An alternative
(equivalent) way of viewing this procedure is as an application of
instrumental variables: the reduced-form parameter estimates from this
technique can be used to calculate estimated values of the endogenous
variables included in the equation being estimated, and these can in turn
be used as instrumental variables as in the 2SLS procedure. The LI/ML
estimator is therefore consistent.

The usual assumption made is that the structural disturbances are
distributed multivariate normally, implying that the reduced-form
disturbances are also distributed multivariate normally. Under this
condition the LI/ML is identical to the limited information, least
generalized variance (LI/LGV) and the limited information, least
variance ratio (LI/LVR) estimators, discussed in the technical notes to
this section. Furthermore, these estimators, and the 2SLS estimator,
which just happens to share the same asymptotic variance-covariance
matrix, are at least as efficient asymptotically as any other estimator
using the same amount of information. (This follows from maximum
likelihood properties.)

10.4 Systems Methods

Systems estimating procedures estimate all the identified structural
equations together as a set, instead of estimating the structural
parameters of each equation separately. These systems methods are also
called "full information" methods because they utilize knowledge of all
the zero restrictions in the entire system when estimating the structural
parameters. Their major advantage is that, because they incorporate all
of the available information into their estimates, they have a smaller
asymptotic variance-covariance matrix than single-equation estimators.
By the same token, however, if the system is misspecified (if an alleged
zero restriction is incorrect, for example) the estimates of all the
structural parameters are affected, rather than, in the case of single-
equation estimation techniques, only the estimates of the structural
parameters of one equation. This and their high computational costs are
the major drawbacks of the systems methods. The two major systems
methods are discussed briefly below.

(I) Three-Stage Least Squares (3SLS)



This method is the systems counterpart of 2SLS. Its structure is based
on an alternative interpretation of 2SLS: if a single equation is
multiplied through (transformed) by the transpose of the matrix of
observations on all the exogenous variables in the system, applying
GLS to this new (transformed) relationship creates the 2SLS estimates.
Now if all the equations to be estimated are transformed in this way,
stacked one on top of the other, and then this stack is rewritten as a
single, very large, equation, applying GLS to this giant equation should
produce the 2SLS estimates of each of the component equations.
Because the nonspherical disturbances of this giant equation can
incorporate nonzero correlations between disturbances in different
equations, however, these estimates
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can differ from the 2SLS estimates and are more efficient. This defines
the 3SLS procedure.

The variance-covariance matrix of this giant equation's disturbance can
be shown to involve the matrix of observations on all the exogenous
variables in the system and the contemporaneous variance-covariance
matrix of the structural equation's disturbances. (This matrix contains
the variances of each equation's disturbances along the diagonal and the
covariance between equations' disturbances in the off-diagonal
positions.) The former matrix is known but the latter must be estimated
(from estimates of the structural equations' disturbances). The 3SLS
procedure can be summarized as follows:

Stage 1: calculate the 2SLS estimates of the identified equations.

Stage 2: use the 2SLS estimates to estimate the structural equations'
errors, and then use these to estimate the contemporaneous variance-
covariance matrix of the structural equations' errors.

Stage 3: apply GLS to the large equation representing all the identified
equations of the system.

The 3SLS estimator is consistent and in general is asymptotically more
efficient than the 2SLS estimator. If the disturbances in the different
structural equations are uncorrelated, so that the contemporaneous
variance-covariance matrix of the disturbances of the structural
equations is diagonal, 3SLS reduces to 2SLS.



(2) Full Information, Maximum Likelihood (FI/ML)

This systems method corresponds to the single-equation technique
LI/ML. In this technique estimates of all the reduced-form parameters
(rather than just those corresponding to the endogenous variables
included in a particular equation) are found by maximizing the
likelihood function of the reduced-form disturbances, subject to the zero
restrictions on all the structural parameters in the system. The usual
assumption made is that the structural disturbances, and thus the
reduced-form disturbances, are distributed multivariate normally. Under
this condition the FI/ML estimator and the 3SLS estimator, which share
the same asymptotic variance-covariance matrix, are at least as efficient
asymptotically as any other estimator that uses the same amount of
information. (This follows from maximum likelihood properties.)

10.5 Vars

Simultaneous equations models have been criticized on a number of
grounds. Macroeconomic theory is not viewed with much confidence,
the models are expensive to obtain and run, forecasts are often
unreasonable, requiring judgemental adjustment, and confidence
intervals seem unreasonably narrow. Further, many complain that the
restrictions placed on a simultaneous equations model to identify it are
"incredible" because in a general equilibrium analysis all
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economic variables will affect all other variables. This implies that all
variables are endogenous and that the only equations that can be
estimated are reduced-form equations in which the
regressors/exogenous variables are all lagged values of the endogenous
variables.

The alternative approach this argument suggests is called vector
autoregression, or VAR; it postulates that all the variables in the system
are endogenous and that each can be written as a linear function of its
own lagged values and the lagged values of all the other variables in the
system, where the number of lags is to be determined somehow. If all
the variables are gathered into a single vector, this can be viewed as a
vector autoregression - this vector is expressed as a linear function of its
own lagged values (with several lags) plus an error vector. Estimation is



undertaken by running a separate regression for each variable,
regressing it on lags of itself and all other variables.

The VAR approach is controversial. Even more controversial, however,
is the way the advocates of VAR have chosen to present and interpret
their results. The vector autoregression equation is "solved" or
"inverted" to express the vector of current values of the variables in
terms purely of current and (an infinite number of) lagged values of the
error vector (i.e., the lagged values of the vector of variables are
algebraically eliminated from the vector autoregression), and then this
representation is transformed into an "orthogonal" form in which the
vector of current values of the variables is expressed as a linear function
of current and lagged values of a vector of "orthogonal innovations''
(errors whose current values are uncorrelated). The algebra of all of this
is straightforward - the relationship between the orthogonal innovations
and the vector of current values of the variables under study can be
estimated using the estimates of the vector autoregression discussed
above. What is controversial about these orthogonalized innovations is
how they are interpreted - as an innovation in one variable that does not
affect the current value of any other variable. What this means is not
clear - how can a change in one variable have no effect on any other
variable in a simultaneous system?

Despite all this controversy, VARs have come to be accepted as
legitimate competitors to simultaneous equation systems for several
purposes, the most prominent being forecasting. It should be noted,
however, that some econometricians view VARs as no more than an
evolutionary step along the road to more adequate dynamic modeling.
See chapter 17 for further discussion.

General Notes

10.1 Introduction

Simultaneous equations used to be the "bread and butter" of
econometrics - it was viewed as the main feature of econometrics that
made it different from traditional statistics. This is no longer the case,
perhaps because, in spite of its shortcomings, OLS still performs
relatively well in this context, but more likely because the non-experi-
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mental data with which econometricians must work has given rise to so
many other interesting problems. The decreased emphasis on
simultaneous equation estimation problems is reflected in econometrics
textbooks, as noted by Buse (1988): "This failure to be as thorough in
the simultaneous equations context is perhaps an indication of the
general decline of interest in the simultaneous equations model. The
action, so to speak, is elsewhere, and textbook discussion of this model
now appears to be more a matter of habit than of conviction."

The Hausman test, a test for contemporaneous correlation between the
error and regressors, is used to test for exogeneity/endogeneity of
variables, as explained in the technical notes. Recall from the technical
notes to section 5.3 that there are three different types of "exogeneity."

Not all sets of equations are simultaneous. Several equations might be
connected not because they interact, but because their error terms are
related. For example, if these equations are demand functions, a shock
affecting demand for one good may spill over and affect demand for
other goods. In this case, estimating these equations as a set, using a
single (large) regression, should improve efficiency. This technique, due
to Zellner (1962) is called SURE (seemingly unrelated regression
estimation); a description is given in the technical notes. A good
example of its use is in estimating parameters of a general production
function, such as the translog, via its associated set of interrelated input
demand equations; Berndt (1991, chapter 9) is a good exposition of this
example. Greene (1997, chapter 15) is an excellent textbook
presentation of systems of regression equations, discussing many
applications and expositing related tests.

Lagged values of endogenous variables are treated as exogenous
variables, because for determination of the current period's values of the
endogenous variables they are given constants. For this reason the
exogenous and lagged endogenous variables are often called
predetermined variables. Their use as regressors creates reduced-form
estimates that are biased but asymptotically unbiased (assuming the
errors are not autocorrelated), as noted in section 9.3. This is not of
concern in the context of structural simultaneous equation estimation,
because all estimators used in this context are biased anyway; they are
chosen on the basis of their asymptotic properties.

Not all simultaneous equations systems suffer from the simultaneous
equation estimation bias described in this chapter. A recursive system is



one in which there is unidirectional dependency among the endogenous
variables. The equations can be ordered such that the first endogenous
variable is determined only by exogenous variables, the second
determined only by the first endogenous variable and exogenous
variables, the third by only the first two endogenous variables and
exogenous variables, and so forth. There must be no feedback from an
endogenous variable to one lower in the causal chain. In a recursive
system, a change in the disturbance in the fourth equation, for example,
affects directly the fourth endogenous variable, which in turn affects the
higher-ordered endogenous variables in the system, but does not affect
the lower-ordered endogenous variables. Because only lower-ordered
variables appear as regressors in the fourth equation, there is no
contemporaneous correlation between the disturbance and the
regressors in the fourth equation. If there is no correlation between
disturbances in different equations, OLS estimation is consistent, and if
no lagged endogenous variables appear among the exogenous variables
in the equation, it is unbiased.

For an interesting discussion of problems associated with applying
econometric tech-
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niques to the estimation of simultaneous equation systems, see Kmenta
(1972). The application of simultaneous equation estimation with the
highest profile is that of macroeconometric model-building; see Bodkin
et al. (1991) for a history, and Intriligator et al. (1996, pp. 432-53) for a
survey of US macroeconometric models.

10.2 Identification

Goldberger (1964, pp. 31213) and Greene (1997, p. 722) show how
transforming structural parameters creates a new set of structural
parameters with the same reduced-form parameters.

Before the identification problem was recognized by economists,
demand studies for agricultural products were undertaken using OLS.
They gave good results, though, because the demand curve was
relatively stable whereas the supply curve was quite erratic. This
provides an example of how extraneous information could be used to
identify an equation. If there is no exogenous variable in either the
supply or the demand equation but the disturbance term in the supply



equation is known to have a very high variance relative to the
disturbance term in the demand equation, the data observations should
trace out a demand curve in the same sense that a supply curve was
traced out in figure 10.2. Thus, prior knowledge of the relative
variances of the disturbances can aid in identification.

The popularity of zero restrictions as a means of identifying equations
probably stems from the fact that this method is easier to apply and has
been given formal mathematical treatment. Other means do exist,
however. Johnston (1984, pp. 4636) and Maddala (1977, pp. 2268)
discuss the use of restrictions on the contemporaneous variance-
covariance matrix of the simultaneous system. (This matrix contains the
variance of the disturbance in each equation along the diagonal, and the
contemporaneous covariances between equations' disturbances in the
off-diagonal positions.) Christ (1966, pp. 33443) discusses the use of
restrictions on the range of an error term, knowledge of the ratio of two
error term variances, and knowledge of the covariance between two
equations' error terms. Maddala (1977, pp. 22831) discusses
non-homogeneous restrictions, nonlinearities and cross-equation
restrictions. Greene (1997, pp. 72434) has a good textbook exposition
of several means of identification.

Haynes and Stone (1985) claim that in many markets quantity tends to
be demand-determined in the short run, but price tends to be supply-
determined. They specify quantity as a function of lagged price (among
other variables) for the demand curve, and price as a function of lagged
quantity (among other variables) for the supply curve, creating a means
of solving the identification problem for these types of markets. Leamer
(1981) shows how knowledge of the sign of a coefficient in an
unidentified equation, for example that the slope of price in the demand
curve is negative, whereas in the supply curve it is positive, can be used
in conjunction with reverse regression to estimate bounds for coefficient
values, thereby "partially" identifying that equation.

The order condition is written in many different (equivalent) ways in
textbooks, all involving counting included and excluded variables of
different types. The best of these ways is to check if there are enough
exogenous (predetermined) variables excluded from the equation in
question to provide an instrumental variable for each of the endogenous
variables appearing as regressors in that equation. (The number of
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excluded exogenous variables must be greater than or equal to the
number of included endogenous variables less 1.) Maddala (1977, p.
234) gives some reasons why this way of checking the order condition is
preferred to others. Maddala (1988, pp. 301-4) spells out an operational
procedure for checking the rank condition; Harvey (1990, p. 328) notes
that "the order condition is usually sufficient to ensure identifiability,
and although it is important to be aware of the rank condition, a failure
to verify it will rarely result in disaster."

An equation is "just identified" if there are exactly enough exogenous
variables excluded from the equation to act as instrumental variables for
the endogenous variables appearing as regressors in that equation. It is
over-identified if there are more than enough excluded exogenous
variables.

Over-identification can be thought of as a case in which the
specification of the structural equation imposes restrictions on the
reduced form.

Identifying restrictions cannot be tested (because their validity must be
assumed for meaningful estimation), but, as explained in the technical
notes, over-identifying restrictions can be tested. Such tests, when
undertaken, usually reject the over-identifying restrictions, casting
doubt on the identifying restrictions since the over-identifying
restrictions cannot be separated from the identifying restrictions. A
skeptic might use this fact to explain why economists seldom undertake
such tests. Hausman (1983, pp. 430-5) reviews available tests. Greene
(1997, pp. 761-4) has a textbook exposition.

10.3 Single-equation Methods

Little is known about the small-sample properties of simultaneous
equation estimators. Several Monte Carlo studies exist, however; for a
survey see Challen and Hagger (1983, pp. 117-21) or Johnston (1972,
pp. 408-20). Unfortunately, the results from these studies are not
clear-cut, mainly because the results are peculiar to the model
specifications used in the Monte Carlo experiments. Furthermore, it
turns out that many methods are not robust, in the sense that their
performance on the usual estimating criteria is sensitive to things such
as sample size, specification errors, the presence of multicollinearity,
etc. This makes it difficult to draw general conclusions concerning the
relative desirability of the many simultaneous equation estimators.



These Monte Carlo studies have consistently ranked 2SLS quite highly,
however, so that many econometricians recommend 2SLS for general
use.

Researchers use estimates of the asymptotic variances of simultaneous
equation estimators to undertake hypothesis tests; although these
estimates are usually underestimates of the true variances, alternative
methods have not proved superior. See Maddala (1974).

Autocorrelated errors in simultaneous equations cause inefficiency if
there are no lagged endogenous variables, and inconsistency if there are
lagged endogenous variables. In the former case estimation is done in
two stages. In the first stage a consistent estimator, such as 2SLS, is
used to get residuals that are used to estimate the autocorrelation
coefficient, and in the second stage the variables are transformed and a
consistent estimator is applied to the transformed variables. In the latter
case, it is necessary to treat the lagged endogenous variables as though
they were endogenous. Greene (1997, pp. 748-9) has a good text book
exposition. Fair (1970) claims that for strong-
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ly autocorrelated errors it is more important to correct for that problem
than for the asymptotic bias due to simultaneity. Breusch and Godfrey
(1981) is a good discussion of testing for autocorrelated errors in this
context.

In large econometric models it may be impossible to apply 2SLS
because the total number of exogenous variables in the system exceeds
the number of observations, making calculation of the reduced form
(the first stage of 2SLS) impossible. This problem is usually solved by
using, in the first stage of 2SLS, a small number of principal components
in place of the exogenous variables excluded from the equation in
question. See McCarthy (1971). A principal component is a linear
combination of variables that captures as much of the variation in those
variables as it is possible to capture via a linear combination of those
variables (see section 11.4). If this procedure is followed the
instrumental variable estimation of the second stage of 2SLS must be
employed; the other variant of this second stage is no longer valid.



Although the two versions of the second stage of 2SLS yield identical
coefficient estimates, they do not produce the same estimates of the
variance-covariance matrix. The version using estimated values of
endogenous variables as regressors, rather than as instruments, produces
incorrect estimates of the variance-covariance matrix. This happens
because its estimate of the variance of the error term is computed using
residuals calculated with estimated, rather than actual, values of these
endogenous variables. For discussion of the use of F and LM tests in the
context of 2SLS, see Wooldridge (1990). Hsu (1991) finds that a
bootstrap test outperforms the F test in this context.

When 2SLS is applied to an over-identified equation, a particular
endogenous variable is chosen, from the set of endogenous variables
included in that equation, to be the left-hand-side variable in that
equation, and is given the coefficient 1. If the econometrician is
uncertain of this specification, and a different endogenous variable is
picked to play this role, the 2SLS procedure creates different estimates
of the same parameters (i.e., after renormalizing to put a coefficient of 1
on the original variable chosen to be the left-hand-side variable). The
LI/ML method does not suffer from this normalization problem; it
creates a unique estimate that lies between the extremes of the different
possible 2SLS estimates. The fact that 2SLS is sensitive to the
normalization choice should not necessarily be viewed as a
disadvantage, however. It could be claimed that this sensitivity allows
economic theory (which usually suggests a specific normalization) to
inject some extra information into the estimating procedure. The
normalization problem does not exist for a just-identified equation. See
Fisher (1976) for further discussion.

Challen and Hagger (1983, chapter 6) contains an excellent discussion
of practical reasons (such as nonlinearities, undersized samples,
autocorrelated errors and computational cost) why most simultaneous
equations systems are estimated by OLS, or some variant thereof, rather
than by one of the more sophisticated estimating techniques introduced
in this chapter.

10.4 Systems Methods

The superiority of 3SLS is slight if the contemporaneous variance-
covariance matrix of the structural equations' disturbances is only
slightly different from a diagonal matrix or the sample size is small so
that it cannot be well estimated. Unfortunately
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there is no easy rule to determine when 3SLS beats 2SLS. Belsey
(1988b) suggests using the determinant, the smallest eigenvalue or the
condition number of the contemporaneous correlation matrix between
the equations' errors to index the potential superiority of 3SLS, but finds
that threshold values of these measures depend on the circumstances of
the problem, such as the sample size, the number of equations and the
degree of overidentification (3SLS and 2SLS are identical if every
equation is just identified). Some practitioners use a rule of thumb that
3SLS is superior if the estimated contemporaneous correlation between
any two equations' errors exceeds one-third.

3SLS, like 2SLS, is not invariant to the choice of normalization.

The 3SLS method can be iterated by using the original 3SLS estimates
to create new estimates of the structural disturbances and repeating the
rest of the 3SLS calculations. This "iterated 3SLS" estimator has the
same asymptotic properties as the original 3SLS estimates. Monte Carlo
studies have not shown it to be markedly superior to 3SLS.

If there is extraneous information concerning the contemporaneous
variance-covariance matrix of the structural equations' errors, or if there
are lagged endogenous variables, FI/ML is asymptotically more efficient
than 3SLS.

The estimating techniques discussed in this chapter are designed to
estimate the structural parameters. It may be, however, that the
econometrician is only interested in the reduced-form parameters, in
which case he or she could avoid estimating the structural parameters
and simply estimate the reduced-form parameters by applying OLS to
each of the reduced-form equations (i.e., regress each endogenous
variable on all the endogenous variables in the system). If some
structural equations are over-identified, however, more efficient
estimates of the reduced-form parameters can be obtained by taking
structural parameter estimates (that incorporate the over-identifying
restrictions) and using them to estimate directly the reduced-form
parameters. Although these "derived" reduced-form estimates are
biased (whereas the OLS reduced-form estimates are not), they are
consistent, and because they incorporate the over-identifying
information, are asymptotically more efficient than the OLS
reduced-form estimates. Monte Carlo studies have shown the derived
reduced-form estimates to have desirable small-sample properties. Of



course, if the over-identifying restrictions are untrue, the OLS
reduced-form estimates will be superior; a suggested means of testing
over-identifying restrictions is through comparison of predictions using
OLS reduced-form estimates and derived reduced-form estimates.

10.5 VARs

The VAR approach is due to Sims (1980). Pagan (1987) views VAR as
a major methodological approach to econometrics, and in Pagan (1995)
argues that it is evolving into a method more compatible with traditional
simultaneous equations analysis. Cooley and LeRoy (1985) is an
oft-cited critique of the VAR methodology. They claim that it is useful
for forecasting, for describing various characteristics of the data, for
searching for hypotheses worthy of interest, and for testing some types
of theories, but argue that it is not suitable for testing exogeneity, that
its concept of innovations (and the related impulse response function - a
graph of the impact of an innovation over time) is not useful, and that it
cannot be used for policy evaluation. Runkle (1987) and associated
commentary is a good example of the controversy surrounding
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this methodology. Harvey (1997, p. 199) claims that VAR actually
stands for "Very Awful Regression."

A VAR is in essence a reduced form corresponding to a class of
structural econometric models. Advocates of the VAR methodology
have come to recognize that the interpretation of VAR estimation
results is considerably enhanced by viewing them in terms of the
restrictions they impose on the underlying class of structural models. Its
value in econometric modeling stems from the empirical relationships
(strong correlations in the data, lag lengths, list of included variables) it
reveals that the structural model must be capable of explaining.

The conclusions drawn from VAR analyses are sensitive to the choice
of lag length and the number of included variables, for neither of which
there is an agreed upon choice mechanism. Since VAR presumes that no
variables are exogenous, and that all variables, each with multiple lags,
appear in each equation, it usually faces severe degrees-of-freedom
problems. This forces modelers to choose a small set of variables.



Backus (1986) is a good example of an empirical application of the
VAR methodology, along with commentary defending its use. Ambler
(1989) is a good example of VAR in conjunction with testing for unit
roots, searching for cointegration, and developing an ECM (all
discussed in chapter 17). McNees (1986) has a concise comparison of
VAR and the traditional approach in the context of its use and success
in forecasting. The software package RATS (Regression Analysis of
Time Series) is popular for estimating VARs.

Although VARs are usually estimated without restrictions, to avoid the
"incredible" restrictions placed on econometric structural models,
studies have shown that imposing reasonable restrictions on VARs
improves their performance. The usual methodology of either including
or excluding a variable is thought to embody unreasonably weak prior
information in the former case, or unreasonably strong prior information
in the latter case. An appealing way of addressing this problem is
through a Bayesian VAR approach, as discussed in Litterman (1986).
One example of the kind of prior that is employed is a prior with mean
zero for the coefficients of lagged variables, with the prior variance
becoming smaller as the lag length grows.

Technical Notes

10.1 Introduction

The Hausman test for contemporaneous correlation between the error
and a regressor was described in chapter 9. Its application in the context
of this chapter is to test for endogeneity/exogeneity of regressors.
Suppose y = Yd + Xb + e and we wish to test all the variables in Y for
exogeneity. This is done exactly as in chapter 9, via an OV version of
the Hausman test. Estimated Y values, Y*, are formed from the
instruments (all the exogenous variables in the system), y is regressed on
Y, X and Y*, and the coefficient estimate of Y* is tested against zero
using an F test.

This test becomes more complicated if only some of the elements of Y
are to be tested for exogeneity. Suppose y = Y1d1 + Y2d2 + Xb + e and
it is desired to test Y2 for exogeneity. This case is different from those
examined earlier because rather than comparing OLS to IV, we are now
comparing one IV to another IV. Spencer and Berk (1981) show that a
regular Hausman test can be structured, to compare the 2SLS esti-
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mates with and without assuming Y2 exogeneous. An OV form of this
test is also available, and defended on asymptotic grounds: run the usual
2SLS second-stage regression that would be used if Y2 were assumed to

be exogenous, but add in the extra regressors ; and , the
second-stage 2SLS regressors (corresponding to Y1 and Y2) that would
be used if Y2 were assumed to be endogenous, and test the coefficients

of ; and ; jointly against zero.

SURE consists of writing a set of individual equations as one giant
equation. Suppose there are N equations Y1 = Xibi + ei where the

subscript i refers to the ith equation. (Here each Yi,bi and ei are
vectors; Xi is a data matrix.) These equations are written as

or Y* = X*b* + e*.

Now if we allow contemporaneous correlation between the error terms
across equations, so that, for example, the tth error term in the ith
equation is correlated with the tth error term in the jth equation, the
variance-covariance matrix of e* will not be diagonal. Estimating these
error correlations and the diagonal elements (by using the residuals from
each equation estimated separately) should allow estimation of the
variance-covariance matrix of e* and generation of EGLS estimates of
b*. Aigner (1971, pp. 197204) has a good textbook exposition. No gains
can be realized from this procedure (because SURE becomes identical
to OLS) if either (a) the Xi are all the same, or (b) the variance-
covariance matrix of e* is diagonal. Kmenta and Gilbert (1968) find
that if the errors are distributed normally, iterating SURE (by
re-estimating the variance-covariance matrix of e* using the
most-recent SURE coefficient estimates) yields the MLE estimates.

Breusch and Pagan (1980) suggest an LM test for testing whether this
variance-covariance matrix is diagonal. Estimate the correlation
coefficient between the ith and jth residuals from OLS. The sample size
times the sum of all these squared estimated correlations is distributed



as a chi-square with degrees of freedom equal to the number of
correlations. The comparable likelihood ratio statistic is the sample size
times the difference between the sum of the logarithms of the OLS
variance estimates and the logarithm of the determinant of the
unrestricted maximum likelihood estimate of the contemporaneous
variance-covariance matrix.

10.2 Identification

The order condition for identification through the use of zero
restrictions can be generalized in terms of homogenous linear
restrictions: an equation is identified if there are G - 1 independent
homogenous linear restrictions on the parameters of that equation,
where G is the number of equations in the system. (A linear
homogenous restriction equates to zero a linear combination of
parameter values; for example, it may be specified that consumption is
a function of disposable income so that the coefficient on income is
equal in value but opposite in sign to the coefficient on taxes - their sum
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would be zero.) A similar generalization exists for the rank condition.
See Fisher (1966, chapter 2).

The "impossible to find a linear combination" view of identification can
be used to check informally the rank condition for instances in which
the order condition holds. A visual inspection of the pattern of included,
and excluded, variables in a system of equations can often verify that:

(a) it is not possible to form a linear combination of the equations in
the system that looks like the equation being tested for
identification;

(b) it is obviously possible to do so; or

(c) it is only possible to do so if the values of the parameters in the
system bear a particular (and unlikely) relationship to one another.

Examples of these three cases are given below. If an econometrician is
not confident that his visual inspection for the possibility of a linear
combination was adequate, he can test the rank condition formally: the
matrix of parameters (from all equations) associated with all the



variables excluded from the equation in question must have rank equal
to one less than the number of equations in the system.

Examples of case (a) Suppose we have the following two-equation
model, where the y are endogenous variables, the x are exogenous
variables and the q are parameters. (For simplicity the constant terms,
errors, and the normalization choice are ignored.)

The second equation is identified by the order condition and there is
clearly no way in which these equations can be combined to produce a
new equation looking like the second equation; the rank condition must
be satisfied. This is the example illustrated by figure 10.2.

Examples of case (b) Suppose a third equation is added to the previous
example, introducing a new endogenous variable y3 and a new

exogenous variable x2. The first equation now satisfies the order
condition (because of the extra exogenous variable in the system). But
the sum of the first and second equations yields an equation containing
the same variables as the first equation, so the rank condition cannot be
satisfied for this equation. In general, this problem arises whenever all
the variables contained in one equation form a subset of variables in
another equation; this is fairly easy to check visually.

Not all examples of case (b) are so easy to check, however. Consider
the following four-equation example:

The second equation satisfies the order condition, but if q2/q13 times
the fourth equation is subtracted from the first equation, a new equation
is created that has the same included and excluded variables as the
second equation, so the rank condition is not satisfied for this equation.
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Examples of case (c) Suppose we have the following three-equation
model:

The first equation is identified by the order condition. If it happens that
q5 = kq9 and q6 = kq11, then the second equation minus k times the
third equation (i.e., a particular linear combination of the second and
third equations) will create an equation with the same included and
excluded variables as the first equation; the rank condition is not met. In
practice, the third case is usually ignored, since the probability is
virtually zero that the true values of the parameters are related in this
way.

The easiest test for over-identifying restrictions for a single equation is
an LM test. Obtain the residuals from an efficient single-equation
estimator and regress them on all of the predetermined variables in the
model. The sample size times the R2 from this regression will be
distributed asymptotically as a chi-square with degrees of freedom equal
to the number of overidentifying restrictions (i.e., the number of
predetermined variables outside that equation less the number of
endogenous variables serving as regressors).

The easiest test for over-identifying restrictions for an entire system of
simultaneous equations is an LR test. Obtain the reduced-form residuals
and the derived reduced-form residuals using an efficient systems
estimation method. Use these residuals to estimate the respective
contemporaneous variance-covariance matrices of the reduced-form
errors. Then the sample size times the difference between the logarithms
of the determinants of these estimated matrices is distributed as a
chi-square with degrees of freedom equal to the total number of
over-identifying restrictions. See Greene (1997, pp. 761-2) for
discussion of both these tests.

10.3 Single-equation Methods

Consider estimating by indirect least squares the just-identified supply
equation corresponding to the example illustrated in figure 10.2.
Ignoring constant terms for simplicity, suppose the demand equation
can be written as q = bp + gy where q is quantity, p is price and y is



income (exogenously determined). Write the supply function as q = dp.
Solving these equations for the reduced form, we get

OLS estimation of these reduced-form equations yields unbiased
estimates ; 1 and ; 2 of p1 and p2. Since ; 2 / ; 1 is the ILS
estimate of d; this estimate is not unbiased, since ; 2/ ; 1 is a

nonlinear function of ; 1 and ; 2 , but it is consistent.

Now suppose that an additional exogenous variable, advertising, affects
demand but
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not supply (e.g., an additional, over-identifying restriction, that the
coefficient of advertising is zero in the supply equation, is imposed).
The demand equation is now written as

where a is advertising. The reduced-form equations become

OLS estimation of these reduced-form equations yields unbiased

estimates ; , ; , ; , and ; of p1, p2, p3, and p4. Since p2/p1 = d

and p4/p3 = d, there are two different ILS estimates of d, namely ; /

; and ; / ; . Only if the estimation of p incorporates the zero



restrictions will these two estimates of d be the same.

In figure 10.2 we saw that identification was possible because shifts in
the demand curve due to income changes traced out the supply curve.
With the extra exogenous variable advertising, we now find that the
supply curve is also traced out by shifts in the demand curve arising
from changes in advertising expenditures. The indirect least squares
procedure thus has two ways of estimating the supply curve: from
variations in supply due to variations in income, or from variations in
supply due to variations in advertising, illustrating the
over-identification phenomenon.

When the disturbances are distributed normally, the LI/ML method is
identical to the limited information, least variance ratio (LI/LVR)
method. In this technique the structural equation to be estimated is
rewritten so that all the endogenous variables appearing in that equation
are on the left-hand side and all the included exogenous variables and
the disturbance are on the right-hand side. Suppose a particular set of
values is chosen for the parameters of the included endogenous
variables and a composite endogenous variable is calculated. This
composite endogenous variable is a linear function of the included
exogenous variables plus a disturbance term. Regressing this composite
endogenous variable on the exogenous variables included in the
equation should produce a sum of squared residuals only slightly larger
than the sum of squared residuals obtained from regressing it on all the
exogenous variables in the system, since the exogenous variables not
included in the equation should have little explanatory power. The
LI/LVR chooses the set of values of the (structural) parameters of the
included endogenous variables so as to minimize the ratio of the former
sum of squared residuals to the latter sum of squared residuals. This
ratio is called the variance ratio; hence the name ''least variance ratio."
Econometricians have derived mathematically a means of doing this
without having to search over all possible sets of parameter values of
the included endogenous variables (see Wonnacott and Wonnacott,
1970, pp. 376-9). Once the parameter estimates of the included
endogenous variables have been found, the composite endogenous
variable is simply regressed on the included exogenous variables to find
estimates of the (structural) parameters of the included exogenous
variables. This technique can be shown to be
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identical to the limited information, least generalized variance method
(discussed below) as well as to the LI/ML method. Computationally,
however, the LI/LVR method is easier than the others, so it is the one
employed in practice. Its computational cost is higher than that of 2SLS,
however.

It is interesting that 2SLS can be shown to minimize the difference
between the numerator and the denominator of the least variance ratio.

The least variance ratio should only slightly exceed 1 if the excluded
exogenous variables do in fact all have zero coefficients. If some of the
excluded variables should have been included, this ratio will exceed 1
by a significant amount. A test of over-identifying restrictions is based
on this idea. An alternative test is based on the difference between the
numerator and the denominator of this ratio. See Murphy (1973, pp.
476-80).

When the disturbances are distributed normally the LI/ML method is
also identical to the limited information, least generalized variance
(LI/LGV) method. This technique, like LI/ML, is based on the idea that
ILS could be applied to an over-identified equation if the reduced-form
parameter estimates had built into them the zero restrictions on the
structural parameters in that equation. To build these zero restrictions
into the reduced-form parameter estimates, the reduced-form
parameters must be estimated as a set of equations (including only those
reduced-form equations corresponding to the endogenous variables
appearing in the structural equation being estimated) instead of
individually. When estimating a single equation the sum of squared
residuals is usually minimized; when estimating an entire set of
equations simultaneously, however, it is not obvious what should be
minimized. The estimated contemporaneous variance-covariance
matrix of the disturbances of the set of equations is used to resolve this
problem. This matrix has the sum of squared residuals from each
equation in the diagonal positions, and the sum of cross-products of
disturbances from different equations in the off-diagonal positions, with
each element divided by the sample size. The determinant of the
contemporaneous variance-covariance matrix is called the generalized
variance. The LI/LGV technique minimizes this generalized variance
subject to the zero restrictions on the structural parameters in the
equation being estimated. The estimates of the reduced-form parameters
so obtained may be used to estimate the structural parameters; this can
now be done in spite of the over-identification because the



over-identifying restrictions are built into the estimates of the
reduced-form parameters.

It might seem more natural to minimize the trace (the sum of the
diagonal elements) of the estimated contemporaneous variance-
covariance matrix of the reduced-form disturbances rather than its
determinant, since that corresponds more closely to the concept of
minimizing the sum of squared residuals (i.e., minimizing the trace
would minimize the sum of the sum of squared residuals in each
equation). This approach has drawbacks, however, as noted in
Wonnacott and Wonnacott (1970, pp. 365-71).

Minimizing the generalized variance would be equivalent to minimizing
the sum of squared residuals associated with each individual
reduced-form equation (i.e., running OLS on each equation separately)
were it not for the restrictions.

Many simultaneous equation estimating techniques can be interpreted
as using instrumental variables for the endogenous variables appearing
as regressors. The OLS technique can be thought of as using the
endogenous variables themselves as instrumental variables; the 2SLS
technique uses as instrumental variables the calculated values of the
endogenous variables from the reduced-form estimation. The k-class
estimator
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uses an instrumental variable calculated as a weighted average of the
instrumental variables used by the OLS and the 2SLS techniques. The
weighting factor is k; when k = 1 the k-class estimator is identical to
2SLS, and when k = 0 it is identical to OLS. When k is equal to the
variance ratio from the LI/LVR estimator, the k-class estimator is
identical to the LI/ML, LI/LVR and LI/LGV estimators. When the limit
of k as the sample size goes to infinity is 1 (as is the variance ratio), the
k-class estimator is consistent and has the same asymptotic variance-
covariance matrix as the 2SLS, LI/ML, LI/LVR and LI/LGV estimators.

The fix-point and iterative instrumental variables methods (see Dutta,
1975, pp. 317-26) are iterative procedures in which initial estimates of
the structural parameters are used to create estimates of the endogenous
variables, which in turn are used to generate, via an OLS or IV
procedure, new estimates of the structural parameters. This process is



repeated until convergence is attained. Extensions of these iterative
techniques are discussed by Giles (1973, pp. 74-9). Such iterative
techniques are of value in estimating very large systems of simultaneous
equations.

10.4 Systems Methods

The systems methods discussed in this chapter assume that disturbances
in each individual structural equation are spherical, that disturbances in
different time periods in different equations are independent, and that
this contemporaneous variance-covariance matrix is the same in each
time period. (For cross-sectional data, the reference to "time period"
must be replaced by "individual" or "firm," or whatever is relevant.)
Turkington (1989) generalizes the test of Breusch and Pagan (1980) to
test for contemporaneous correlation of the errors in a simultaneous
equations rather than a SURE context (i.e., to test for whether a full
information estimation technique is warranted).

When the errors are distributed normally, the FI/ML method is
equivalent to the full-information, least generalized variance (FI/LGV)
method, the systems counterpart of LI/LGV. In this method, all the
reduced-form equations (rather than just those corresponding to the
included endogenous variables in a particular equation) are estimated by
minimizing the determinant of the estimated contemporaneous variance-
covariance matrix of the reduced-form disturbances, subject to the zero
restrictions from all the structural equations.

10.5 VARs

Because each equation in a VAR has exactly the same explanatory
variables (lagged values of all variables in the VAR) there is no benefit
to using a SURE estimation procedure, as noted in the technical notes to
section 10.1. Consequently, OLS is employed for estimation. Some
effort must be made to pare down the large number of regressors, but
because the regressors are bound to be highly collinear, t statistics are
not used for this purpose. Instead, a series of F or associated chi-square
test statistics are employed, with the level of significance of the
individual tests adjusted (as explained in the technical notes to section
5.2) to achieve a desired overall significance level.
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Suppose for illustrative purposes we assume a one-period only lag for a
VAR and for convenience set the intercept equal to zero. The
"structural" form of this VAR can be written as

where the errors in the error vector et are assumed to be uncorrelated.
The corresponding reduced form, the usual way in which a VAR
appears in the literature, is

By repeated substitution this can be written as

This is called the vector moving average representation of the VAR.
Because of complicated feedbacks, VAR advocates claim that
autoregressive systems like these are difficult to describe adequately by
just looking at coefficient estimates or computing long-run equilibrium
behavior, as is done by traditional econometric approaches. They
recommend instead postulating a shock or "innovation" to one of the
elements of ut, and using this equation to trace out over time the
response of the variables in the z vector, delivering what they believe is
more useful information about interrelationships between variables.

Unfortunately, it is difficult to give meaning to a u error shock because

it is a linear combination (B0-1e) of the structural errors. To deal with
this those advocating the VAR methodology have resorted to a bit of

technical wizardry. Estimation of VAR produces an estimate of the

variance-covariance matrix W of u. This can be uniquely decomposed

into PDP' where P is a lower triangular (i.e., all zeros above the
diagonal) matrix with ones on the diagonal and D is a diagonal matrix.
This means that P-1u = v has variance-covariance matrix D, a diagonal

matrix, so the elements of v can be considered orthogonal errors.
Rewriting the vector moving average form of the VAR in terms of v we
get



An innovation in an element of vt is postulated and the resulting impact
over time on an element of z is graphed to produce the orthogonalized
impulse response function, a primary output of a VAR analysis.

At this stage critics of VAR analysis complain that although the
mathematics of all this is straightforward, it is still not clear what
meaning should be given to an innovation to an element of v. If v could
be identified with e, the impulse response function would have a clear
interpretation - it would trace out the impact over time of a shock to one
of the structural equations, which could in some cases be interpreted as
a policy shock. But if v cannot be identified with e, it is an artificial
orthogonal shock without economic interpretation, rendering of
questionable value the corresponding impulse response functions.

Under what circumstances could v be identified with e? Because u =

B0-1e and v = P-1u, v is equal to e if P-1 = B0. Since P is triangular,
this implies that B0 must
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also be triangular. This in turn implies that the structural equation form
of the VAR must be recursive. Indeed, if the system is recursive, the e
errors are uncorrelated, and B0 is normalized to have ones down its

diagonal, P-1 will equal B0 (providing, of course, that the equations are
arranged in the appropriate order). In this case the structural form of the
VAR is identified because B0 can be estimated by the estimate of P-1.
This leads to the awkward (for advocates of VARs) conclusion that the
VAR impulse response functions make sense only when the structural
equations are identified, exactly the situation the VAR advocates had
scorned because of the "incredible" restrictions they required!

Recognition of this has caused VAR advocates to change their attitude
toward the identification of structural forms of VARs. Meaningful
impulse response functions can be produced so long as the associated
structural VAR is identified, by whatever means. Identification can be
accomplished by using economic information in the form of recursive
structures, coefficient restrictions, variance or covariance restrictions,
symmetry restrictions, or restrictions on long-run multiplier values.
Enders (1995, pp. 320-42) has a good discussion. Pagan (1995)
discusses this change in VAR methodology in a broader context.



Hamilton (1995, pp. 291340) has a good presentation of the technical
details of VARs.

The decomposition of W discussed above is sometimes undertaken
using the Cholesky decomposition in which W = PD½D½P' with P in
the analysis above being replaced by PD½. The only difference this
implies is that PD1/2 has the standard deviation of u along its principal
diagonal, so that a unit innovation in the orthogonal error now
corresponds to a change of one standard deviation.
 

page_182

Page 183

11
Violating Assumption Five: Multicollinearity

11.1 Introduction

The fifth assumption of the CLR model specifies that there are no exact
linear relationships between the independent variables and that there
are at least as many observations as independent variables. If either half
of this assumption is violated, it is mechanically impossible to compute
the OLS estimates; i.e., the estimating procedure simply breaks down
for mathematical reasons, just as if someone tried to divide by zero.

Both of these phenomena are rare. Most economists recognize that it is
impossible to estimate n parameter values with less than n numbers and
so ensure that their sample size is larger than the number of parameters
they are estimating. In fact, they usually seek out the largest available
sample size to ensure that the difference between the sample size and
the number of parameters being estimated (this difference is the degrees
of freedom) is as large as possible, since the variances of their estimates
are usually smaller the larger is the number of degrees of freedom. An
exact linear relationship between the independent variables usually
occurs only in data that have been constructed by the researcher
(usually in cases involving dummy variables, an example of which is
given in chapter 14); with care this can be avoided, or the regression
problem can be reformulated when the computer rejects the regression
run. To have an exact linear relationship in raw data is indeed a fluke.



It is quite possible, however, to have an approximate linear relationship
among independent variables - in fact, such approximate relationships
are very common among economic variables. It is often said in jest that,
while one econometrician is regressing a dependent variable on several
independent variables in the hopes of finding a strong relationship,
another econometrician somewhere else in the world is probably
regressing one of those independent variables on some of the other
independent variables in the hope of showing that to be a strong linear
relationship. Although the estimation procedure does not break down
when the independent variables are highly correlated (i.e.,
approximately linearly related), severe estimation problems arise.
Multicollinearity is the name given to this phenomenon. Although
technically the fifth assumption
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of the CLR model is violated only in the case of exact multicollinearity
(an exact linear relationship among some of the regressors), the
presence of multicollinearity (an approximate linear relationship among
some of the regressors) leads to estimating problems important enough
to warrant our treating it as a violation of the CLR model.

Multicollinearity does not depend on any theoretical or actual linear
relationship among any of the regressors; it depends on the existence of
an approximate linear relationship in the data set at hand. Unlike most
other estimating problems, this problem is caused by the particular
sample available. Multicollinearity in the data could arise for several
reasons. For example, the independent variables may all share a
common time trend, one independent variable might be the lagged value
of another that follows a trend, some independent variables may have
varied together because the data were not collected from a wide enough
base, or there could in fact exist some kind of approximate relationship
among some of the regressors. If economists could collect data from
controlled experiments, the multicollinearity problem could be
eliminated by proper experimental design - the observations on the
independent variables would be constructed so as to be orthogonal (the
opposite of collinear). Economists are almost never in the position of
conducting controlled experiments, however, and thus often must worry
about the effects of multicollinearity in their data.

11.2 Consequences



The OLS estimator in the presence of multicollinearity remains unbiased
and in fact is still the BLUE. The R2 statistic is unaffected. In fact,
since all the CLR assumptions are (strictly speaking) still met, the OLS
estimator retains all its desirable properties, as noted in chapter 3. The
major undesirable consequence of multicollinearity is that the variances
of the OLS estimates of the parameters of the collinear variables are
quite large. These high variances arise because in the presence of
multicollinearity the OLS estimating procedure is not given enough
independent variation in a variable to calculate with confidence the
effect it has on the dependent variable. As a result, the consequences of
this undesirable feature of the sample are indistinguishable from the
consequences of inadequate variability of the regressors in a data set, an
interpretation of multicollinearity which has unfortunately not been well
understood by practitioners.

Consider the case in which a dependent variable is being regressed on
two highly correlated independent variables. Variation in the two
regressors can be classified into three types: variation unique to the first
regressor, variation unique to the second regressor, and variation
common to both. In measuring the effect of the first regressor on the
dependent variable (i.e., in estimating its coefficient) only variation in
the first regressor unique to that regressor can be used; variation in the
first regressor that is shared by the second regressor cannot be used
because there would be no way of knowing whether the dependent
variable
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variation was due to variation in the first or in the second variable. The
OLS procedure uses only variation unique to the first regressor in
calculating the OLS estimate of the coefficient of the first regressor; it
uses only variation unique to the second regressor in calculating the
coefficient estimate of the second regressor. For the purpose of
calculating coefficient estimates, the common variation is ignored. (It is
used, however, for prediction purposes and in calculating R2.) When
the regressors are highly correlated, most of their variation is common
to both variables, leaving little variation unique to each variable. This
means that the OLS procedure has little information to use in making its
coefficient estimates, just as though it had a very small sample size, or a
sample in which the independent variable did not vary much. Any
estimate based on little information cannot be held with much



confidence - it will have a high variance. The higher the correlation
between the independent variables (the more severe the
multicollinearity), the less information used by the OLS estimator to
calculate the parameter estimates and thus the greater the variances.

As another way of looking at this, consider the information that was
cast aside. It consists of variation in the dependent variable explained
by common variation in the two regressors. If this common explanation
were known to be due to one regressor rather than the other, the
estimate of the two regressors' coefficients might have to be
considerably changed. But the allocation of this common explanation
between the two regressors is unknown. It is this uncertainty as to
which variable deserves the credit for the jointly explained variation in
the dependent variable that creates the uncertainty as to the true values
of the coefficients being estimated and thus causes the higher variances
of their estimates.

Having high variances means that the parameter estimates are not
precise (they do not provide the researcher with reliable estimates of the
parameters) and hypothesis testing is not powerful (diverse hypotheses
about the parameter values cannot be rejected). As an example of this,
consider the case illustrated in figure 11.1. The confidence ellipse
(recall section 4.3) for the two parameter estimates is long, narrow and
tilted, reflecting the collinearity in the regressors. If the influence on the
dependent variable of the common variation is in fact due to the first
regressor, b1 will be large and b2 small, implying a true parameter value
set in the lower right of the ellipse. If it is due to the second regressor,
b2 will be large and b1 small, implying a true parameter value set in the
upper left of the confidence ellipse. There is a high (negative)
covariance between the two estimators. In figure 11.1 the ellipse covers
part of the vertical axis and part of the horizontal axis, implying that the
individual hypothesis b1 = 0 cannot be rejected and the individual
hypothesis b2 = 0 cannot be rejected. But the ellipse does not cover the
origin, so that the joint hypothesis that both b1 and b2 are zero is
rejected. Although the researcher knows that at least one of these
variables is relevant, the correct specification is difficult to determine
without sound guidance from economic theory. Thus a second
consequence of multicollinearity is that it can easily lead to
specification errors (which in this context is quite
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serious since the parameter estimates are very sensitive to the model
specification).

11.3 Detecting Multicollinearity

Much controversy has surrounded the question of detecting the
existence of multicollinearity, or, more correctly, the question of
measuring the extent to which data are collinear. One reason for this is
that many of the detection methods suggested are inadequate and have
justifiably been criticized. But there exists a far more important reason.
The only remedy for undesirably high variances is somehow to
incorporate additional information in the estimating procedure. This
remedy is the same regardless of whether these undesirably high
variances were caused by multicollinearity or inadequate variation of
the regressors in the data set. If it doesn't make any difference whether
high variances of coefficient estimates are due to collinearity or to
inadequate variability in the data, why bother trying to detect
multicollinearity? This is an awkward question. The usual response is
that, through efforts to detect the existence of multicollinearity, a
researcher may be led to consider explicitly extra information that will
be more likely (than other kinds of extra information) to reduce the
variances in question. On the other hand, he or she for this same reason
may be led more quickly to incorporate false information. This
perspective is important to keep in mind whenever employing methods
for detecting multicollinearity.



Figure 11.1
High negative covariance arising from

collinearity
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It is common for researchers to claim that multicollinearity is at work
whenever their hypothesized signs are not found in the regression
results, when variables that they know a priori to be important have
insignificant t values, or when various regression results are changed
substantively whenever an explanatory variable is deleted.
Unfortunately, none of these conditions is either necessary or sufficient
for the existence of collinearity, and furthermore none provides any
useful suggestions as to what kind of extra information might be
required to solve the estimation problem they represent.

Another popular means of detecting multicollinearity is through the use
of the correlation matrix. Computer printouts of most regression
packages include a matrix of simple correlation coefficients between all
pairs of the independent variables. The off-diagonal elements contain
the simple correlation coefficients for the given data set; the diagonal
elements are all unity since each variable is perfectly correlated with
itself. A high value (about 0.8 or 0.9 in absolute value) of one of these



correlation coefficients indicates high correlation between the two
independent variables to which it refers. This method does detect
collinearity between two specific variables and thus can suggest what
kind of extra information (e.g., that one of these variables' coefficients
is zero) might be most useful in solving the problem; but it does not
allow detection of a case in which three or more variables are collinear
with no two taken alone exhibiting high correlation.

A less common, but more satisfactory, way of detecting
multicollinearity is through the condition index, or number, of the data,
the square root of the ratio of the largest to the smallest characteristic
root of X'X. A high condition index reflects the presence of collinearity.

11.4 What to Do

There are two basic options for researchers faced with multicollinearity.

(1) Do Nothing

The existence of multicollinearity in a data set does not necessarily
mean that the coefficient estimates in which the researcher is interested
have unacceptably high variances. The classic example of this is
estimation of the Cobb-Douglas production function: the inputs capital
and labor are highly collinear, but nonetheless good estimates are
obtained. This has led to the rule of thumb, "Don't worry about
multicollinearity if the R2 from the regression exceeds the R2 of any
independent variable regressed on the other independent variables."
Another rule of thumb sometimes used is "Don't worry about
multicollinearity if the t statistics are all greater than 2."

A second reason for following a course of inaction can be illustrated by
figure 11.1. It should be clear from this diagram that, although the
variances of the estimates of b1 and b2 are high, the variance of an
estimate of the linear combina-
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tion of b1 and b2 given by the dashed line is low. Consequently, if the
researcher's interest centers on this linear combination, the
multicollinearity need not be of concern. This might happen, for
example, if the estimated equation is to be used for prediction purposes



and the multicollinearity pattern is expected to prevail in the situations
to be predicted.

(2) Incorporate Additional Information

There are several possibilities here, most of which should be considered
even in the absence of multicollinearity.

(a) Obtain more data Because the multicollinearity problem is
essentially a data problem, additional data that do not contain the
multicollinearity feature could solve the problem. Even getting
additional data with the same multicollinearity character would help,
since the larger sample size would provide some additional information,
helping to reduce variances.

(b) Formalize relationships among regressors If it is believed that the
multicollinearity arises not from an unfortunate data set but from an
actual approximate linear relationship among some of the regressors,
this relationship could be formalized and the estimation could then
proceed in the context of a simultaneous equation estimation problem.

(c) Specify a relationship among some parameters Economic theory
may suggest that two parameters should be equal, that the sum of
several elasticities should be unity, or, in general, that there exists a
specific relationship among some of the parameters in the estimating
equation. Incorporation of this information, via methods discussed in
chapter 12, will reduce the variances of the estimates. As an example,
consider specifying that the coefficients of a lag structure take the form
of a Koyck distributed lag (i.e., they decline geometrically), as discussed
in section 9.3.

(d) Drop a variable A popular means of avoiding the multicollinearity
problem is by simply omitting one of the collinear variables. If the true
coefficient of that variable in the equation being estimated is zero, this
is a correct move. If the true coefficient of that variable is not zero,
however, a specification error is created. As noted in section 6.2,
omitting a relevant variable causes estimates of the parameters of the
remaining variables to be biased (unless some of these remaining
variables are uncorrelated with the omitted variable, in which case their
parameter estimates remain unbiased). The real question here is
whether, by dropping a variable, the econometrician can reduce the
variance of the remaining estimates by enough to compensate for this
bias introduced. This suggests the use of the MSE criterion in
undertaking a decision to drop a variable. This approach should not be



adopted cavalierly, since, as noted by Drèze (1983, p. 296), ''setting a
coefficient equal to zero because it is estimated with poor precision
amounts to elevating ignorance to arrogance."

(e) Incorporate estimates from other studies If an extraneous estimate
of the coefficient of one of the variables involved in the
multicollinearity is avail-
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able, it can be used, via the mixed estimation technique described in
chapter 12, to alleviate the high variance problem occasioned by the
multicollinearity. If this is done, however, care must be taken to ensure
that the extraneous estimate is relevant. For example, estimates from
cross-sectional studies are often used to alleviate time series
multicollinearity, but cross-section estimates relate to the long-run
version of many parameters, rather than the short-run version relevant
for time series studies.

(f) Form a principal component The variables that are collinear could
be grouped together to form a composite index capable of representing
this group of variables by itself. Such a composite variable should be
created only if the variables included in the composite have some useful
combined economic interpretation; otherwise the empirical results will
have little meaning. For example, in undertaking a study of the effect of
marketing activity on consumer demand, a researcher might find that
variables representing different dimensions of marketing activity are
highly collinear; some combination of these variables could readily be
interpreted as a "marketing variable" and its use in the model would not
confuse the meaning of the empirical results. The most popular way of
constructing such a composite index is to use the first principal
component of the variables in question.

(g) Shrink the OLS estimates By shrinking the OLS estimates towards
the zero vector, a researcher may be able to reduce the risk (the sum of
the MSEs of each individual parameter estimate) of the estimates.
Implicitly, this is equivalent to incorporating the ad hoc stochastic prior
information that the true b is close to the zero vector. The two most
popular means of doing this are the ridge estimator and the Stein
estimator.

General Notes



11.2 Consequences

Leamer (1983b, pp. 300-3) stresses the fact that collinearity as a cause
of weak evidence (high variances) is indistinguishable from inadequate
data variability as a cause of weak evidence. Goldberger (1989, p. 141)
speculates that the reason practitioners seem not to understand this is
because there is no fancy polysyllabic name for "small sample size." He
suggests the term "micronumerosity" be used, and provides a very
amusing account of how all of the ills and manifestations of
multicollinearity can be described in terms of micronumerosity.

The Ballentine portrays the multicollinearity phenomenon succinctly.
Consider figure 3.2, in the general notes to chapter 3. Multicollinearity
is reflected by a large overlap between the X and Z circles. This could
create a large red area at the expense of the blue or green areas. These
blue and green areas reflect the information used to estimate bx and bz;
since less information is used, the variances of these parameter
estimates are larger.

In addition to creating high variances of coefficient estimates,
multicollinearity is associated with the undesirable problem that
calculations based on the data matrix are
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unstable in that slight variations in the data matrix, such as addition or
deletion of an observation, lead to large changes in parameter estimates.
An example of this is provided in Beaton et al. (1976), who perturb a
set of collinear data by adding random numbers between -0.5 and +0.5
(i.e., they have added a rounding error beyond the last published digit).
These small perturbations change drastically most parameter estimates.
Incorporating additional information into the estimation procedure tends
to stabilize estimates in this respect, as well as reducing variances.

11.3 Detecting Multicollinearity

The use of condition indices for the detection of multicollinearity is
advocated in persuasive fashion by Belsley et al. (1980, chapter 3). The
data must be scaled before calculation of the condition index; see
Belsley (1989). As a rule of thumb, a condition index greater than 30
indicates strong collinearity.



The inverse of the correlation matrix is also used in detecting
multicollinearity. The diagonal elements of this matrix are called

variance inflation factors. VIFi. They are given by  where  is
the R2 from regressing the ith independent variable on all the other

independent variables. A high VIF indicates an  near unity and hence
suggests collinearity. As a rule of thumb, for standardized data a VIFi>
10 indicates harmful collinearity.

Multicollinearity detection methods suggested by Farrar and Glauber
(1967) have become undeservedly popular. For a summary of the
critiques of these methods, see Belsley et al. (1980, pp. 93-5).

Belsley (1984b) notes that centering data (expressing them as deviations
from their means) can produce meaningless and misleading collinearity
diagnostics. See also Belsley (1986a).

11.4 What to Do

A useful perspective on the "do nothing or incorporate additional
information" approach to multicollinearity is offered by Blanchard
(1987, p. 449):

When students run their first ordinary least squares (OLS)
regression, the first problem that they usually encounter is that
of multicollinearity. Many of them conclude that there is
something wrong with OLS; some resort to new and often
creative techniques to get around the problem. But, we tell
them, this is wrong. Multicollinearity is God's will, not a problem
with OLS or statistical techniques in general. Only use of more
economic theory in the form of additional restrictions may help
alleviate the multicollinearity problem. One should not,
however, expect miracles; multicollinearity is likely to prevent
the data from speaking loudly on some issues, even when all of
the resources of economic theory have been exhausted.

The do-nothing approach is supported by Conlisk (1971), who shows
that multicollinearity can be advantageous in several special
circumstances. He gives examples of estimation of a linear combination
of the parameters, estimation of the intercept, estimation in the presence
of certain kinds of a priori information, estimation when there are
unequal costs associated with different observations, and estimation in
the context of autocorrelated residuals.
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It must be stressed that the incorporation-of-additional-information
approach will "solve" the multicollinearity problem (in the sense of
generating a lower MSE) only if the extra information is "close" to
being correct. This is discussed at length in chapter 12.

Silvey (1969) discusses the nature of additional data that would be most
useful in resolving the multicollinearity problem.

The discussion in the body of this chapter of solving multicollinearity by
dropping a variable is a special case of the more general problem of
testing any linear restriction to see whether or not adding that restriction
will reduce MSE. See Toro-Vizcarrondo and Wallace (1968). It is a kind
of pre-test estimator, discussed in chapter 12.

Feldstein (1973) suggests using a weighted average of the estimates
obtained with and without dropping a variable, where the weights,
chosen to minimize MSE, involve the value of the t statistic used to test
whether or not that variable's coefficient is significantly different from
zero. This principle is similar to that underlying the Stein estimator,
discussed in chapter 12.

The problem of high variances could be solved by adding (rather than
dropping) a variable. Adding a variable that was incorrectly excluded
could markedly reduce the estimate of the error variance, which implies
lower estimated variances of all coefficient estimates.

Kuh and Mayer (1957) discuss problems associated with the use of
extraneous estimates to avoid multicollinearity. See also Adams (1965)
and Baltagi and Griffen (1984). Underspecification of dynamics,
causing time series estimates to be underestimates of long-run effects, is
the usual explanation offered for why time series and cross-section
parameter estimates cannot be equated.

The first principal component of a set of variables is a weighted average
of the variables in which the weights are chosen to make the composite
variable reflect the maximum possible proportion of the total variation
in the set. Additional principal components can be calculated (i.e., the
second principal component is orthogonal to the first and uses weights
designed to incorporate within it the maximum possible proportion of
the remaining variation in the original variables), but the first principal



component usually captures enough of the variation in the set to be an
adequate representative of that set on its own.

The principal components technique as described in the body of this
chapter is not the usual way in which it is advocated. If there are J
explanatory variables, then J principal components can be constructed,
each orthogonal to the others. If the regression is run on some of these J
principal components, rather than on the original J variables, the results

of this regression can be transformed to provide estimates  of the
coefficients b of the original variables. If all J principal components are

used, the resulting  is identical to the  obtained by regressing on the
original, collinear data: nothing is gained. The rationale of the principal
components method is not to include all of the principal components in
the preliminary stage; by dropping some of the principal components,
this method produces different estimates of b, with smaller variances.
The reduction in variances occurs because implicitly this technique
incorporates the extra information that the coefficients on the dropped
principal components are zero. This in turn implies information on
particular functions of the original coefficients, involving the weights
used to form the principal components. For discussion see Judge et al.
(1985, pp. 909-12). For an instructive example of an application of this
technique, see Sanint (1982).
 

page_191

Page 192

The ridge estimator is given by the formula(X'X + kl)-1X'Y = (X'X +

kl)-1X'XbOLS

where k is a non-negative number. For k = 0 the ridge estimator is
identical to the OLS estimator. As k becomes more and more positive,
bOLS is shrunk more and more towards the zero vector. The rationale
behind the ridge estimator is that there exists a number k such that the
MSE of the ridge estimator is less than the MSE of bOLS.
Unfortunately, this k value is not known: it depends on the unknown
parameters of the model in question. A wide variety of different
methods of selecting k have been suggested, all using the sample data.
This produces a stochastic k, implying that the existence of an
MSE-reducing, non-stochastic k is no longer relevant. In particular, it is
in the presence of multicollinearity that it is difficult to use the data to
obtain an accurate estimate of k, implying that the ridge estimator is not



likely to offer much improvement on bOLS in the presence of
multicollinearity. Fomby et al. (1984, pp. 300-2) have a concise
exposition of this.

There exists a plethora of Monte Carlo studies examining the relative
merits of different ways of choosing k to operationalize the ridge
estimator. For a critical review of many of these studies, see Draper and
Van Nostrand (1979), who conclude (p. 464) that "The extended
inference that ridge regression is 'always' better than least squares is,
typically, completely unjustified." This conclusion is not shared by all,
however - see for example Lin and Kmenta (1982). Ridge regression is
in fact a topic of considerable debate. Vinod and Ullah (1981, chapter
7) are proponents, Draper and Van Nostrand (1979) are opponents, and
Judge et al. (1980, pp. 471-87) fall in between. Smith and Campbell
(1980, and ensuing discussion) illustrate some facets of this debate.

The ridge estimator can be viewed as the OLS estimator incorporating
the "stochastic" constraint that b is the zero vector. The extent of the
shrinking towards the zero vector (the magnitude of k) depends on the
"variance" of this additional information that b is "close" to the zero
vector. In a Bayesian interpretation (see chapter 13) the extent of the
shrinking depends on the confidence with which it is believed that b is
the zero vector. Why should a researcher be prepared to incorporate
this particular extra information? Vinod and Ullah (1981, p. 187) offer
the justification that ''In the absence of specific prior knowledge it is
often scientifically conservative to shrink toward the zero vector."
Chow (1983, p. 98) notes that econometricians scale their data so that a
coefficient value of, say, 10,000 or larger is extremely unlikely, so that
"Considering all the real numbers, . . . zero is not a bad guess." On the
other hand, Maddala (1988, p. 236) opines that "in almost all economic
problems, this sort of prior information (that the means of the bi's are
zero) is very unreasonable." Judge et al. (1980, p. 494) comment that
"These estimators work by shrinking coefficients . . . towards zero. This
is clearly a desperation measure."

A concise exposition of the use of the Stein estimator in the context of
multicollinearity can be found in Hill et al. (1981) and Mittelhammer
and Young (1981). This estimator, discussed in chapter 12, is in essence
a weighted average of the OLS estimates with and without extra
information, where the weights are determined by the value of the F
statistic used for testing the validity of the extra information. Although
in some types of problems this guarantees an improvement in risk
(MSE), in the regression context the Stein estimator dominates the OLS



estimator only if
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tr(X'X)-1> 2dL where dL is the largest characteristic root of (X'X)-1.
Unfortunately, the presence of multicollinearity is likely to cause this
condition not to hold. For discussion see Hill and Ziemer (1982, 1984)
and for examples with economic data see Aigner and Judge (1977).

Like the ridge estimator, the Stein estimator can be given a Bayesian
interpretation; if the stochastic prior for b is chosen to be the zero
vector, the ridge and Stein estimators differ only in that implicitly they
use different variance-covariance matrices for this prior vector. Unlike
the ridge estimator, however, the Stein estimator is commonly used for
problems not involving multicollinearity and so the choice of a nonzero
prior vector is more readily considered. For example, a principal
components estimate of b could be chosen as the extra information to
serve as the prior vector.

A drawback of addressing multicollinearity by using ridge, Stein or
pre-test estimators is that these estimators have unknown distributions
so that hypothesis testing cannot be undertaken.

Fomby and Hill (1986) advocate a robust generalized Bayesian
estimator which performs well in the face of multicollinearity.

Creating multicollinear data for Monte Carlo studies is not easy. See
Hill (1987).

Technical Notes

The estimated variance of a parameter estimate  is given by Stone
(1945) as

where  is the estimated variance of the dependent variable,  is

estimated variance of the kth independent variable and  is the R2
from a regression of the kth independent variable on all the other



independent variables. This formula shows that

(a) the variance of  decreases as the kth independent variable

ranges more widely (  higher);

(b) the variance of  increases as the independent variables

become more collinear (  higher) and becomes infinite in the case
of exact multicollinearity;

(c) the variance of  decreases as R2 rises, so that the effect of a

high  can be offset by a high R2.
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12
Incorporating Extraneous Information

12.1 Introduction

Economic data are not easy to deal with. For example, they are
frequently characterized by multicollinearity. Because of problems like
this, econometric estimates often lack efficiency. If extraneous (a
priori) information, available from economic theory or previous studies,
can be incorporated into the estimation procedure, efficiency can be
improved. This is the case even if the extraneous information employed
is incorrect (as it often is): more information cannot help but reduce
variance. But incorrect extraneous information creates bias, so trading
off variance and bias (usually through the MSE criterion) becomes a
question of central importance in this context.

The purpose of this chapter is to describe a variety of ways in which
extraneous information can play a role in improving parameter
estimates. The discussion of this chapter is entirely in the classical mold.
Bayesians claim that the most logical and consistent way of
incorporating extraneous information is through the use of Bayes'
theorem; the Bayesian approach is discussed at length in chapter 13.

12.2 Exact Restrictions



The extraneous information might take the form of an exact restriction
involving some of the parameters to be estimated. For example,
economic theory might suggest that the sum of a number of propensities
is equal to 1, or that the value of one parameter is twice the value of
another. If this restriction is linear it can be used to eliminate
mathematically one parameter, and a new estimating equation can be
constructed with fewer parameters and fewer independent variables.
(These new independent variables are linear combinations of the
original independent variables.) The parameter estimates of the new
estimating equation can be used to create estimates of the original
parameters.

This method is analytically equivalent to restricted least squares, a
technique in which the sum of squared error terms is minimized subject
to the extraneous
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information restriction. The resulting estimator can be shown to be the
BLUE in the CLR model extended to include the extraneous
information. If the extraneous information restriction is nonlinear (for
example, that the product of two parameters is equal to a third
parameter), computer-assisted numerical techniques similar to those
used for nonlinear least squares must be used to minimize the sum of
squared residuals subject to the nonlinear constraint.

12.3 Stochastic Restrictions

Another form of extraneous information is a stochastic restriction, the
most common example of which is an estimate of a parameter from a
previous study. Such restrictions must be written with an error term, so

that, for example, an extraneous unbiased estimate  of bk must be
written as

where n is an error term (with variance equal to the variance of  ).
This information is incorporated into the estimation procedure by
interpreting the stochastic restriction as an extra sample observation. In



the example of  the extra observation consists of a value of 1 for the
kth independent variable, zero values for all the other independent

variables, and a value of  for the dependent variable. The variance of
the error term (n) associated with this extra "observation" is the

variance of  and is not equal to the variance of the error terms
associated with the regular sample observations. Thus GLS, not OLS,
should be applied to this "augmented" sample to produce an efficient
estimate. This technique is called the mixed estimator because it mixes
stochastic sample and stochastic prior information.

12.4 Pre-Test Estimators

Our discussion of extraneous information so far has assumed that the
information employed is correct when in general it is often the case that
this is not known with certainty. In actual applications, a common
practice is to test information for its validity, before estimation; if the
hypothesis that the information/restriction is true is accepted, the
restricted OLS estimator is used, and if this hypothesis is rejected, the
unrestricted OLS estimator is used. This methodology defines what is
called a pre-test estimator: an estimator of an unknown parameter is
chosen on the basis of the outcome of a pre-test.

To illustrate the nature of pre-test estimators and their implications,
consider the following popular example. Suppose a researcher is
uncertain whether or not the variable z should be included as a regressor
and consequently decides to include/exclude z on the basis of a t test at,
say, the 5% level. Two cases must be examined.
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(1) z is in fact irrelevant In this case the t test will correctly exclude z in
repeated samples 95% of the time. But 5% of the time it will incorrectly
be included, so that in 5% of the repeated samples the OLS estimator
used will not have its desirable properties, implying that, overall, these
desirable properties in repeated samples do not characterize the pre-test
estimator. In this case, if z is not orthogonal to the other regressors, the
variance of the pre-test estimator of the other slope coefficients will be
higher than if z were omitted without testing. No bias is created.



(2) z is in fact relevant In this case the t test will correctly include z a
percentage of times equal to the power P of the test, a percentage that
becomes greater and greater as the slope coefficient of z becomes more
and more different from zero. But (100 - P)% of the time z will be
incorrectly excluded, so that in (100 - P)% of repeated samples the OLS
estimator used will not have its desirable properties. Once again,
overall, this pre-test estimator will not have the desirable properties of
the appropriate OLS estimator. In this case the pre-test estimator
exhibits bias.

This failure of the pre-test estimator to achieve the properties of the
OLS estimator using the correct specification is called pre-test bias One
of its major implications is that the traditional hypothesis-testing
methodology, which depends on an estimator having certain properties
in repeated samples, is now much more complicated; traditional
formulas, such as the traditional formula for the standard error, cannot
be used, and the correct measures are difficult to calculate.

The most dramatic implication of the pre-test bias phenomenon occurs
when econometricians use sequential or "stepwise" testing procedures
(sometimes called "data mining"), in which a large number of different
hypotheses are tested to select a relatively small set of independent
variables out of a much larger set of potential independent variables,
greatly increasing the probability of adopting, by chance, an incorrect
set of independent variables. This problem has been exacerbated by the
advent of the computer. There is an unfortunate tendency among
econometricians to do more computing than thinking when model-
building; the pre-test bias phenomenon is sometimes described by the
phrase, ''Compute first and think afterwards."

Most econometricians ignore the pre-test bias problem; in fact, few
even admit its existence. The main counter-argument to pre-test bias is
that without pre-testing we must rely on an assumption concerning what
variables are included in the set of independent variables. Is the
probability that pre-testing yields an incorrect set of independent
variables greater than or less than the probability that the
econometrician has selected the "correct" assumption? Pre-testing is
simply a means of providing additional evidence to aid the
econometrician in selecting the appropriate set of independent
variables. So long as the econometrician views this as evidence to be
evaluated sensibly in light of other considerations (such as economic
theory), rather than as a mechanical proce-
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Figure 12.1
Risk functions for selected estimators

dure, pre-test bias should not be of great concern. A more cogent
counter-argument is to note that an examination of the mean square
error (MSE) properties of the pre-test estimator, relative to its
competitors, needs to be undertaken to determine how serious this
problem is. The next section examines this question.

12.5 Extraneous Information and MSE

If extraneous information is incorrect, an estimator incorporating this
information, or a pre-test estimator that sometimes (in repeated
samples) incorporates this information, will be biased. This complicates
the decision to incorporate extraneous information because the
reduction in variance from its incorporation might be more than offset
by the bias introduced. As is usual when faced with such a trade-off,
econometricians turn to the mean square error (MSE) criterion.

Risk functions, portrayed in figure 12.1, can be used to show the MSE
associated with relevant estimators in the context of some set of
restrictions. The vertical axis measures risk, the sum of the MSEs of the
estimators of each element of the parameter vector. The horizontal axis
measures the extent to which the restrictions are not met, i.e., the
degree of "falsity" of the extraneous information.



Recall that MSE can be broken into the sum of the variance and the
square of the bias. The unrestricted OLS estimator has zero bias and a
constant variance regardless of the truth of the restrictions, so its risk
function is drawn as a horizontal line at V, where V is the sum of the
variances of the unrestricted OLS estimators of the elements of the
parameter vector. The restricted OLS estimator has a smaller variance
than the unrestricted OLS estimator, and, when the restriction is true,
also has no bias. Thus, when the restriction is true (i.e., at the vertical
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axis in figure 12.1), the risk of the restricted OLS estimator is lower
than V, say W. As the restriction becomes more and more false, the
restricted estimator retains its small variance but suffers a greater and
greater bias; reflecting this, the risk function for the restricted OLS
estimator slopes upward.

Consider now the pre-test estimator. When the restrictions are true it
has no bias, and, being a mixture of the restricted and unrestricted OLS
estimators, it has a variance between the variances of these two
estimators. Thus its risk function cuts the vertical axis between V and
W. When the restrictions are far from true, the pre-test estimator should
almost always correctly reject the restrictions so that the risk of the
pre-test estimator should be virtually the same as the risk of the
unrestricted OLS estimator. This is shown in figure 12.1 by the risk
function of the pre-test estimator approaching asymptotically the risk
function of the unrestricted OLS estimator.

The pre-test estimator performs reasonably well when the restrictions
are either very close to being met or quite far from being met. In
between, however, as illustrated in figure 12.1, it does not do so well.
The reason for this is that in this intermediate position the pre-test does
not invariably accept or invariably reject; the percentage of times in
repeated samples that it accepts the restrictions is substantial, as is the
percentage of times that it rejects those restrictions. The estimates
produced when it (correctly) rejects are distributed around the true
unknown parameter value, but the estimates produced when it
(incorrectly) accepts are biased and thus are distributed around some
other unknown parameter value. Consequently, overall, both bias and a
larger variance are created.



The explanation of the preceding paragraph suggests that the
undesirable risk properties of the pre-test estimator stem from its
dichotomous nature, namely the fact that it jumps between the
unrestricted OLS formula and the restricted OLS formula. An ingenious
alternative to the pre-test estimator that avoids this problem, yet still
retains the flavor of the pre-test concept, is to use as an estimator a
weighted average of the restricted and unrestricted OLS estimators,
with the weights a function of the magnitude of the F statistic used to
test the restrictions. This is the essence of the Stein estimator. The
success of this principle is reflected in figure 12.1 by the risk function of
the Stein estimator. Note that it lies everywhere below the risk function
of the unrestricted OLS estimator (i.e., it dominates the unrestricted
OLS estimator), a result which astounded the statistics world when it
was first derived.

General Notes

12.1 Introduction

Not all forms of extraneous information are discussed here. For
example, information concerning the variance-covariance matrix of the
disturbance can clearly be incorporated directly into GLS estimation.
The role of information in the form of identifying restrictions for
simultaneous equations was discussed in chapter 10.
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As an example of how incorrect information can reduce variance,

suppose the incorrect information that b = 6.5 is employed. Then  ,

the estimate of b incorporating this information, is  = 6.5, ignoring the
data. The variance of this estimate is clearly zero, the smallest possible
variance.

It is an overstatement to claim that the introduction of extraneous
information must reduce variance. It is possible to create examples in
which this is not the case. Such examples rely on interaction of
incorrect information with another incorrect feature of the analysis. For
example, Taylor (1976) shows that extraneous information can worsen
estimates if the econometrician assumes that the variance-covariance
matrix of the disturbance is spherical when it in fact is not. Rothenberg



(1973, p. 57) gives an example in which using the MSE criterion in
conjunction with inequality constraints produces a worse estimate than
if the constraints had been ignored.

The problem of estimating distributed lags is one in which extraneous
information plays a prominent role. For a variety of reasons
(summarized nicely by Judge et al., 1980, pp. 623-9), economic
relationships can be expected to be such that lagged values of the
explanatory variable(s) appear as regressors. Although none of the CLR
model assumptions is violated, so that OLS is an appropriate estimating
procedure, invariably lagged values of an explanatory variable are
highly collinear, causing the OLS estimates to have high variances. (If
the lags are long, the resulting loss in degrees of freedom exacerbates
this problem.) Any of the techniques suggested for addressing the
multicollinearity problem (discussed in chapter 11) could be used here,
but by far the most popular method employed in this context is the
incorporation of extraneous information by specifying a lag
distribution.

A lag distribution function gives the magnitude of the coefficient of a
lagged explanatory variable, expressed as a function of the lag. By
specifying that this function takes a particular form, extra information is
injected into the estimation procedure. A wide variety of specifications
have been suggested for this purpose, some examples of which are the
arithmetic, inverted V, Almon, Shiller, harmonic, geometric, Pascal,
rational, gamma and exponential. For a concise summary, see Judge et
al. (1980, p. 631). A recently developed lag with attractive features is
the polynomial inverse lag; see Mitchell and Speaker (1986).

Lag distributions are characterized as finite or infinite, depending on the
time required for the lag effect to vanish completely. The most popular
finite lag distribution is the Almon polynomial lag distribution. In this
technique the n coefficients of the lagged explanatory variables are
assumed to lie on a polynomial (i.e., a function of the lag length) of
order r. This allows for a flexible lag structure with a reduction in the
number of parameters that require estimation if r + 1 is less than n. It
can be viewed as imposing a specific set of linear constraints on OLS
estimation. Shiller's distributed lag is a variant of this in which these
restrictions are stochastic, incorporated via the mixed estimation
technique; the coefficients of the lagged explanatory variable lie close
to, rather than on, a polynomial. The main problem with the Almon lag
is determining n and r. Pre-testing is usually employed for this purpose,
resulting in estimators with unknown properties.



The most popular infinite lag distribution is the Koyck geometric
distributed lag. Earlier discussion of this technique (chapter 9) showed
that it could be estimated by an autoregressive model with an
autocorrelated error. One disadvantage of this lag structure is that the
coefficients of the lagged explanatory variable(s) continually decline -
they cannot first rise and then decline, a pattern thought by many to be
a
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priori attractive and one which should not be ruled out of
consideration. One way of addressing this problem is to allow
unrestricted coefficients on the first few lagged variables and then to
impose a geometric pattern.

Good textbook presentations of distributed lags and their associated
estimation problems are Judge et al. (1985, chapters 9 and 10) and
Maddala (1977, chapter 16). Zaman (1996, pp. 223-5) has complained
that distributed lag estimation has assumed without justification that
lagged values of the dependent variable do not appear as regressors in
the original specification, violating one of the cornerstones of modern
dynamic modeling.

12.2 Exact Restrictions

An example can illustrate how a restricted least squares estimate is
found when the restriction is linear. Suppose y = a + bx + gz + e and it is
known that 3b + g = 1. Substituting g = 1 - 3b into this equation and
rearranging produces the relationship (y - z) = a + b(x - 3z) + e. The

restricted OLS estimates  and  are found by regressing (y - z) on a

constant and (x - 3z); then  is computed as 1-3  . The sum of
squared errors resulting from this regression is the restricted sum of
squared errors. For discussion of a more general case, see Greene and
Seaks (1991).

An exact linear restriction is tested using the traditional F test, as
expounded in chapter 4, in which the difference between the restricted
and unrestricted sum of squared errors plays a prominent role.



As an example of a nonlinear restriction, recall Durbin's two-stage
method of dealing with autocorrelated errors. In the technical notes to
section 8.2, the first-stage estimating relationship is shown to be such
that one slope coefficient is the negative of the product of two other
slope coefficients.

Economic theory sometimes suggests inequality restrictions, such as
that a parameter be negative or that it lie between zero and one. By
minimizing the sum of squared errors subject to the inequality
constraint(s), these restrictions can be incorporated. Unfortunately, it is
not possible to accomplish this via a regression technique; a quadratic
programming formulation of this problem is required. For an exposition,
see Judge et al. (1985, pp. 62-4). For large samples, when the variance
of the parameter estimates can be expected to be quite small, (correct)
inequality constraints are invariably met, and thus little is lost by
ignoring them. Geweke (1986) suggests an attractive way of handling
inequality constraints using a Bayesian approach; see the general notes
to section 13.3 for further comment.

12.3 Stochastic Restrictions

The mixed estimation method was developed in its most general form
by Theil and Goldberger (1961). They expressed the set of stochastic
linear restrictions in the form r = Rb + u where r is a known vector and
R a known matrix. This generalized the technique of Durbin (1953), in
which r is a vector of parameter estimates from a previous study and R
is an identity matrix. As makes intuitive sense, the mixed estimator
approaches the restricted OLS estimator as the variance of u
approaches zero, and approaches the unrestricted OLS estimator as the
variance of u becomes very large. Srivastava (1980) is an annotated
bibliography of estimation using stochastic con-
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straints. Kennedy (1991a) shows how a certain kind of nonlinear
stochastic information can be used by the mixed estimation technique.

A popular way of incorporating a stochastic restriction is to assume that
it is an exact restriction. Suppose for example that an extraneous

estimate  of bk is available. A common way of utilizing this

information is to subtract  times the kth independent variable from



the dependent variable and then regress this new dependent variable on
the remaining independent variables. The obvious deficiency of this
method is that it does not use the sample data to improve on the
estimate of bk. It is therefore not as efficient as the mixed estimator.
This is explained in the technical notes to this section.

The stochastic restrictions of the mixed estimator could be developed
and interpreted in subjective fashion as is done in the Bayesian
approach (see chapter 13). This creates a means of introducing
subjective prior information into classical statistics, although, as should
be clear from a reading of chapter 13, this requires a schizophrenic view
of probability.

The compatibility statistic developed by Theil (1963) is a means usually
employed to test whether or not stochastic extraneous information is
unbiased; i.e., it tests whether or not the stochastic restrictions are
compatible with the data at hand. It is a straight-forward application of
the Wald statistic, very similar in form and interpretation to the Wald
statistic discussed in the technical notes to section 6.4. There a Wald
statistic was used to test for the equality of parameters in two data sets
when the variance of the error term differed between the two data sets.

When there is a large number of existing studies, a completely different
way of making use of their results is through a technique called
meta-regression, in which the estimates of a parameter of interest are
themselves regressed on features of these studies thought to affect the
estimates they produce. See Stanley and Jarrell (1989). One way of
assessing if the evidence from several independent studies supports the
hypothesis that a variable has an impact is to produce a consolidated t
value by averaging the t values and dividing by the standard error of this
average. Since the variance of a t statistic is close to unity, a rule of
thumb for finding the consolidated t value is to multiply the average t
value by the square root of the number of t values being averaged. See
Christie (1990).

12.4 Pre-test Estimators

Wallace and Ashar (1972) and Wallace (1977) are good expositions of
pre-test bias. Giles and Giles (1993) is a recent survey of pre-test
estimation and testing. Veall (1992) suggests dealing with pre-test bias
in testing by bootstrapping the entire model selection process.

A straightforward corollary of the pre-test bias phenomenon is the fact
that researchers should not use the same sample evidence for both



generating a hypothesis and testing it.

The terminology "data mining" is often used in the context of pre-test
bias. In particular, researchers often run a large number of different
regressions on a body of data looking for significant t statistics (at, say,
the 5% level). Using this approach invalidates traditional hypothesis-
testing procedures because such data mining is likely by chance to
uncover significant t statistics; i.e., the final results chosen are much
more likely to embody a type I error than the claimed 5%. Lovell
(1983) offers a rule of
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thumb for deflating the exaggerated claims of significance generated by
such data-mining procedures: when a search has been conducted for the
best k out of c candidate explanatory variables, a regression coefficient
that appears to be significant at the level  should be regarded as
significant only at level a=(c/k)  .

The pre-testing phenomenon can arise in a variety of contexts. Some
recent Monte Carlo studies are King and Giles (1984) and Griffiths and
Beesley (1984), who examine pre-testing for autocorrelated errors, and
Morey (1984), who examines pre-testing for specification error. Zaman
(1984) conjectures that discontinuous functions of the data (such as
pre-test estimators which jump from one estimator to another on the
basis of a pre-test) are inadmissable, and that consequently shrinkage or
weighted-average estimators like the Stein estimator are superior.

12.5 Extraneous Information and MSE

Judge et al. (1985, pp. 7290) and Fomby et al. (1984, chapter 7) have
textbook discussions of pre-test and Stein estimators. Efron and Morris
(1977) have an interesting elementary presentation of the Stein
estimator. Judge and Bock (1978, pp. 309-11) has an excellent summary
of the properties of pre-test and Stein rule estimators.

Stein-type estimators do have disadvantages. They have unknown
small-sample distributions and thus cannot be used to test hypotheses or
construct confidence intervals, although this can be dealt with by
bootstrapping, as shown by Yi (1991).



Errors are assumed to be distributed normally. As noted in the general
notes to chapter 11, in the regression context they dominate OLS only
under certain circumstances, unlikely to be met by collinear data. And
last, the loss function with respect to which they are superior is the sum
of the MSEs of the estimators of the individual components of the
parameter vector, and depends on there being at least three of these
components. Nothing can be said about possible improvement of the
MSE of the estimator of any individual component.

The last point made above can be illustrated by an example from Efron
and Morris (1977). Suppose we have data on the incidence of a disease
in several regions of a small country. The unrestricted OLS estimate of
the unknown true incidence for each region is given by the mean of the
data for each region. But although the incidence of disease is likely to
differ from region to region, the facts that these regions belong to the
same country, and are or are close to being contiguous, suggest that
these incidence parameters may all be very similar. A not unreasonable
restriction to suggest in this context, then, is that all the incidences are
identical. Using this restriction, a Stein estimate of the incidence for
each region can be created, accomplished by "shrinking" each
unrestricted OLS estimate above towards the overall mean of the data.
Now suppose the national government plans to set up medical facilities
in each region to combat this disease, and wants to use the estimates of
regional disease incidence to determine how much of its budget it
should allocate to each region. In this case the sum of the individual
MSEs is the relevant criterion and the Stein estimates should be used for
this purpose. If, however, a regional government is making a decision on
how much money to spend on its own medical facility, only one MSE is
relevant, and the Stein estimator may not be the best one to use.

The Stein estimator can be interpreted as "shrinking" the unrestricted
OLS estimator towards the restricted OLS estimator, where the extent
of the shrinking depends on the
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magnitude of the F statistic used to test the restrictions. The formula
used for the shrinking factor can sometimes shrink the unrestricted OLS
estimator beyond the restricted OLS estimator. By truncating this
shrinking factor so as to prevent this from happening, an estimator
superior to the Stein estimator is created. It is called the Stein positive
rule estimator. The name derives from the popular application to zero



restrictions: the positive rule estimator prevents the sign of the Stein
estimator from differing from that of the unrestricted OLS estimator.

Technical Notes

12.3 Stochastic Restrictions

Calculation of the mixed estimator can be illustrated by an example.
Suppose we are estimating y = a + bx + gz + e for which we have T
observations. Assume the CLR model assumptions hold with the
variance of e given by s2. Suppose from a previous study we have an

estimate  of g with variance . Thus we could write 

where the variance of u is . The estimating equation for the mixed
estimator is given by y* = x*q + e*, where

and the variance-covariance matrix of e* is given by

Consider the following two methods of estimating b in the relationship y
= a + bx + gz + e.

(a) Ignore the estimate  from a previous study and regress y on a
constant, x, and z to obtain bOLS.

(b) Replace g by  , rearrange to get  and

regress (y-  z) on a constant and x to obtain b*. (This is a popular
means of incorporating stochastic information.)



Notice that method (a) utilizes only the information about g in the data
at hand to help in estimating b, ignoring the information about g from
the previous study. In contrast, method (b) above utilizes only the
information about g from the previous study, ignoring the information
about g in the data at hand. The mixed estimator is superior to these two
alternatives because it incorporates both sources of information about g
into the estimate of b.

In the example above, the variance of bOLS is smaller than the variance
of b* if the
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variance of the OLS estimate of g from method (a) is smaller than the
variance of from the previous study. For a derivation see Goldberger
(1964, pp. 258-9).

12.5 Extraneous Information and MSE

The explanation of the risk function of the pre-test estimator in figure
12.1 was couched in terms of a type I error of 5%. It is easy to see that
a type I error of 1% would create a different risk function, one lower on
the left and higher on the right. This raises the question of what level of
type I error is the optimum choice. Several criteria have been suggested
in this regard. For example, the type I error could be chosen so as to
minimize the maximum vertical distance in figure 12.1 between the risk
function for the pre-test estimator and the minimum of the risk
functions for the restricted and unrestricted OLS estimators. Wallace
(1977) summarizes this literature.

The usual measure of the extent to which the restrictions are not met -
the horizontal axis of figure 12.1 - is the non-centrality parameter of the
F statistic used to test the restrictions.

In figure 12.1 the restricted OLS estimator is the best estimator if the
case at hand lies to the left of point A, and the unrestricted OLS
estimator is the best estimator if we are to the right of point A. This
suggests that, rather than testing for the validity of the restrictions, we
should test for whether or not the restrictions are close enough to being
met that we are to the left of point A. This is the principle on which the
tests of Toro-Vizcarrondo and Wallace (1968), Wallace and



Toro-Vizcarrondo (1969), and Wallace (1972) are based. This
pre-testing procedure is much more sophisticated than the usual
pre-testing procedure.
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13
The Bayesian Approach

13.1 Introduction

There exist two very different approaches to statistics. The traditional
"classical" or "frequentist" approach is what has been presented
heretofore in this book; almost all econometrics textbooks exposit this
approach, with little or no mention of its competitor, the Bayesian
approach. One reason for this is the violent controversy among
statisticians concerning the relative merits of the Bayesian and
non-Bayesian methods, centering on the very different notions of
probability they employ. This controversy notwithstanding, it seems that
the main reason the Bayesian approach is used so seldom in
econometrics is that there exist several practical difficulties with its
application. In recent years, with the development of a variety of
computer packages, these practical difficulties have for the most part
been overcome; it therefore seems but a matter of time before Bayesian
analyses become common in econometrics.

One purpose of this chapter is to explain the fundamentals of the
Bayesian approach, with particular reference to the difference between
Bayesian and non-Bayesian methods. A second purpose is to discuss the
practical difficulties that, as alleged earlier, have prevented the adoption
of the Bayesian approach. No effort is made to present the mechanics
of Bayesian methods; textbook expositions are available for this
purpose.

13.2 What Is a Bayesian Analysis?

Suppose that, for illustrative purposes, we are interested in estimating
the value of an unknown parameter, b. Using the classical approach, the

data are fed into an estimating formula  to produce a specific point



estimate  of b. If  maximum likelihood estimate, it maximizes the

likelihood function, shown in figure 13.1. Associated with  is a
sampling distribution, also illustrated in figure 13.1, indicating the

relative frequency of estimates  would produce in hypothetical
repeated samples. This sampling distribution is drawn using a dashed
line to stress that it is unknown. If the assumptions of the classical nor-
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Figure 13.1
The classical sampling distribution

mal linear regression model hold, as is usually assumed to be the case,

the MLE  is the OLS estimator and its sampling distribution is normal
in form, with mean equal to the true (unknown) value of b. Any

particular estimate  of b is viewed as a random drawing from this

sampling distribution, and the use of  as a point estimate of b is
defended by appealing to the ''desirable" properties, such as

unbiasedness, of the sampling distribution of  This summarizes the
essentials of the classical, non-Bayesian approach.

The output from a Bayesian analysis is very different. Instead of
producing a point estimate of b, a Bayesian analysis produces as its



prime piece of output a density function for b called the "posterior"

density function. This density function relates to b, not , so it most
definitely is not a sampling distribution; it is interpreted as reflecting the
odds the researcher would give when taking bets on the true value of b.
For example, the researcher should be willing to bet three dollars, to win
one dollar, that the true value of b is above the lower quartile of his or
her posterior density for b. This "subjective" notion of probability is a
conceptually different concept of probability from the "frequentist" or
"objective" concept employed in the classical approach; this difference
is the main bone of contention between the Bayesians and
non-Bayesians.

Following this subjective notion of probability, it is easy to imagine that
before looking at the data the researcher could have a "prior" density
function of b, reflecting the odds that he or she would give, before
looking at the data, if asked to take bets on the true value of b. This
prior distribution, when combined with the data via Bayes' theorem,
produces the posterior distribution referred to above. This posterior
density function is in essence a weighted average of the
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Figure 13.2
Obtaining the posterior distribution



prior density and the likelihood (or "conditional" density, conditional on
the data), as illustrated in figure 13.2.

It may seem strange that the main output of the Bayesian analysis is a
density function instead of a point estimate as in the classical analysis.
The reason for this is that the posterior can be used as input to decision
problems, only one example of which is the problem of choosing a point
estimate. An illustration of how the posterior can be used in this way
should clarify this. To begin, a loss function must be specified, giving

the loss incurred, using a specific point estimate  for every possible

true value of b. The expected loss associated with using  can be
calculated by taking the expectation over all possible values of b, using
for this calculation the posterior density of b. Note that this expectation
is not taken over repeated samples.

This is illustrated in figure 13.3, which is drawn for the case of b being
estimated by the value b2. The loss function shown in figure 13.3 is
unique to this estimate b2; note that it is smallest when b = b2, as it
should be. Different true values of b give rise to different losses that
would be incurred if b were to be estimated by b2, and, loosely
speaking, the height of the posterior density function gives the
probability of particular values of b being the true value of b. Thus, for
the four bi illustrated in figure 13.3, with probability Pi, the true value

of b is bi and the loss would be Li.

The expected loss due to estimating b by b2 is given as the weighted
average of all possible Li, with weights given by the corresponding Pi.
Note that this calculation gives the expected loss associated with only
one estimate of b, namely b2. This calculation must now be repeated for
all other possible estimates of b
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Figure 13.3
Finding the expected loss of the estimate b2

(in this example, an infinite number of alternative estimates) to find the
expected losses associated with these alternative estimates. Figure 13.3
would look different for each of these alternative calculations - the loss
function would move horizontally so as to have its minimum over the
estimate for which the expected loss was being calculated. Once the
expected losses associated with all alternative estimates have been
calculated, the Bayesian point estimate for that loss function is chosen
as the estimate whose expected loss is the smallest. (Algebraic means
are employed to accomplish this - the expected losses are not actually
all calculated for an example such as this where there are an infinite
number of possible estimates.) In the example in figure 13.3, where the
loss function is drawn as quadratic (i.e., proportional to the square of
the difference between the estimate and the true value of b), the mean
of the posterior distribution turns out to have minimum expected loss
and will be chosen as the Bayesian point estimate.

To summarize, the Bayesian approach consists of three steps.



(1) A prior distribution is formalized, reflecting the researcher's beliefs
about the parameter(s) in question before looking at the data.

(2) This prior is combined with the data, via Bayes' theorem, to produce
the posterior distribution, the main output of a Bayesian analysis.
 

page_208

Page 209

(3) This posterior is combined with a loss or utility function to allow a
decision to be made on the basis of minimizing expected loss or
maximizing expected utility. This third step is optional.

13.3 Advantages of the Bayesian Approach

The Bayesian approach claims several advantages over the classical
approach, of which the following are some examples.

(1) The Bayesian approach is concerned with how information in data
modifies a researcher's beliefs about parameter values and allows
computation of probabilities associated with alternative hypotheses or
models; this corresponds directly to the approach to these problems
taken by most researchers.

(2) Extraneous information is routinely incorporated in a consistent
fashion in the Bayesian method through the formulation of the prior; in
the classical approach such information is more likely to be ignored, and
when incorporated is usually done so in ad hoc ways.

(3) The Bayesian approach can tailor the estimate to the purpose of the
study, through selection of the loss function; in general, its compatibility
with decision analysis is a decided advantage.

(4) There is no need to justify the estimating procedure in terms of the
awkward concept of the performance of the estimator in hypothetical
repeated samples; the Bayesian approach is justified solely on the basis
of the prior and the sample data.

A more complete, and more persuasive, listing of the advantages of the
Bayesian approach can be found in Zellner (1974). The essence of the
debate between the frequentists and the Bayesians rests on the
acceptability of the subjectivist notion of probability. Once one is
willing to view probability in this way, the advantages of the Bayesian



approach are compelling. But most practitioners, even though they have
no strong aversion to the subjectivist notion of probability, do not
choose to adopt the Bayesian approach. The reasons are practical in
nature.

(1) Formalizing prior beliefs into a prior distribution is not an easy task.

(2) The mechanics of finding the posterior distribution are formidable.

(3) Convincing others of the validity of Bayesian results is difficult
because they view those results as being "contaminated" by personal
(prior) beliefs.

In recent years these practical difficulties have been alleviated by the
development of appropriate computer software. These problems are
discussed in the next section.
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13.4 Overcoming Practitioners' Complaints

(1) Choosing a Prior

In the words of Smith and Brainard (1976), a prior distribution tries to
capture the "information which gives rise to that almost inevitable
disappointment one feels when confronted with a straightforward
estimation of one's preferred structural model." Non-Bayesians usually
employ this information to lead them to add, drop or modify variables in
an ad hoc search for a "better" result. Bayesians incorporate this
information into their prior, exploiting it ex ante in an explicit, up-front
fashion; they maintain that, since human judgement is inevitably an
ingredient in statistical procedures, it should be incorporated in a
formal, consistent manner.

Although non-Bayesian researchers do use such information implicitly
in undertaking ad hoc specification searches, they are extremely
reluctant to formalize this information in the form of a prior distribution
or to believe that others are capable of doing so. Leamer (1983b, p.
298) has expressed this sentiment cogently: "It seems clear to me that
the principal resistance to Bayesian methods is expressed in the
incredulous grin which greets Bayesians when they make statements
like: 'We need to begin with a multivariate prior distribution for the



parameter vector b.' "

To those unaccustomed to the Bayesian approach, formulating a prior
can be a daunting task. This prompts some researchers to employ an
"ignorance" prior, which, as its name implies, reflects complete
ignorance about the values of the parameters in question. In this
circumstance the outcome of the Bayesian analysis is based on the data
alone; it usually produces an answer identical, except for interpretation,
to that of the classical approach. Cases in which a researcher can
legitimately claim that he or she has absolutely no idea of the values of
the parameters are rare, however; in most cases an "informative" prior
must be formulated. There are three basic ways in which this can be
done.

(a) Using previous studies A researcher can allow results from previous
studies to define his or her prior. An earlier study, for example, may
have produced an estimate of the parameter in question, along with an
estimate of that estimate's variance. These numbers could be employed
by the researcher as the mean and variance of his or her prior. (Notice
that this changes dramatically the interpretation of these estimates.)

(b) Placing hypothetical bets Since the prior distribution reflects the
odds the researcher would give, before looking at the data, when taking
hypothetical bets on the value of the unknown parameter b, a natural
way of determining the prior is to ask the researcher (or an expert in the
area, since researchers often allow their prior to be determined by
advice from experts) various questions relating to hypothetical bets. For
example, via a series of questions a value b0 may be determined for
which the researcher would be indifferent to betting that
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the true value of b (1) lies above b0, or (2) lies below b0. As another
example, a similar series of questions could determine the smallest
interval that he or she would be willing to bet, at even odds, contains
the true value of b. Information obtained in this way can be used to
calculate the prior distribution.

(c) Using predictive distributions One problem with method (b) above
is that for many researchers, and particularly for experts whose opinions
may be used to formulate the researcher's prior, it is difficult to think in



terms of model parameters and to quantify information in terms of a
distribution for those parameters. They may be more comfortable
thinking in terms of the value of the dependent variable associated with
given values of the independent variables. Given a particular
combination of values of the independent variables, the expert is asked
for his or her assessment of the corresponding value of the dependent
variable (i.e., a prior is formed on the dependent variable, not the
parameters). This distribution, called a "predictive" distribution,
involves observable variables rather than unobservable parameters, and
thus should relate more directly to the expert's knowledge and
experience. By eliciting facts about an expert's predictive distributions
at various settings of the independent variables, it is possible to infer the
expert's associated (implicit) prior distribution concerning the
parameters of the model.

For many researchers, even the use of these methods cannot allow them
to feel comfortable with the prior developed. For these people the only
way in which a Bayesian analysis can be undertaken is by structuring a
range of prior distributions encompassing all prior distributions the
researcher feels are reasonable. This approach is advocated under
subsection (3) below as a necessary component of Bayesian analysis.

(2) Finding the Posterior

The algebra of Bayesian analyses is more difficult than that of classical
analyses, especially in multidimensional problems. For example, the
classical analysis of a multiple regression with normally distributed
errors in the Bayesian context requires a multivariate normal-gamma
prior which, when combined with a multivariate normal likelihood
function, produces a multivariate normal-gamma posterior from which
the posterior marginal distribution (marginal with respect to the
unknown variance of the error term) of the vector of slope coefficients
can be derived as a multivariate t distribution. This both sounds and is
mathematically demanding.

From the practitioner's viewpoint, however, this mathematics is not
necessary. Bayesian textbooks spell out the nature of the priors and
likelihoods relevant to a wide variety of estimation problems, and
discuss the form taken by the resulting output. Armed with this
knowledge, the practitioner can call on several computer packages to
perform the calculations required to produce the posterior distribution.
And then when, say, the mean of the posterior distribution must be
found to use as a point estimate, recently-developed computer
techniques can be
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used to perform the required numerical integration. Despite all this,
some econometricians complain that the Bayesian approach is messy,
requiring numerical integration instead of producing analytical
approximations, and has for this reason taken the fun out of statistics.

(3) Convincing Others

The problem Bayesians have of convincing others of the validity of
their results is captured neatly by Blyth (1972, p. 20):

However meaningful and helpful such numbers [Bayesian
results] are to the author, they are meaningless and irrelevant to
his reader . . . what the reader wants to know from the author is
'Leaving your opinions out of this, what does your experimental
evidence say?'

One way of addressing this problem is to employ either an ignorance
prior or a prior reflecting only results of earlier studies. But a better way
of resolving this problem is to report a range of empirical results
corresponding to a range of priors. This procedure has several
advantages. First, it should alleviate any uncomfortable feeling the
researcher may have with respect to his or her choice of prior. Second,
a realistic range of priors should encompass the prior of an adversary, so
that the range of results reported should include a result convincing to
that adversary. Third, if the results are not too sensitive to the nature of
the prior, a strong case can be made for the usefulness of these results.
And fourth, if the results are sensitive to the prior, this should be made
known so that the usefulness of such "fragile" results can be evaluated
in that light.

General Notes

13.1 Introduction

Hey (1983) is a good reference for the Bayesian approach at the most
elementary level. Novick and Jackson (1974) is invaluable at the
intermediate level. Zellner (1971) is an excellent advanced reference,
very comprehensive in its coverage of the Bayesian view of
econometric problems. Judge et al. (1985, chapter 4) is a useful



reference. Zellner and Richard (1973) is an instructive application. For
references to Bayesian computer programs see Press (1989, pp. 86100)
and Koop (1994).

Studying both Bayesian and non-Bayesian methods provides a much
better understanding of statistics than that provided by studying only
one approach. Weber (1973) examines the history of the Bayesian
controversy; Qin (1996) is an historical account of the role of Bayesian
methods in econometrics.

Some recent references suitable for exploring the frequentist/Bayesian
controversy are Efron (1986) and associated commentary, and Poirier
(1988) and related discussion. Zellner (1983, 1988) provides reviews of
the Bayesian approach in econometrics. Poirier (1989, 1992) reports on
the Bayesian content of econometrics textbooks, and
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Poirier (1991) cites examples of Bayesian applied studies. Koop (1994)
is an excellent exposition of recent progress in applied Bayesian
econometrics, with particular emphasis on computational
considerations.

13.2 What is a Bayesian Analysis?

It cannot be stressed too strongly that the main difference between
Bayesians and non-Bayesians is the concept of probability employed.
For the Bayesian probability is regarded as representing a degree of
reasonable belief; numerical probabilities are associated with degree of
confidence that the researcher has in propositions about empirical
phenomena. For the non-Bayesian (or "frequentist"), probability is
regarded as representing the frequency with which an event would
occur in repeated trials. This explains the gibe, "Bayesians do it with
less frequency."

The concept of a confidence interval can be used to illustrate the
different concepts of probability employed by the Bayesians and
non-Bayesians. In figure 13.2 the points D and E are placed such that
2.5% of the area under the posterior distribution appears in each tail;
the interval DE can then be interpreted as being such that the
probability that b falls in that interval is 95%. This is the way in which
many clients of classical/frequentist statisticians want to and do



interpret classical 95% confidence intervals, in spite of the fact that it is
illegitimate to do so. The comparable classical confidence interval must
be interpreted as either covering or not covering the true value of b, but
being calculated in such a way that, if such intervals were calculated for
a large number of repeated samples, then 95% of these intervals would
cover the true value of b.

In figure 13.2, the prior distribution is combined with the likelihood
function (representing the data) to produce the posterior distribution,
which is drawn as having the smallest variance because it incorporates
information from the other two distributions. In many cases the mean C
of the posterior distribution can be viewed as a weighted average of the
mean A of the prior distribution and the mean B of the likelihood
function, where the weights are the inverses of the variances (called the
precisions) of the respective distributions. As the sample size becomes
larger and larger, the likelihood function becomes narrower and
narrower, and more and more closely centered over the true value of b.
Since the variance of this conditional distribution becomes smaller and
smaller (i.e., its precision becomes greater and greater), the role played
by the prior becomes less and less. Asymptotically, the prior is
completely swamped by the data, as it should be.

When the decision problem is one of choosing a point estimate for b,
the estimate chosen depends on the loss function employed. For
example, if the loss function is quadratic, proportional to the square of
the difference between the chosen point estimate and the true value of
b, then the mean of the posterior distribution is chosen as the point
estimate. If the loss is proportional to the absolute value of this
difference, the median is chosen. A zero loss for a correct estimate and
a constant loss for an incorrect estimate leads to the choice of the mode.
The popularity of the squared error or quadratic loss function has led to
the mean of the posterior distribution being referred to as the Bayesian
point estimate. Note that, if the posterior distribution is symmetric with
a unique global maximum, these three examples of loss functions lead to
the same choice of estimate. For an example of an alternative loss
function tailored
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to a specific problem, see Varian (1974); for more discussion of this loss
function, see Zellner (1986c).



The ignorance prior is sometimes called a "diffuse," "uniform,"
"equiproportional," or ''non-informative" prior. Its opposite is called an
informative prior; an informative Bayesian analysis is one employing an
informative prior. With a non-informative prior a Bayesian analysis
often produces estimates identical to those of a classical analysis, with
the all-important difference of interpretation (owing to the different
concepts of probability). In the "empirical" Bayes approach a prior is
constructed from the data themselves, and so can be viewed as
incorporating a non-informative prior; Casella (1985) has an
introductory discussion. The Stein estimator, discussed in chapter 12,
can be viewed as an empirical Bayes estimator.

If the disturbances are assumed to be distributed normally, if the prior
distribution is uniform (reflecting ignorance), and if the loss function is
symmetric (such as in the three examples given earlier), the Bayesian
estimator is identical to the OLS estimator. If the prior distribution is
uniform and if the loss function is of the third form described above, the
Bayesian estimator is identical to the maximum likelihood estimator
(MLE). Under general conditions the Bayesian estimator and the MLE
coincide in large samples (although their interpretation differs), since in
large samples the prior is swamped by the actual data.

Although the Bayesian approach rejects the concept of repeated
samples, it is possible to ask how the Bayesian estimator would perform
on criteria utilizing hypothetical repeated samples. Under certain
conditions, as noted in the preceding paragraph, it is identical to the
OLS estimator or the MLE and thus would have the same properties in
repeated samples as these estimators. When the uniform prior is not
used, a normal prior is often employed. In this case the Bayesian
estimate is biased in repeated samples (but asymptotically unbiased)
unless by luck the mean of the prior is the true parameter value. The
variance of the Bayesian estimator is in general smaller, however,
because it incorporates more information (i.e., the prior itself is extra
information) than the classical techniques. This is evidenced by the
sharper interval estimates usually associated with the Bayesian
technique.

The Bayesian would object strenuously to being evaluated on the basis
of hypothetical repeated samples because he or she does not believe
that justification of an estimator on the basis of its properties in repeated
samples is relevant. He or she would maintain that because the estimate
is calculated from the data at hand it must be justified on the basis of
those data. The Bayesian recognizes, however, that reliance on an
estimate calculated from a single sample could be dangerous,



particularly if the sample size is small. In the Bayesian view sample data
should be tempered by subjective knowledge of what the researcher
feels is most likely to be the true value of the parameter. In this way the
influence of atypical samples (not unusual if the sample size is small) is
moderated. The classical statistician, on the other hand, fears that
calculations using typical samples will become contaminated with poor
prior information.

13.3 Advantages of the Bayesian Approach

Additional sample information is easily incorporated in a standard way
via the Bayesian technique (the current posterior distribution is used as
the prior in a new estimation using the additional data). Thus the
Bayesian approach incorporates a for-
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mal and explicit learning model, corresponding directly with the
learning process in research.

The Bayesian approach is an attractive way of handling estimation
subject to inequality constraints, a case that is troublesome in the
classical approach. A truncated prior is employed, giving rise to a
truncated posterior. In contrast to classical estimates, which are often
on the inequality boundary, Bayesian point estimates are interior,
moving closer and closer to the boundary as the data disagree more and
more with the constraint; see Geweke (1986) and Griffiths (1988).
Estimation using this technique can be done with SHAZAM.

13.4 Overcoming Practitioners' Complaints

An important feature of the Bayesian approach is that prior information
is incorporated in an explicit fashion. Bayesians view non-Bayesians as
using prior information and ad hoc ways, as expressed for example by
Zellner (1989, pp. 3012):

Non-Bayesians sit around thinking about restrictions on
simultaneous equations models. That's prior information. Others
think about what to assume about the error terms properties.
That's many times prior information. Others sit around thinking
about how to formulate a model for the observations. That
involves a tremendous amount of prior information.



As another example, consider the remarks of Tukey, as quoted by
Zellner (1984, p. 98):

It is my impression that rather generally, not just in
econometrics, it is considered decent to use judgement in
choosing a functional form, but indecent to use judgement in
choosing a coefficient. If judgement about important things is
quite all right, why should it not be used for less important things
as well? Perhaps the real purpose of Bayesian techniques is to
let us do the indecent thing while modestly concealed behind a
formal apparatus.

Non-Bayesians argue that one's prior beliefs are not always easily
expressed in the form of a prior distribution and thus it may be better to
incorporate such imprecise information in a thoughtful (ad hoc) fashion
than to insist that it be forced into a formal prior. Many non-Bayesians
view explicit incorporation of prior information as a straitjacket.
Consider the disarming, and alarming, argument articulated by
Goldberger (1989, p. 152):

Well in a sense everybody's a Bayesian, we use information
beyond the sample. The question is whether inclusion of prior
information should be formalized. Formalizing may sound like a
good idea, but maybe it's not a good idea. I like Manski's
argument, which I will paraphrase. The objection to classical
statistical inference is that it's nonsense. But everybody knows
that. So if you follow the style I use, which would be classical
statistical inference, you don't take it too seriously - you don't
take it literally. If you use a Bayesian procedure. I get the
impression you really have to believe the implications - you've
already committed yourself to everything. You don't have the
opportunity for waffling afterwards because you've already put
everything in, and you have to take it literally from there on out.
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A Bayesian analysis employing a prior based on results from a previous
study would produce estimates similar to those of the method of mixed
estimation outlined in chapter 12, except of course for interpretation.



Not all previous studies match up perfectly with the study at hand.
Results from previous studies may relate to slightly different variables
under slightly different circumstances so that they cannot be used
directly as suggested in the body of this chapter. A researcher may have
to assimilate subjectively a wide array of related empirical studies to
formulate a prior; this would have to be done using one of the other two
methods for formulating priors discussed earlier.

Formulation of a prior using information gained from questions relating
to hypothetical bets is straightforward if the functional form of that
prior is specified. This functional form is usually chosen so as to
facilitate calculation of the posterior for the problem at hand. For
example, if we are attempting to estimate the parameter of a binomial
distribution, the derivation of the posterior is much easier if the prior
takes the form of a beta distribution. In this example the beta prior is a
"natural conjugate prior" since it yields a posterior that also is a beta
distribution. This choice of a natural conjugate form for the prior is
innocuous: very few people have prior information so precise that it
cannot be approximated adequately by a natural conjugate distribution.
"Conjugate" may or may not be related to the adjective "conjugal": a
conjugate distribution is a suitable mate for the model's distribution in
that it produces offspring of its own kind.

Given the distributional form of the prior, only answers to a small
number of hypothetical betting questions are required to produce an
actual prior. Additional betting questions are nonetheless asked, with
their answers providing a check on the "coherence" of this prior; if
answers to later questions, are inconsistent with the fitted prior based on
answers to earlier questions, this incoherence is used to prompt further
thought on the nature of the prior beliefs in question. An iterative
process ensues, leading eventually to the formulation of a coherent
prior. Most undergraduate texts on Bayesian statistics have a section
giving a detailed illustration of this process; for an example see Jones
(1977, chapter 13). All this sounds like a lot of work. Thanks to Novick
et al. (1983), however, there exists an interactive computer package
(CADA) that relieves the analyst of almost all of the drudgery; the
entire process is monitored by a computer-directed conversational
dialogue, allowing priors to be formulated efficiently and painlessly.
Examples of how CADA operates in this respect can be found in
Novick and Jackson (1974, pp. 160-6, 217-23).

Formulating priors by using predictive distributions is described and
illustrated by Kadane et al. (1980), who also refer to a computer
package implementing this approach. CADA includes a variant of this



approach. One advantage of the predictive distribution approach is that
it does not impose a specific model on the researcher/expert and thus
the elicited information could allow detection of a nonlinearity in the
implicit model. Kadane et al. (1980) discuss the relative merits of the
predictive distribution method and the method of eliciting hypothetical
bets, which they call the structural method.

There exists considerable evidence that people can be inaccurate in
their personal assessments of probabilities; for references see Hogarth
(1975), Leamer (1978, chapter 10), Lindley et al. (1979), Wallsten and
Budescu (1983), and Fishchoff and BeythMarom (1983). The existence
of this phenomenon underlines the importance of reporting estimates for
a range of priors.
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The suggestion of reporting the fragility of empirical estimates (for both
Bayesian and non-Bayesian methods) is advanced in convincing fashion
by Leamer and Leonard (1983). They illustrate graphically for a
two-dimensional case how the set of possible coefficient estimates is
affected by the nature of the prior information. In one case they
examine, the set of possible estimates is bounded by estimates
generated by regressions formed by omitting different combinations of
variables thought a priori to have coefficients close to zero in value.
This example illustrates the kind of Bayesian prior information
corresponding to "information" employed by a classical statistician in a
typical ad hoc specification search. To aid practitioners in reporting the
fragility of their estimates, Leamer and Leonard have developed a
computer package. SEARCH (Seeking Extreme and Average
Regression Coefficient Hypotheses), which is capable of calculating the
range of coefficient estimates associated with a range for the variance
of the prior. Examples of this methodology can be found in Leamer and
Leonard (1983) and Leamer (1983a, 1986). Ziemer (1984) speculates
that fragility analysis will serve as a compromise between the ad hoc
pre-test/search methods now in common use and the unfamiliar
shrinkage/Bayesian methods advocated by theorists.

Technical Notes

Bayes' theorem is derived from the fact that the probability of obtaining
the data and the parameters can be written either as:



prob(data and parameters) = prob(data|parameters) prob(parameters)

or:

prob(data and parameters) = prob(parameters|data) prob(data)

Equating these two expressions and rearranging, we get Bayes' theorem:

The denominator can be calculated by integrating over all parameter
values, so it becomes a normalization factor. The left-hand side of the
expression is the posterior distribution, the prob(parameters) after the
sample. The right half of the right-hand side is the prior distribution, the
prob(parameters) before the sample. The left half of the right-hand side
is the likelihood function. (Recall section 2.9 and its technical notes.)
Thus, according to Bayes' theorem the posterior distribution is given by
the product of the prior distribution, the likelihood function and a
normalization factor.

Bayesians undertake hypothesis testing by estimating the probability
that the null hypothesis is true and comparing it to the probability that
the alternative hypothesis is true. These two probabilities are used in
conjunction with a loss function to decide whether to accept the null or
the alternative. If the loss from accepting a false null is
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Lossfalsenull and the loss from accepting a false alternative is
Lossfalsealt, then the expected loss from accepting the null is

prob(alternative|data) X Lossfalsenull

and the expected loss from accepting the alternative is

prob(null|data) X Lossfalsealt.

Then the null would be accepted if



prob(null|data) X Lossfalsealt &le prob(alternative data) X
Lossfalsenull

which can be rewritten as

The left-hand side of this is called the posterior odds ratio, whose
calculation can be explained as follows. Bayes' rule can be used to
deduce that

sothat the posterior odds ratio is given by

This in turn can be seen to be the prior odds,
prob(null)/prob(alternative), times the Bayes factor,
prob(data|null)/prob(data|alternative). The numerator of the Bayes
factor is calculated as a weighted average of the likelihood functions for
each possible parameter value where the weights are given by the
posterior distribution of the parameters. (This is computed by
integrating out the parameter values.) The denominator is computed in
like fashion, using the likelihood and posterior associated with the
alternative hypothesis. For the simple example in which the null is b > 1
and the alternative b < 1, the numerator is just the integral of the
posterior distribution of b from one to infinity, and the denominator one
minus the numerator.

We are now in a position to summarize the major differences between
the classical and Bayesian hypothesis testing procedures:



(a) Bayesians "compare" rather than "test" hypotheses; they select one
hypothesis in preference to the other, based on minimizing an expected
loss function.
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(b) Bayesians do not adopt an arbitrarily determined type I error rate,
instead allowing this error rate to be whatever minimization of the
expected loss function implies for the data at hand. One implication of
this is that as the sample size grows the Bayesian allows both the type I
and type II error rates to move towards zero whereas the classical
statistician forces the type I error rate to be constant.

(c) Bayesians build prior beliefs explicitly into the hypothesis choice
through the prior odds ratio.

(d) For Bayesians the Bayes factor is calculated by averaging
likelihoods over all parameter values whereas in the comparable
classical calculation the maximized likelihoods are used, producing the
familiar likelihood ratio statistic.

For further discussion see Zellner (1984, pp. 275305) or the textbook
expositions cited earlier. Moulton (1991) is an example of how
Bayesian techniques are used to select a model based on posterior odds
and then combine inferences across potential models to incorporate
uncertainty associated with the model specification.

The joint density of a future y value and the parameter values is
obtained by taking the product of the likelihood function of the future y
value and the posterior density for the parameter values. By integrating
out the parameter values the predictive density of the future y is
produced. This in effect produces a y density which is a weighted
average of y densities associated with different parameter values, where
the weights are given by the posterior density of the parameter values.
The predictive density can be used in different ways. It could be
combined with a suitable loss function to make a prediction of the
future y value, for example, or by integrating this density from the
current y value to infinity, an estimate of the probability that the future
y value will be higher than the current y value could be obtained.

The Bayesian equivalent of the classical confidence interval is called
the highest posterior density interval. If the integral of the posterior



over this interval is 0.95, this interval is said to have 95 percent
probability content. The shortest such interval is the 95 percent highest
posterior density interval. With an ignorance prior this interval is usually
the same magnitude as the classical 95 percent confidence interval, but
the interpretation is completely different. The Bayesian interpretation is
that there is a 95 percent probability that the true value of the parameter
lies in this interval. The classical interpretation refuses to use this
subjective definition of probability and so claims only that the true
value either lies in this interval or it does not, but if repeated samples
were taken an interval constructed in this way would cover the true
parameter value in 95 percent of these repeated samples.

Finding a non-informative prior is not as easy as it seems at first sight. If

the parameter b for which we seek a prior can take any value from 
to  , then a uniform distribution, with prob(b0 < b < b0 + db) = db,
is suitable. (The fact that the integral of this distribution is infinite rather
than unity makes it an improper prior, but this is not of consequence in
this context.) But suppose that we know that a parameter can take on
only non-negative values, such as would be the case for the error
variance s, so that O < s <  en two problems arise if a uniform
distribution is used as a prior for s.

First, for any finite positive number a, prob(s < a) relative to prob(s > a)
is zero, inconsistent with our belief that nothing is known about s.
Second, if we are ignorant about s, we should also be ignorant about s2.

But if we adopt a uniform prior for s, so that prob(s0 < s < s0 + ds) = ds,

then it should also be the case that prob[sn0 < sn < (s0 + ds)n] equals

ds, but instead it equals dsn = sn-1ds. Both these
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problems are solved if prob(s0 < s < s0 + ds) = ds/s so that the prior for
s is made proportional to s-1 or, equivalently, lns is considered to have a
uniform prior.

Consider now the problem of finding an ignorance prior for a parameter
q which is a proportion, so it is confined to lie in the zero to one
interval. If we are ignorant about q we should be equally ignorant about
f = q/(1 - q). Since f lies between zero and infinity, we can apply the
same solution to f as for s. This produces df/f = dq/q(1 - q) so the prior



for q is taken as proportional to 1/q(1 - q). Notice that the
transformation of q, in this example, that creates a variable lying
between zero and infinity may not be unique, suggesting that there may
be more than one ignorance prior relevant to a particular problem. This
implies, in some special cases in which universal agreement on the
appropriate ignorance prior cannot be reached, that there will be
competing non-informative Bayesian estimators.

There is a common theme in the examples given above. The parameter
is transformed so as to be capable of taking on all values on the real line
and so can be given a uniform prior. Then the change-of-variable
theorem is used to work backwards to find the corresponding density
for the original parameter. A popular way of doing this is through
Jeffrey's rule: choose the prior for the parameter vector as proportional
to the square root of the determinant of the information matrix. For
discussion see Berger (1985, pp. 8290). An excellent discussion of the
meaning and formulation of ignorance priors in an applied econometrics
context (unit root testing) appears in Volume 6(4) of the Journal of
Applied Econometrics where several discussants address issues raised
by Phillips (1991). Kass and Wasserman (1996) is a good survey of
problems in selecting an ignorance prior.

It is instructive to discuss the Bayesian estimator for the case of a
first-order autocorrelated error. Jeffrey's rule gives a prior for r
proportional to (1 - r2)-½. Combining this with a prior for s-1 and a
uniform prior for the b coefficients gives rise to a straightforward
expression for the posterior distribution of r, and an extremely
complicated expression for the posterior distribution of b. Fortunately,
though, the expected value of this distribution of b, the Bayesian
estimator of b, can be seen to be the integral, over all values of r, of the
GLS estimator (given r) times the posterior density of r. In other words,
loosely speaking, the Bayesian estimator is a weighted average of an
infinite number of GLS estimates, corresponding to an infinite number
of different values of r, where the weights are given by the heights of
the posterior distribution of r.

The algebra to calculate this is intractable, so it must be computed by
numerical integration. To do this, the range of all possible values of r is
divided into a large number of small subsets, say 500 of them. The area
under the posterior distribution of r for each subset is calculated, the
value of r in the middle of each subset is identified, and for each of
these values of r the GLS estimator of b is calculated. The numerical
integration then consists of taking a weighted average of each of these



GLS estimates, with the weights given by the corresponding area under
the posterior distribution of r. The greater is the number of subsets, the
more closely will the numerical integration approximate the "true"
Bayesian estimator. How many is enough? Kennedy and Simons (1991)
suggest for this example that only 40 are required for this estimator to
perform well. For a textbook exposition of these formulas, see Judge et
al. (1985, pp. 291-3).
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14
Dummy Variables

14.1 Introduction

Explanatory variables are often qualitative in nature (e.g., wartime
versus peace-time, male versus female, east versus west versus south),
so that some proxy must be constructed to represent them in a
regression. Dummy variables are used for this purpose. A dummy
variable is an artificial variable constructed such that it takes the value
unity whenever the qualitative phenomenon it represents occurs, and
zero otherwise. Once created, these proxies, or "dummies" as they are
called, are used in the CLR model just like any other explanatory
variable, yielding standard OLS results.

The exposition below is in terms of an example designed to illustrate the
roles dummy variables can play, give insight to how their coefficients
are estimated in a regression, and clarify the interpretation of these
coefficient estimates.

Consider data on the incomes of doctors, professors and lawyers,
exhibited in figure 14.1 (where the data have been ordered so as to
group observations into the professions), and suppose it is postulated
that an individual's income depends on his or her profession, a
qualitative variable. We may write this model as

 (1)



where DD is a dummy variable taking the value one whenever the
observation in question is a doctor, and zero otherwise; DP and DL are
dummy variables defined in like fashion for professors and lawyers.
Notice that the equation in essence states that an individual's income is
given by the coefficient of his or her related dummy variable plus an
error term. (For a professor, for example, DD and DL are zero and DP

is one, so (1) becomes Y = aP + e.)

From the structure of equation (1) and the configuration of figure 14.1,
the logical estimate of aD is the average of all doctors' incomes, of aP
the average of all professors' incomes, and of aL the average of all
lawyers' incomes. It is reassuring, then, that if Y is regressed on these
three dummy variables, these are exactly the estimates that result.
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Figure 14.1
A step function example of using dummy variables

14.2 Interpretation

Equation (1) as structured does not contain an intercept. If it did,
perfect multicollinearity would result (the intercept variable, a column



of ones, would equal the sum of the three dummy variables) and the
regression could not be run. Nonetheless, more often than not,
equations with dummy variables do contain an intercept. This is
accomplished by omitting one of the dummies to avoid perfect multi-
collinearity.

Suppose DL is dropped, for example, creating

 (2)

In this case, for a lawyer DD and DP are zero, so a lawyer's expected
income is given by the intercept b0. Thus the logical estimate of the
intercept is the average of all lawyers' incomes. A doctor's expected
income is given by equation (2) as b0 + bD; thus the logical estimate of
bD is the difference between the doctors' average income and the
lawyers' average income. Similarly, the logical estimate of bP is the
difference between the professors' average income and the lawyers'
average income. Once again, it is reassuring that, when regression (2) is
undertaken (i.e., regressing Y on an intercept and the dummy variables
DD and DP), exactly these results are obtained. The crucial difference
is that with an intercept included the interpretation of the dummy
variable coefficients changes dramatically.

With no intercept, the dummy variable coefficients reflect the expected
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income for the respective professions. With an intercept included, the
omitted category (profession) becomes a base or benchmark to which
the others are compared. The dummy variable coefficients for the
remaining categories measure the extent to which they differ from this
base. This base in the example above is the lawyer profession. Thus the
coefficient BD, for example, gives the difference between the expected
income of a doctor and the expected income of a lawyer.

Most researchers find the equation with an intercept more convenient
because it allows them to address more easily the questions in which
they usually have the most interest, namely whether or not the
categorization makes a difference and if so by how much. If the
categorization does make a difference, by how much is measured



directly by the dummy variable coefficient estimates. Testing whether
or not the categorization is relevant can be done by running a t test of a
dummy variable coefficient against zero (or, to be more general, an F
test on the appropriate set of dummy variable coefficient estimates).

14.3 Adding Another Qualitative Variable

Suppose now the data in figure 14.1 are rearranged slightly to form
figure 14.2, from which it appears that gender may have a role to play in
determining income. This issue is usually broached in one of two ways.
The most common way is to include in equations (1) and (2) a new
dummy variable DF for gender to create

 (1*)

 (2*)

where DF takes the value 1 for a female and 0 for a male. Notice that
no dummy variable DM representing males is added; if such a dummy
were added perfect multicollinearity would result, in equation (1*)
because DD + DP + DL = DF + DM and in equation (2*) because DF +

DM is a column of ones, identical to the implicit intercept variable. The

interpretation of both  and  is as the extent to which being female

changes income, regardless of profession. ,  and  are
interpreted as expected income of a male in the relevant profession; a
similar reinterpretation is required for the coefficients of equation (2*).

The second way of broaching this issue is to scrap the old dummy
variables and create new dummy variables, one for each category
illustrated in figure 14.2. This produces

 (1')
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Figure 14.2
Adding gender as an additional dummy variable

and

 (2')

The interpretation of the coefficients is straightforward: aFD, for

example, is the expected income of a female doctor, and bFD is the
extent to which the expected income of a female doctor differs from
that of a male lawyer.

The key difference between these two methods is that the former
method forces the difference in income between male and female to be
the same for all professions whereas the latter does not. The latter
method allows for what are called interaction effects. In the former
method a female doctor's expected income is the sum of two parts, one
attributable to being a doctor and the other attributable to being a
female; there is no role for any special effect that the combination or
interaction of doctor and female might have.
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14.4 Interacting with Quantitative Variables

All the foregoing examples are somewhat unrealistic in that they are
regressions in which all the regressors are dummy variables. In general,
however, quantitative variables determine the dependent variable as
well as qualitative variables. For example, income in an earlier example
may also be determined by years of experience, E, so that we might
have

 (3)

In this case the coefficient gD must be interpreted as reflecting the
difference between doctors' and lawyers' expected incomes, taking
account of years of experience (i.e., assuming equal years of
experience).

Equation (3) is in essence a model in which income is expressed as a
linear function of experience, with a different intercept for each
profession. (On a graph of income against experience, this would be
reflected by three parallel lines, one for each profession.) The most
common use of dummy variables is to effect an intercept shift of this
nature. But in many contexts it may be that the slope coefficient gE
could differ for different professions, either in addition to or in place of
a different intercept. (This is also viewed as an interaction effect.)

This case is handled by adding special dummies to account for slope
differences. Equation (3) becomes

 (4)

Here (DDE is a variable formed as the ''product" of DD and E; it
consists of the value of E for each observation on a doctor, and 0
elsewhere. The special "product" dummy (DPE) is formed in similar
fashion. The expression (4) for observations on a lawyer is

, so  and  are the intercept and slope coefficients
relevant to lawyers. The expression (4) for observations on a doctor is

, so the interpretation of  is as the
difference between the doctors' and the lawyers' intercepts and the



interpretation of  is as the difference between the doctors' and the
lawyers' slope coefficients. Thus this special "product" dummy variable
can allow for changes in slope coefficients from one data set to another
and thereby capture a different kind of interaction effect.

Equation (4) is such that each profession has its own intercept and its
own slope. (On a graph of income against experience, the three lines,
one for each profession, need not be parallel.) Because of this there will
be no difference between the estimates resulting from running this
regression and the estimates resulting from running three separate
regressions, each using just the data for a particular profession. Thus in
this case using dummy variables is of no value. The dummy variable
technique is of value whenever restrictions of some kind are imposed on
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the model in question. Equation (3) reflects such a restriction; the slope
coefficient gE is postulated to be the same for all professions. By
running equation (3) as a single regression, this restriction is imposed
and more efficient estimates of all parameters result. As another
example, suppose that years of education were also an explanatory
variable but that it is known to have the same slope coefficient in each
profession. Then adding the extra explanatory variable years of
education to equation (4) and performing a single regression produces
more efficient estimates of all parameters than would be the case if
three separate regressions were run. (It should be noted that running a
single, constrained regression incorporates the additional assumption of
a common error variance.)

14.5 Observation-Specific Dummies

An observation-specific dummy is a dummy variable that takes on the
value one for a specific observation and zero for all other observations.
Since its use is mainly in time series data, it is called a period-specific
dummy in the discussion below. When a regression is run with a period-
specific dummy the computer can ignore the specific observation - the
OLS estimates can be calculated using all the other observations and
then the coefficient for the period-specific dummy is estimated as the
value that makes that period's error equal to zero. In this way SSE is
minimized. This has several useful implications:



(1) The coefficient estimate for the period-specific dummy is the
forecast error for that period, and the estimated variance of this
coefficient estimate is the estimate of the variance of the forecast error,
an estimate that is otherwise quite awkward to calculate - see chapter
18.

(2) If the value of the dependent variable for the period in question is
coded as zero instead of its actual value (which may not be known, if
we are trying to forecast it) then the estimated coefficient of the period-
specific dummy is the forecast of that period's dependent variable.

(3) By testing the estimated coefficient of the period-specific dummy
against zero, using a t test, we can test whether or not that observation
is "consistent" with the estimated relationship. An F test would be used
to test if several observations could be considered consistent with the
estimated equation. In this case each observation would have its own
period-specific dummy. Such tests are sometimes called post-sample
predictive tests. This is described in the technical notes as a variant of
the Chow test. The "rainbow" test (general notes, section 6.3) is also a
variant of this approach, as are some tests for outliers.

14.6 Fixed and Random Effects Models

Dummy variables are sometimes used in the context of panel, or
longitudinal, data - observations on a cross-section of individuals or
firms, say, over time. In
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this context it is often assumed that the intercept varies across the N
cross-sectional units and/or across the T time periods. In the general
case (N - 1) + (T - 1) dummies can be used for this, with computational
short-cuts available to avoid having to run a regression with all these
extra variables. This way of analyzing panel data is called the fixed
effects model. The dummy variable coefficients reflect ignorance - they
are inserted merely for the purpose of measuring shifts in the regression
line arising from unknown variables. Some researchers feel that this
type of ignorance should be treated in a fashion similar to the general
ignorance represented by the error term, and have accordingly proposed
the random effects, variance components, or error components model.



In the random effects model there is an overall intercept and an error
term with two components: eit + ui. The eit is the traditional error term
unique to each observation. The ui is an error term representing the
extent to which the intercept of the ith cross-sectional unit differs from
the overall intercept. (Sometimes a third error is included, representing
the extent to which the tth time period's intercept differs from the
overall intercept.) This composite error term is seen to have a particular
type of nonsphericalness that can be estimated, allowing the use of
EGLS for estimation. (EGLS is explained in chapter 8.)

Which of the fixed effects and the random effects models is better? This
depends on the context of the data and for what the results are to be
used. If the data exhaust the population (say observations on all firms
producing automobiles), then the fixed effects approach, which
produces results conditional on the units in the data set, is reasonable. If
the data are a drawing of observations from a large population (say a
thousand individuals in a city many times that size), and we wish to
draw inferences regarding other members of that population, the fixed
effects model is no longer reasonable; in this context, use of the random
effects model has the advantage that it saves a lot of degrees of
freedom.

The random effects model has a major drawback, however: it assumes
that the random error associated with each cross-section unit is
uncorrelated with the other regressors, something that is not likely to be
the case. Suppose, for example, that wages are being regressed on
schooling for a large set of individuals, and that a missing variable,
ability, is thought to affect the intercept; since schooling and ability are
likely to be correlated, modeling this as a random effect will create
correlation between the error and the regressor schooling (whereas
modeling it as a fixed effect will not). The result is bias in the
coefficient estimates from the random effects model. This may explain
why the slope estimates from the fixed and random effects models are
often so different.

A Hausman test (discussed in chapters 9 and 10) for correlation
between the error and the regressors can be used to check for whether
the random effects model is appropriate. Under the null hypothesis of
no correlation between the error and the regressors, the random effects
model is applicable and its EGLS estimator is consistent and efficient.
Under the alternative it is inconsistent. The OLS estimator of the fixed
effects model is consistent under both the null and the alternative.
Consequently, the difference between the variance-covariance
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matrices of the OLS and EGLS estimators is the variance-covariance
matrix of the difference between the two estimators, allowing
calculation of a chi-square test statistic to test this difference against
zero.

General Notes

14.1 Introduction

The terminology "dummy variable" has invited irreverent remarks. One
of the best is due to Machlup (1974, p. 892): "Let us remember the
unfortunate econometrician who, in one of the major functions of his
system, had to use a proxy for risk and a dummy for sex."

Care must be taken in evaluating models containing dummy variables
designed to capture structural shifts or seasonal factors, since these
dummies could play a major role in generating a high R2, hiding the fact
that the independent variables have little explanatory power.

Dummy variables representing more than two categories could
represent categories that have no natural order (as in dummies for red,
green and blue), but could represent those with some inherent order (as
in low, medium and high income level). The latter are referred to as
ordinal dummies; see Terza (1987) for a suggestion of how estimation
can take account of the ordinal character of such dummies.

Regressions using microeconomic data often include dummies
representing aggregates, such as regional, industry or occupation
dummies. Moulton (1990) notes that within these aggregates errors are
likely to be correlated and that ignoring this leads to downward-biased
standard errors.

For the semi-logarithmic functional form In Y = a + bx + dD + e, the
coefficient b is interpreted as the percentage impact on Y per unit
change in x, but the coefficient d cannot be interpreted as the
percentage image on Y of a change in the dummy variable D from zero

to one status. The correct expression for this percentage impact is ed -
1. See Halvorsen and Palmquist (1980) and Kennedy (1981a).



Dummy variable coefficients are interpreted as showing the extent to
which behavior in one category deviates from some base (the "omitted"
category). Whenever there exist more than two categories, the
presentation of these results can be awkward, especially when laymen
are involved; a more relevant, easily understood base might make the
presentation of these results more effective. For example, suppose
household energy consumption is determined by income and the region
in which the household lives. Rather than, say, using the South as a base
and comparing household energy consumption in the North East, North
Central and West to consumption in the South, it may be more
effective, as a means of presenting these results to laymen, to calculate
dummy variable coefficients in such a way as to compare consumption
in each region with the national average. A simple adjustment permits
this. See Suits (1984) and Kennedy (1986).

Goodman and Dubin (1990) note that alternative specifications
containing different dummy variable specifications may not be nested,
implying that a non-nested testing procedure should be employed to
analyze their relative merits.
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14.4 Interacting with Quantitative Variables

Dummy variables play an important role in structuring Chow tests for
testing if there has been a change in a parameter value from one data set
to another. Suppose Y is a linear function of X and Z and the question at
hand is whether the coefficients are the same in period 1 as in period 2.
A dummy variable D is formed such that D takes the value zero for
observations in period 1 and the value one for observations in period 2.
"Product" dummy variables DX and DZ are also formed (i.e., DX takes
the value X in period 2 and is 0 otherwise). Then the equation

 (1)

is formed.

Running regression (1) as is allows the intercept and slope coefficients
to differ from period 1 to period 2. This produces SSE unrestricted.
Running regression (1) forcing a0, a1, and a2 to be 0 forces the
intercept and slope-coefficients to be identical in both periods. An F



test, structured in the usual way, can be used to test whether or not the
vector with elements a0, a1, and a2 is equal to the zero vector. The
resulting F statistic is

where K is the number of parameters, T1 is the number of observations

in the first period and T2 is the number of observations in the second
period. If there were more than two periods and we wished to test for
equality across all periods, this methodology can be generalized by
adding extra dummies in the obvious way.

Whenever the entire set of parameters is being tested for equality
between two data sets the SSE unconstrained can be obtained by
summing the SSEs from the two separate regressions and the SSE
constrained can be obtained from a single regression using all the data;
the Chow test often appears in textbooks in this guise. In general,
including dummy variables to allow the intercept and all slopes to differ
between two data sets produces the same coefficient estimates as those
obtained by running separate regressions, but estimated variances differ
because the former method constrains the estimated variance to be the
same in both equations.

The advantage of the dummy variable variant of the Chow test is that it
can easily be modified to test subsets of the coefficients. Suppose, for
example, that it is known that, in equation (1) above, b2 changed from
period 1 to period 2 and that it is desired to test whether or not the other
parameters (b0 and b1) changed. Running regression (1) as is gives the
unrestricted SSE for the required F statistic, and running (1) without D
and DX gives the restricted SSE. The required degrees of freedom are 2
for the numerator and T - 6 for the denominator, where T is the total
number of observations.

Notice that a slightly different form of this test must be used if, instead
of knowing (or assuming) that b2 had changed from period 1 to period
2, we knew (or assumed) that it had not changed. Then running
regression (1) without DZ gives the unrestricted SSE and running
regression (2) without D, DX and DZ gives the restricted SSE. The
degrees of freedom are 2 for the numerator and T - 5 for the
denominator.
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Using dummies to capture a change in intercept or slope coefficients, as
described above, allows the line being estimated to be discontinuous.
(Try drawing a graph of the curve - at the point of change it "jumps.")
Forcing continuity creates what is called a piecewise linear model;
dummy variables can be used to force this continuity, as explained, for
example, in Pindyck and Rubinfeld (1981, pp. 126-7). This model is a
special case of a spline function, in which the linearity assumption is
dropped. For an exposition see Suits et al. (1978). Poirier (1976) has an
extended discussion of this technique and its applications in economics.

A popular use of dummy variables is for seasonal adjustment. Setting
dummies up to represent the seasons and then including these variables
along with the other regressors eliminates seasonal influences in so far
as, in a linear model, these seasonal influences affect the intercept term
(or, in a log-linear model, these seasonal influences can be captured as
seasonal percentage impacts on the dependent variable). Should the
slope coefficients be affected by seasonal factors, a more extensive
de-seasonalizing procedure would be required, employing "product"
dummy variables. Johnston (1984, pp. 234-9) has a good discussion of
using dummies to de-seasonalize. It must be noted that much more
elaborate methods of de-seasonalizing data exist. For a survey see
Pierce (1980). See also Raveh (1984) and Bell and Hillmer (1984).
Robb (1980) and Gersovitz and MacKinnon (1978) suggest innovative
approaches to seasonal factors. See also Judge et al. (1985, pp. 258-62)
and Darnell (1994, pp. 359-63) for discussion of the issues involved.

14.5 Observation-specific Dummies

Salkever (1976) introduced the use of observation-specific dummies for
facilitating estimation; see Kennedy (1990) for an exposition. Pagan and
Nicholls (1984) suggest several extensions, for example to the context
of autocorrelated errors.

The Chow test as described earlier cannot be performed whenever there
are too few observation in one of the data sets to run a regression. In
this case an alternative (and less-powerful) version of the Chow test is
employed, involving the use of observation-specific dummies. Suppose
that the number of observations T2 in the second time period is too
small to run a regression. T2 observation-specific dummy variables are



formed, one for each observation in the second period. Each dummy
has a value of 1 for its particular observation and 0 elsewhere.
Regressing on the K independent variables plus the T2 dummies over
the T1 + T2 observations gives the unrestricted regression, identical to
the regression using the K independent variables and T1 observations.
(This identity arises because the coefficient of each dummy variable
takes on whatever value is necessary to create a perfect fit, and thus a
zero residual, for that observation.)

The restricted version comes from restricting each of the T2 dummy
variable coefficients to be zero, yielding a regression identical to one
using the K independent variables and T1 + T2 observations. The F
statistic thus becomes:
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This statistic can be shown to be equivalent to testing whether or not the
second period's set of observations falls within the prediction
confidence interval formed by using the regression from the first
period's observations. This dummy-variable approach, introduced in the
first edition of this book, has been formalized by Dufour (1980).

14.6 Fixed and Random Effects Models

Baltagi (1995, pp. 17) is an excellent reference for the econometrics of
panel data, offering descriptions of major panel data sets such as the
Panel Study of Income Dynamics (PSID) and the National Longitudinal
Surveys of Labor Market Experience (NLS), and discussion of the
benefits and limitations/problems of panel data. Estimation with panel
data allows us to control for individual heterogeneity, alleviate
aggregation bias, improve efficiency by using data with more variability
and less collinearity, estimate and test more complicated behavioral
models, and examine adjustment dynamics. Furthermore, this type of
data allows examination of some issues that otherwise could not be
broached. For example, in a specific cross-section a high percentage of
people may be unemployed, but from that alone we cannot tell if this



percentage is an average or if the same people are unemployed in every
period. As a second example, consider the problem of separating
economies of scale from technological change. Cross-sectional data
provide information on the former, while time series data mix the two.
In both these examples, panel data allow the researcher to resolve these
issues.

Fixed and random effects models are usually employed when the
number of cross-sectional units is large and the number of time periods
over which those units are observed is small. When the reverse is the
case, several alternative models are common, differing in the
assumptions they make regarding the error variance-covariance matrix.
The simplest case assumes that each cross-section unit has an error with
a different variance, so a simple correction for heteroskedasticity is
employed. A slightly more complicated case is to assume also
contemporaneous correlation between the errors of different cross-
section units. A further complication would be to allow for errors to be
autocorrelated across time in some way. All these models require EGLS
estimation, which Beck and Katz (1995) find in practice performs very
poorly in this context because the error variance-covariance matrix is
poorly estimated. They recommend using OLS with its variance-
covariance matrix estimated by (X'X)-1X'WX(X'X)-1 where W is an
estimate of the error variance-covariance matrix. Baltagi (1986) uses a
Monte Carlo study to compare these types of estimators to random
effects estimators, concluding that the loss in efficiency is less severe
when employing incorrectly the random effects estimator than when the
alternatives are employed incorrectly.

Greene (1997, chapter 14) has an excellent textbook exposition of
estimation with panel data, including examples, computational
simplifications, relationships among various estimators, and relevant test
statistics. Baltagi and Griffin (1984) have a good discussion of the
issues. Judge et al. (1985) and Dielman (1983) also have useful surveys.

Gumpertz and Pantula (1989) suggest using the mean of the parameter
estimates from OLS estimation (on each cross-sectional unit separately)
for inference in the random effects model.
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Robertson and Symons (1992) suggest that if the slope parameters are
not the same for all observations in panel data estimation, but estimation
forces equality, serious bias problems arise. If one is not certain whether
the coefficients are identical, Maddala (1991) recommends shrinking
the separate estimates towards some common estimate.

Technical Notes

Analysis of variance is a statistical technique designed to determine
whether or not a particular classification of the data is meaningful. The
total variation in the dependent variable (the sum of squared differences
between each observation and the overall mean) can be expressed as
the sum of the variation between classes (the sum of the squared
differences between the mean of each class and the overall mean, each
times the number of observations in that class) and the variation within
each class (the sum of the squared difference between each observation
and its class mean). This decomposition is used to structure an F test to
test the hypothesis that the between-class variation is large relative to
the within-class variation, which implies that the classification is
meaningful, i.e., that there is a significant variation in the dependent
variable between classes.

If dummy variables are used to capture these classifications and a
regression is run, the dummy variable coefficients turn out to be the
class means, the between-class variation is the regression's "explained"
variation, the within-class variation is the regression's "unexplained"
variation, and the analysis of variance F test is equivalent to testing
whether or not the dummy variable coefficients are significantly
different from one another. The main advantage of the dummy variable
regression approach is that it provides estimates of the magnitudes of
class variation influences on the dependent variables (as well as testing
whether the classification is meaningful).

Analysis of covariance is an extension of analysis of variance to handle
cases in which there are some uncontrolled variables that could not be
standardized between classes. These cases can be analyzed by using
dummy variables to capture the classifications and regressing the
dependent variable on these dummies and the uncontrollable variables.
The analysis of covariance F tests are equivalent to testing whether the
coefficients of the dummies are significantly different from one another.
These tests can be interpreted in terms of changes in the residual sums
of squares caused by adding the dummy variables. Johnston (1972, pp.
192207) has a good discussion.



In light of the above, it can be concluded that anyone comfortable with
regression analysis and dummy variables can eschew analysis of
variance and covariance techniques.
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15
Qualitative Dependent Variables

15.1 Dichotomous Dependent Variables

When the dependent variable is qualitative in nature and must be
represented by a dummy variable, special estimating problems arise.
Examples are the problem of explaining whether or not an individual
will buy a car, whether an individual will be in or out of the labor force,
whether an individual will use public transportation or drive to work, or
whether an individual will vote yes or no on a referendum.

If the dependent variable is set up as a 01 dummy variable (for example,
the dependent variable is set equal to 1 for those buying cars and equal
to 0 for those not buying cars) and regressed on the explanatory
variables, we would expect the predicted values of the dependent
variable to fall mainly within the interval between 0 and 1, as illustrated
in figure 15.1. This suggests that the predicted value of the dependent
variable could be interpreted as the probability that that individual will
buy a car, given that individual's characteristics (i.e., the values of the
explanatory variables). This is in fact the accepted convention. In figure
15.1 the dots represent the sample observations; most of the high values
of the explanatory variable x correspond to a dependent dummy
variable value of unity (implying that a car was bought), whereas most
of the low values of x correspond to a dependent dummy variable value
of zero (implying that no car was bought). Notice that for extremely low
values of x the regression line yields a negative estimated probability of
buying a car, while for extremely high values of x the estimated
probability is greater than 1. As should be clear from this diagram, R2 is
likely to be very low for this kind of regression, suggesting that R2
should not be used as an estimation criterion in this context.



An obvious drawback to this approach is that it is quite possible, as
illustrated in figure 15.1, to have estimated probabilities outside the 01
range. This embarrassment could be avoided by converting estimated
probabilities lying outside the 01 range to either 0 or 1 as appropriate.
This defines the linear probability model. Although this model is often
used because of its computational ease,
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Figure 15.1
The linear probability model

many researchers feel uncomfortable with it because outcomes are
sometimes predicted with certainty when it is quite possible that they
may not occur.

What is needed is some means of squeezing the estimated probabilities
inside the 01 interval without actually creating probability estimates of 0
or 1, as shown by the dashed line in figure 15.1. Many possible
functions of this nature are available, the two most popular being the
cumulative normal function and the logistic function. Using the
cumulative normal function for this purpose creates the probit model;
using the logistic function creates the logit model. These two functions
are very similar, and in today's software environment the choice



between them is a matter of taste because both are so easy to estimate.
Logit is more common, perhaps for historical reasons - its lower
computational cost made it more common before modern software
eliminated this advantage.

A novel feature of these models, relative to the traditional regression
model, is that the stochastic ingredient is no longer represented by an
error term. This is because the stochastic element in this model is
inherent in the modeling itself - the logit equation, for example, provides
the expression for the probability that an event will occur. For each
observation the occurrence or non-occurrence of that event comes
about through a chance mechanism determined by this probability,
rather than by a draw from a bowl of error terms.

Estimation is almost always undertaken by maximum likelihood. For the
logit case, for example, the logit function provides the probability that
the event will occur and one minus this function provides the
probability that it will not occur. The likelihood is thus the product of
logit functions for all observations for which the event occurred
multiplied by the product of one-minus-the-logit-func-
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tions for all observations for which the event did not occur. This is
formalized in the technical notes.

15.2 Polychotomous Dependent Variables

The preceding section addressed the problem of binary, or dichotomous,
variables, for which there are only two choice categories. Categorical
variables that can be classified into many categories are called
polychotomous variables. For example, a commuter may be presented
with a choice of commuting to work by subway, by bus or by private
car, so there are three choices. Estimation in this context is undertaken
by means of a generalization of the logit or probit models, called,
respectively, the multinomial logit and the multinomial probit models.
These generalizations are motivated by employing the random utility
model.

In the random utility model the utility to a consumer of an alternative is
specified as a linear function of the characteristics of the consumer and
the attributes of the alternative, plus an error term. The probability that



a particular consumer will choose a particular alternative is given by the
probability that the utility of that alternative to that consumer is greater
than the utility to that consumer of all other available alternatives. This
makes good sense to an economist. The consumer picks the alternative
that maximizes his or her utility. The multinomial logit and multinomial
probit models follow from assumptions made concerning the nature of
the error term in this random utility model.

If the random utility error terms are assumed to be independently and
identically distributed as a log Weibull distribution, the multinomial
logit model results. The great advantage of this model is its
computational ease; the probability of an individual selecting a given
alternative is easily expressed (as described in the technical notes), and
a likelihood function can be formed and maximized in straightforward
fashion. The disadvantage of this model is that it is characterized by
what is called the independence of irrelevant alternatives property.
Suppose a new alternative, almost identical to an existing alternative, is
added to the set of choices. One would expect that as a result the
probability from this model of choosing the duplicated alternative would
be cut in half and the probabilities of choosing the other alternatives
would be unaffected. Unfortunately, this is not the case, implying that
the multinomial logit model will be inappropriate whenever two or more
of the alternatives are close substitutes.

If the random utility error terms are assumed to be distributed
multivariate-normally, the multinomial probit model results. This model
allows the error terms to be correlated across alternatives, thereby
permitting it to circumvent the independence of irrelevant alternatives
dilemma. Its disadvantage is its high
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computational cost, which becomes prohibitively high when there are
more than four alternatives.

15.3 Ordered Logit/Probit

For some polychotomous dependent variables there is a natural order.
Bond ratings, for example, are expressed in terms of categories (triple
A, double A, etc.) which could be viewed as resulting from a
continuous, unobserved measure called ''creditworthiness"; students'
letter grades for an economics course may be generated by their



instructor's assessment of their "level of understanding" of the course
material; the reaction of patients to a drug dose could be categorized as
no reaction, slight reaction, severe reaction, and death, corresponding to
a conceptual continuous measure called "degree of allergic reaction."

For these examples, using multinomial probit or logit would not be
efficient because no account would be taken of the extra information
implicit in the ordinal nature of the dependent variable. Nor would
ordinary least squares be appropriate, because the coding of the
dependent variable in these cases, usually as 0, 1,2,3, etc., reflects only
a ranking: the difference between a 1 and a 2 cannot be treated as
equivalent to the difference between a 2 and a 3, for example.

The ordered logit or probit model is used for this case. Consider the
example of bond ratings, for which the unobserved continuous measure,
creditworthiness, is specified to be a linear function (with parameter
vector b, say) of explanatory variables. Each bond rating corresponds to
a specific range of the creditworthiness index, with higher ratings
corresponding to a higher range of the creditworthiness values. Suppose,
for example, that a firm's current bond rating is A. If its creditworthiness
were to grow, it would eventually exceed the creditworthiness value
that marks the boundary between the A and double A categories, and
the firm would then experience an increase in its bond rating.
Estimation is undertaken by maximum likelihood, with b being
estimated in conjunction with estimation of the unknown boundary
values defining the ranges of the creditworthiness index. For further
discussion see the technical notes.

15.4 Count Data

Very often data take the form of non-negative integer values such as
number of children, recreational trips, bankruptcies, or patents. To
exploit this feature of the data, estimation is undertaken using a
count-data model, the most common example of which is a Poisson
model. In this model the Poisson distribution provides the probability of
the number of event occurrences and the Poisson parameter
corresponding to the expected number of occurrences is modeled as a
function of explanatory variables. Estimation is undertaken by
maximum likelihood.

The Poisson model embodies some strong assumptions, such as that the
prob-
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ability of an occurrence is constant at any point in time and that the
variance of the number of occurrences equals the expected number of
occurrences. Both are thought to be unreasonable since contagious
processes typically cause occurrences to influence the probability of
future occurrences, and the variance of the number of occurrences
usually exceeds the expected number of occurrences. Generalizations of
the Poisson model, discussed in the technical notes, are employed to
deal with these shortcomings.

General Notes

Maddala (1993) is an extensive reference on qualitative dependent
variables and modelling options. Amemiya (1981) is a classic survey
article for qualitative choice. Fry et al. (1993) discuss economic
motivations for models with qualitative dependent variables.
Winkelmann and Zimmermann (1995) is a good survey of count-data
modeling; Winkelmann (1997) is a comprehensive reference. LIMDEP
is the software of choice for estimating models discussed in this chapter.

15.1 Dichotomous Dependent Variables

Although estimation of the dichotomous or binary dependent variable is
almost always by maximum likelihood, on occasion one sees an
alternative procedure, popular before computer software made
maximum likelihood so simple to perform. This case occurs when there
is a very large data set, large enough that observations can be grouped
into sets of several observations on identical individuals. If there are
enough observations in each group, a reliable estimate of the probability
of an observation in that group experiencing the event can be produced
by calculating the percentage of observations in that group experiencing
the event. (Alternatively, the data may be available only in aggregated
form.) This estimated probability can be used in two ways to provide
estimates. First, it can be used as the dependent variable in a regression
on the group characteristics to estimate a linear probability model.
Second, the log of the ratio of this probability to one minus this
probability (the log-odds ratio) can be used as the dependent variable in
a regression on the group characteristics to estimate a logit function.
(The technical notes show how this comes about.) In both cases there is
heteroskedasticity that should be adjusted for.



The role of the error term in qualitative dependent variable models is
not obvious. In traditional regression models the dependent variable is
written as a linear function of several explanatory variables plus an
error, so that for example we have y = Xb + e. For qualitative
dependent variables, however, the probability of obtaining the
dependent variable value is written as a logit or probit function of these
explanatory variables, without an error term appearing, so that for
example.

An error term is not necessary to provide a stochastic ingredient for this
model because for each observation the value of the dependent variable
is generated via a chance mechanism embodying the probability
provided by the logit equation.
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Figure 15.2
Explaining probit and logit

Despite this, most researchers conceptualize an underlying model that
does contain an error term. An unobserved (latent) index is specified as
a linear function of explanatory variables plus an error term (i.e., Xb +
e). If this index exceeds a critical value (normalized to be zero,
assuming an intercept appears in Xb) then y = 1, otherwise y = 0. More
formally.



which is a cumulative density. If e is distributed normally this is the
cumulative density of a normal distribution (normalized to have
variance one, which scales the coefficient estimates) and we have the
probit model; if e is distributed such that its cumulative density is a
logistic function, we have the logit model.

Thinking of this model in terms of its underlying latent index can be
advantageous for several reasons. First, it provides a means of
interpreting outcomes in terms of the theoretically attractive random
utility model, as described later in the technical notes. Second, it
facilitates the exposition of ordered logit/probit, discussed later in this
chapter. Third, it is consistent with the modeling of sample selection
problems, presented in chapter 16. And fourth, it allows the
development of R2 measures applicable to this context.

Figure 15.2 illustrates the exposition given above. Suppose we are
modeling the decision to buy a car, so that the latent index Xb + e is
referred to as a "buying index," and if an individual's buying index
exceeds zero, he or she buys. An individual with characteristics given
by the row vector X1 has buying index X1b + e, so the density of
buying indices for such people is shown in figure 15.2 centered at X1b.
Some such individuals need little encouragement to buy a car and so
have high, positive error terms producing high index values, whereas
other seemingly identical individuals hate buying cars and so have large,
negative error terms producing low index values. The probability that
such a person buys is the probability that his or her index value exceeds
zero, given by the lined area to the right of zero. If e is distributed
normally this is the cumulative density of e from minus X1b to infinity,
equal to the cumulative density from minus infinity to plus X1b. This is
just the probit model. For the logit

model this area/probability is given by 
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For an individual with a different row vector of characteristics the lined
area would be of a different size. The likelihood function is formed by
multiplying together expressions for the probability of each individual in
the sample doing what he or she did (buy or not buy). Expressions
measuring the lined area are used for buyers and expressions for the
dotted area (one minus the expression for the lined area) are used for
those not buying.

Cameron (1988) shows how to undertake logit estimation in the context
of "referendum" survey data when people are asked to answer yes or no
to a choice question, such as willingness to pay for a project, with the
payment varying across respondents.

An estimated b value in a logit or a probit does not estimate the change
in the probability of y = 1 due to a unit change in the relevant
explanatory variable. This probability change is given by the partial
derivative of the expression for prob(y = 1) with respect to b, which is
not equal to b. For the logit, for example, it is [prob(y = 1)][1 - prob(y =
1)]b, which is usually reported by estimating it at the mean values of the
explanatory variables. It should be noted that this formula can give
misleading estimates of probability changes in contexts in which an
explanatory variable is postulated to change by an amount that is not
infinitesimal. Estimation using the difference between the estimated
prob(y = 1) before and after the change is safer. See Caudill and
Jackson (1989).

There is no universally-accepted goodness-of-fit measure (pseudo-R2)
for probit, logit, or count-data models. Veall and Zimmermann (1996) is
a good survey of alternative measures and their relative attributes. They
recommend the measure of McKelvey and Zavoina (1975), a
pseudo-R2 which is close to what the OLS R2 would be using the
underlying latent index implicit in the model. Most computer packages
provide a table giving the number of y = 1 values correctly and
incorrectly predicted, and the number of y = 0 values correctly and
incorrectly predicted, where an observation is predicted as y = 1 if the
estimated prob(y = 1) exceeds one-half. It is tempting to use the
percentage of correct predictions as a measure of goodness of fit. This
temptation should be resisted: a naive predictor, for example that every
y = 1, could do well on this criterion. A better measure along these lines
is the sum of the fraction of zeros correctly predicted plus the fraction
of ones correctly predicted, a number which should exceed unity if the
prediction method is of value. See McIntosh and Dorfman (1992). It
should be noted that a feature of logit is that the number of y = 1



predictions it makes is equal to the number of y = 1 observations in the
data.

One use of logit models is to classify observations. Suppose a logit
analysis has been done on the dichotomous choice of public versus
private transportation. Given the characteristics of a new individual, the
probabilities that he or she will choose public or private transportation
are estimated from the estimated logit function, and he or she is
classified to whichever transportation mode has the higher estimated
probability.

The main competitor to logit for classification is discriminant analysis.
In this technique it is assumed that the individual's characteristics can be
viewed as being distributed multivariate-normally, with a different mean
vector (but the same variance-covariance matrix) associated with the
two transportation modes. The original data are used to estimate the two
mean vectors and the joint variance-covariance matrix. Given a new
individual's characteristics these estimates can be used to estimate the
height of the density function for each transportation mode; the new
observation is classified to the transportation mode with the higher
estimated density (since it is "more likely" to have come from that
category).
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Most studies, such as Press and Wilson (1978), have concluded that
logit is superior to discriminant analysis for classification, primarily
because the assumption of multivariate-normally distributed
characteristics is not reasonable, especially when some characteristics
are qualitative in nature (i.e., they are represented by dummy variables).
Recently, linear programming techniques for classification have been
providing strong competition for logit. See Freed and Glover (1982).
Kennedy (1991b) provides a graphical comparison of these three
classification techniques.

By adding an error to the traditional logit or probit specifications so
that, for example,



it is possible to model unobserved differences between individuals
beyond those captured by the error in the latent index. Although this
unobserved heterogeneity, as it is called, is important in some contexts,
such as count-data models or duration models, Allison (1987) finds that
in logit and probit models it is a problem only in special cases.

Unfortunately, logit and probit models are sensitive to misspecifications.
In particular, in contrast to OLS in the CLR model, estimators will be
inconsistent if an explanatory variable (even an orthogonal variable) is
omitted or if there is heteroskedasticity. Davidson and MacKinnon
(1993, pp. 523-8) suggest a computationally attractive way of using a
modified Gauss-Newton regression to test for various specification
errors. Murphy (1994) shows how a heteroskedasticity test of Davidson
and MacKinnon (1984) can be applied to the multinomial case.
Landwehr et al. (1984) suggest some graphical means of assessing logit
models. Grogger (1990) exposits a Hausman-type specification test for
exogeneity in probit, logit and Poisson regression models. Lechner
(1991) is a good exposition of specification testing in the context of
logit models. Pagan and Vella (1989) is a classic paper showing that
many difficult-to-derive LM tests for specification in qualitative and
limited dependent variable models can more easily be undertaken as
conditional moment tests. Greene, Knapp and Seaks (1995) show how a
Box-Cox transformation can be used to allow a more flexible functional
form for the independent variables in a probit model. Fader, Lattin and
Little (1992) address the problem of estimating nonlinearities within the
multinomial logit model.

15.2 Polychotomous Dependent Variables

There are three ways of structuring the deterministic part of the random
utility model.

(1) Specify that the utility of an alternative to an individual is a linear
function of that individual's n characteristics, with a different set of
parameters for each alternative. In this case n coefficients must be
estimated for each of the alternatives (less one - as shown in the
example in the technical notes, one alternative serves as a base). Given
characteristics of an individual - say, income, sex, and geographic
location - with this specification one could estimate the probabilities of
that individual choosing, say, each type of commuter mode.
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(2) Specify that the utility of an alternative to an individual is a linear
function of the m attributes of that alternative, as seen through the eyes
of that individual. In this case, m coefficients, identical for all
individuals, must be estimated. Given how the characteristics of an
alternative relate to an individual - say, commuting time, cost, and
convenience - it would be possible to estimate the probabilities of that
individual choosing each type of commuter mode. If the researcher
wanted to capture inherent differences between the alternatives that are
the same for all individuals, dummy variables for all but one alternative
would be included.

(3) Specify a combination of (1) and (2) above, namely a linear function
of both the attributes of the alternatives as they affect the individuals
and the characteristics of the individuals, with a different set of
parameters for the individuals' characteristics for each alternative (less
one) plus one set of parameters for the alternatives' attributes.

Specification (1) above is called the multinomial logit/probit,
specification (2) is called the conditional logit/probit, and specification
(3) is called the mixed logit/probit model. Frequently, as is the case in
this book, the multinomial terminology is used to refer to all three.

The independence-of-irrelevant-alternatives problem arises from the
fact that in the multinomial logit model the relative probability of
choosing two existing alternatives is unaffected by the presence of
additional alternatives. As an example, suppose a commuter is twice as
likely to commute by subway as by bus and three times as likely to
commute by private car as by bus, so that the probabilities of
commuting by bus, subway and private car are 1/6, 2/6 and 3/6,
respectively. Now suppose an extra bus service is added, differing from
the existing bus service only in the color of the buses. One would expect
the probabilities of commuting by new bus, old bus, subway and private
car to be 1/12, 1/12, 2/6 and 3/6, respectively. Instead, the multinomial
logit model produces probabilities 1/7, 1/7, 2/7 and 3/7, to preserve the
relative probabilities.

One way of circumventing the independence of irrelevant alternatives
problem is to estimate using a sequential logit/probit model. In this
model people are assumed to make decisions sequentially. For example,
rather than choosing between an imported car, an imported truck, a
domestic car and a domestic truck, which creates an IIA problem,



people are assumed first to make a decision between a car and a truck
and then, conditional on that decision, to choose between an imported
and a domestic model. Van Ophem and Schram (1997) examine a model
that nests sequential and multinomial logit models and so allows testing
one against the other.

Hausman and McFadden (1984) develop tests for the independence of
irrelevant alternatives (IIA) assumption. One test is based on the idea
that if a category is dropped then if the IIA assumption is true the
estimated coefficients should not change. A second test is based on the
fact that under IIA a multinomial logit is a special case of a sequential
logit. Zhang and Hoffman (1993) have a good exposition of these
methods of testing for IIA, recommending a procedure due to Small and
Hsiao (1985).

A flexibility of the multinomial probit model is that the coefficients of
the individual characteristics in the random utility model can be
stochastic, varying (normally) over individuals to reflect individual's
different tastes. This can be incorporated in the multinomial probit
model through the covariances of the error terms; it cannot be made
part of the multinomial logit model because the covariance between the
error
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terms must be zero. This restriction of the multinomial logit model is
what gives rise to the IIA problem. Using the multinomial probit to
circumvent this problem involves very high computational cost,
however, because multiple (one less than the number of categories)
integrals must be calculated, which is why the multinomial logit is used
so often despite the IIA problem. Chintagunta (1992) has introduced a
computationally feasible means of estimation for the multinomial probit
model. Keane (1992) discusses the computational problems associated
with calculating the multinomial probit. He notes that although
exclusion restrictions (some explanatory variables do not affect the
utility of some options) are not required for estimation, in practice
estimation is questionable without them.

15.3 Ordered Logit/Probit



Surveys often ask respondents to select a range rather than provide a
specific value, for example indicating that income lies in one of several
specified ranges. Is the measurement error avoided by asking
respondents to select categories worth the loss in information associated
with foregoing a continuous measure? By comparing OLS and ordered
logit with a unique data set, Dunn (1993) concludes that it is better to
avoid gathering categorical data. Stewart (1983), Stern (1991), Caudill
and Jackson (1993) and Bhat (1994) suggest ways of estimating in this
context.

Murphy (1996) suggests an artificial regression for testing for omitted
variables, heteroskedasticity, functional form and asymmetry in ordered
logit models.

15.4 Count Data

Many individual decisions are made in a two-stage process in which
first a decision is made to, say, purchase a good, and then a decision is
made on the number of purchases. This can lead to more or fewer zeros
in the data than that predicted by the Poisson model. The hurdle
Poisson model is used to deal with this problem, in which a dichotomous
model capturing the first stage is combined with a Poisson model for the
second stage. This approach has been extended by Terza and Wilson
(1990) to allow a choice of several different types of trips, say, in
conjunction with choice of number of trips.

In some applications zero values are unobserved because, for example,
only people at a recreational site were interviewed about the number of
trips they made per year to that site. In this case a truncated count-data
model is employed in which the formula for the Poisson distribution is
rescaled by dividing by one minus the probability of zero occurrences.
Interestingly, the logit model results from truncating above one to
produce two categories, zero and one. Caudill and Mixon (1995)
examine the related case in which observations are censored (i.e., the
explanatory variables are observed but the count is known only to be
beyond some limit) rather than truncated (no observations at all beyond
the limit).
 

page_242

Page 243

Technical Notes



15.1 Dichotomous Dependent Variables

If the linear probability model is formulated as Y = Xb + e where Y is
interpreted as the probability of buying a car, the heteroskedastic nature
of the error term is easily derived by noting that if the individual buys a
car (probability Xb) the error term takes the value (1 - Xb) and that if
the individual does not buy a car (probability (1 - Xb)) the error term
takes the value - Xb.

The logistic function is given as f(q) = eq/(1 + eq). It varies from zero to

one as q varies from  to  and looks very much like the
cumulative normal distribution. Note that it is much easier to calculate
than the cumulative normal, which requires evaluating an integral.
Suppose q is replaced with an index xb, a linear function of (for
example) several characteristics of a potential buyer. Then the logistic
model specifies that the probability of buying is given by

This in turn implies that the probability of not buying is

The likelihood function is formed as

where i refers to those who bought and j refers to those who did not
buy.

Maximizing this likelihood with respect to the vector b produces the
MLE of b. For the nth individual, then, the probability of buying is
estimated as



The formulae given above for the logit model imply that

so that the log-odds ratio is
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This is the rationale behind the grouping method described earlier.

The logic of discriminant analysis described earlier is formalized by the
linear discriminant rule, namely classify an individual with
characteristics given by the vector x to category 1 if

where the mi are the estimated mean vectors of the characteristics
vectors of individuals in category i, and S is their estimated common
variance-covariance matrix. This is easily derived from the formula for
the multivariate normal distribution. This rule can be modified for cases
in which the prior probabilities are unequal or the misclassification costs
are unequal. For example, if the cost of erroneously classifying an
observation to category 1 were three times the cost of erroneously
classifying an observation to category 2, the 1/2 in the linear
discriminant rule would be replaced by 3/2.

15.2 Polychotomous Dependent Variables

The log Weibull distribution, also known as the type I extreme-value
distribution, has the convenient property that the cumulative density of
the difference between any two random variables with this distribution



is given by the logistic function. Suppose, for example, that the utility of
option A to an individual with a row vector of characteristics x0 is x0bA
+ eA and of option B is x0bB + eB where eA and eB are drawn
independently from a log Weibull distribution. This individual will
choose option A if

or, alternatively, if

The probability that this is the case is given by the cumulative density of
eB - eA to the point x0(bA - bB). Since the cumulative density of eB -
eA is given by the logistic function we have

This shows, for the binary case, the relationship between the random
utility function and the logit model. A similar result for the
polychotomous case can be derived (see Maddala, 1993, pp. 5961),
producing the multinomial logit model, a generalization of the binary
logit. Notice that both bA and bB cannot be estimated; one category
serves as a base and the estimated coefficients (bA - bB) reflect the
difference between their utility function coefficients.

The type I extreme-value (or log Weibull) distribution has density f(x) =
exp(-x - e-x), with cumulative density F(x < a) = exp(-e-a). Its mode is
at zero, but its mean is 0.577. Consider the random utility model with
the utility of the ith option to the jthe individual given by Ui = Xjbi +

ei(i = 1, 2) with the ei distributed
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as independent log Weibulls. The probability that the jth individual
chooses option 1 is



By exploiting the fact that the integral of the density above is unity, this
can be shown to be the logit {1 + exp[Xj(b2 - b1)]}-1.

A proper derivation of the multinomial logit is based on the random
utility model. The resulting generalization of the binary logit can be
illustrated in less rigorous fashion by specifying that the ratio of the
probability of taking the kth alternative to the probability of taking some

"base" alternative is given by  where bk is a vector of parameters
relevant for the kth alternative. This is a direct generalization of the

earlier result that prob(buy)/prob(not buy) = exb. Note that this ratio is
unaffected by the presence of other alternatives; this reflects the
independence of irrelevant alternatives phenomenon. Note also that the
coefficient estimates change if the "base" alternative is changed (as they
should, because they estimate something different); if different
computer packages normalize differently in this respect, they will not
produce identical estimates.

As an example of how this generalization operates, suppose there are
three alternatives A, B and C, representing commuting alone (A), by
bus (B), and by carpool (C). The model is specified as

Here carpooling is chosen as the "standard" or base alternative; only
two such ratios are necessary since the remaining ratio,
prob(A)/prob(B), can be derived from the other two. Using the fact that
the sum of the probabilities of the three alternatives must be unity, a
little algebra reveals that



The likelihood function then becomes
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where the subscripts i,j, and k refer to those commuting alone, by bus
and by carpool, respectively. This expression, when maximized with

respect to bA and bB, yields  and . For any particular

individual, his or her characteristics can be used, along with  and

, to estimate prob(A), the probability that that person will commute
to work alone, prob(B), the probability that that person will commute to
work by bus, and prob(C), the probability that he or she will carpool it.
Extension of this procedure to more than three alternatives is
straightforward.

The commuter example can be used to describe more fully the
independence-of-irrelevant-alternatives phenomenon. Suppose we were
to use the same data to estimate a logit model expanded to discriminate
between commuting on a red bus (RB) versus commuting on a blue bus
(BB). In the original example these two alternatives had been lumped
together. Now there are four alternatives, A, RB, BB and C. Assuming
everyone is indifferent between blue and red buses, it would seem
logical that, when estimated, the expanded model should be such that
for any individual each of the estimated probabilities of commuting
alone, taking the bus (either red or blue) and carpooling it should remain



unchanged, with the probability of riding the bus broken in half to
estimate each of the two bus line alternatives. Unfortunately, this is not
the case: adding an irrelevant alternative changes the probabilities
assigned to all categories.

The key to understanding why this comes about is to recognize that the
number of people in the data set who commute by bus, relative to the
number of people in the data set who, say, carpool it, is irrelevant from
the point of view of calculating the estimate of bB. It is the differences

in these people's characteristics that determine the estimate of bB. If the
people riding the bus are now arbitrarily divided into two categories,
those riding red buses and those riding blue buses, there will be a
change in the number of people in a bus category relative to the carpool
category, but there will be no change in the nature of the differences in
the characteristics of people in the bus categories versus people in the
carpool category. Consequently, the estimate of bRB

 will be virtually the same as the original
estimate of bB, as will the estimate of bBB.

For the nth individual, before the introduction of the irrelevant
alternative, the probability of commuting alone is estimated as

a probability we would hope would remain unchanged when the
irrelevant alternative is introduced. But it does change; by setting

 it becomes approximately

Because of this problem, the multivariate logit methodology can be used
only when the categories involved are all quite different from one
another.
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15.3 Ordered Logit/Probit

Ordered probit specifies that, for example, y* = a + bx + e is an
unobservable index of ''creditworthiness," and we observe y = B if y* <
d1, y = A if d1 < y* < d2, y = AA if d2 < y* < d3 and y = AAA if d3 <
y*. The ds are unknown "threshold" parameters that must be estimated
along with a and b. If an intercept is included in the equation for y*, as
it is here, it is customary to normalize by setting d1 equal to zero.

Estimation proceeds by maximum likelihood. The probability of
obtaining an observation with y = AA, for example, is equal to

A likelihood function can be formed, and thus estimation undertaken,
once a density for e is known. The ordered probit model results from
assuming that e is distributed normally. (The ordered logit model results
from assuming that the cumulative density of e is the logistic function;
in practice the two formulations yield very similar results.) The usual
normalization is that e has mean zero and variance one; selecting a
variance of four, say, would simply double the estimated values of the
coefficients.

Application of ordered probit has become more frequent since it has
been built into computer packages, such as LIMDEP. Greene (1990, pp.
7036) has a good textbook presentation; Becker and Kennedy (1992)
have a graphical exposition. Note that if a change in an x value
increases the creditworthiness index, the probability of having rating
AAA definitely increases, the probability of having rating B definitely
decreases, but the probabilities of being in the intermediate categories
could move in either direction.

15.4 Count Data

In the Poisson model the probability of y number of occurrences of an

event is given by e-lly/y! for y a non-negative integer. The mean and
variance of this distribution are both l, typically specified to be l =
exp(xb) where x is a row vector of explanatory variables. Choosing the
exponential function has the advantage that it assures non-negativity.



Like the logit and probit models, in the Poisson model the formula for
the probability of an occurrence is a deterministic function of the
explanatory variables - it is not allowed to differ between otherwise-
identical individuals. In the case of logit and probit, relaxation of this
assumption can be achieved by introducing "unobserved heterogeneity"
in the form of an error term, adding an extra stochastic ingredient.
Unlike the case of logit and probit, however, in the Poisson model this
addition makes a substantive difference to the model, allowing the
variance of the number of occurrences to exceed the expected number
of occurrences, thereby creating a model consistent with the almost
universal tendency to observe such overdispersion.

A popular way of introducing unobserved heterogeneity into the
Poisson model is to specify l as exp(xb + e) where e is an error
distributed as a gamma distribution.
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This leads to a negative binomial distribution for the number of
occurrences, with mean l and variance l + a-1l2 where a is the common
parameter of the gamma distribution. By assuming a to be different
functions of l, different generalizations of this compound Poisson model
are created.

An alternative way of modeling count data to produce overdispersion is
to relax the assumption of the Poisson model that the probability of an
occurrence is constant at any moment of time and instead allow this
probability to vary with the time since the last occurrence. See
Winkelmann (1995) and Butler and Worral (1991).
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16
Limited Dependent Variables

16.1 Introduction



Dependent variables are sometimes limited in their range. For example,
data from the negative income tax experiment are such that income lies
at or below some threshold level for all observations. As another
example, data on household expenditure on automobiles has a lot of
observations at 0, corresponding to households who choose not to buy a
car. As a last example, data on wage rates may be obtainable only for
those for whom their wage exceeds their reservation wage, others
choosing not to work. If the dependent variable is limited in some way,
OLS estimates are biased, even asymptotically.

The upper half of figure 16.1 illustrates why this is the case (ignore for
now the lower half of this diagram). The relationship y = a + bx + e is
being estimated, where e is a normally distributed error and
observations with y values greater than k are not known. This could
happen because y is the demand for tickets to hockey games and the
arena on some occasions is sold out so that for these games all we know
is that the demand for tickets is greater than k, the capacity of the
arena. These unknown y values are denoted by small circles to
distinguish them from known data points, designated by dots. Notice
that for high values of x the known (dotted) observations below the
(unconditional) expectation E(y) = a + bx are not fully balanced off by
observations above E(y) = a + bx, because some of these observations
(the circled ones) are missing. This causes the resulting OLS regression
line to be too flat, as shown by the dashed line.

Samples with limited dependent variables are classified into two general
categories, censored and truncated regression models, depending on
whether or not the values of x for the missing y data are known.

(1) Censored sample In this case some observations on the dependent
variable, corresponding to known values of the independent variable(s),
are not observable. In figure 16.1, for example, the y values
corresponding to the circled data points are not known, but their
corresponding x values are known. In a study of the determinants of
wages, for example, you may have data on the explanatory variables for
people who were not working, as
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Figure 16.1
A limited dependent variable model

well as for those who were working, but for the former there is no
observed wage.

(2) Truncated sample In this case values of the independent variable(s)
are known only when the dependent variable is observed. In the
example of the negative income tax experiment noted earlier, no data of
any kind are available for those above the income threshold; they were
not part of the sample.

The dependent variable can be limited in a variety of different ways,
giving rise to several alternative models. The easiest of these models is
the Tobit model for censored data.

16.2 The Tobit Model



A common feature of microeconomic data is that observations on the
dependent variable that lie in a certain range are translated into (or
reported as) a single
 

page_250

Page 251

variable. In the demand for hockey game tickets example all demands
above the capacity of the arena are translated into k, the arena capacity.
This problem is analyzed using a Tobit model, named after James Tobin
who was the first to analyze this type of data in a regression context.

How should estimation be undertaken? Our discussion earlier indicated
that omitting the limit observations creates bias. Ignoring these
observations would in any case be throwing away information, which is
not advisable. How should they be included? It should be obvious from
inspection of figure 16.1 that including the limit observations as though
they were ordinary observations also creates bias. The solution to this
dilemma is to employ maximum likelihood estimation.

The likelihood consists of the product of expressions for the
"probability" of obtaining each observation. For each non-limit
observation this expression is just the height of the appropriate density
function representing the probability of getting that particular
observation. For each limit observation, however, all we know is that
the actual observation is above k. The probability for a limit observation
therefore must be the probability of getting an observation above k,
which would be the integral above k of the appropriate density function.
In Tobin's original article (Tobin, 1958) durable goods purchases as a
fraction of disposable income were modeled as a function of age and
the ratio of liquid assets to disposable income. There were several limit
observations at zero, corresponding to people who bought no durable
goods, which entered the likelihood function as integrals from minus
infinity to zero. The bottom line here is that the likelihood function
becomes a mixture of densities and cumulative densities; fortunately,
modern computer packages handle this with ease.

This estimation procedure for the Tobit model applies to the case of
censored data. If the data are truncated, so that for example the limit
observations are missing completely, the Tobit model no longer applies
and an alternative maximum likelihood estimation procedure must be
employed, described in the technical notes.



16.3 Sample Selection

The Tobit model is a special case of a more general model incorporating
what is called sample selection. In these models there is a second
equation, called the selection equation, which determines whether an
observation makes it into the sample. This causes the sample to be
non-random, drawn from a subpopulation of a wider population. For
example, observations on hours worked are available only on those for
whom their wage exceeds their reservation wage. The main problem
here is that often the researcher wishes to draw conclusions about the
wider population, not just the subpopulation from which the data is
taken. If this is the case, to avoid sample selection bias estimation must
take the sample selection phenomenon into account.
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In the Tobit model, the sample selection equation is the same as the
equation being estimated, with a fixed, known limit determining what
observations get into the sample. Many cases do not fit this sample
mold. For example, the decision to purchase a consumer durable may in
part depend on whether desired expenditure exceeds a threshold value
equal to the cost of the cheapest acceptable durable available. This
threshold value will be unique to each individual, depending on each
individual's characteristics, and will incorporate a random error. In this
case the limit is unknown, varies from person to person, and is
stochastic.

Unlike the Tobit model, these extended models have likelihood
functions that are difficult to derive and are not always found in
push-button form in econometrics packages. Consequently,
practitioners are eager to find a practical alternative to maximum
likelihood. The Heckman two-step estimation procedure, a second-best
alternative to maximum likelihood, is very popular in this context.

The rationale of the Heckman method can be explained with the help of
figure 16.1. Consider the value x0. For the corresponding y to be
observed, the related error must be zero or negative, since if it were
positive y would exceed k and would therefore be unobserved. This
implies that for x0 the expected value of the error term is negative. Now
consider values of x less than x0. For y to be observed the error can
take on small positive values, in addition to being negative or zero, so



the expected value of the error becomes less negative. When x is
greater than x0 the opposite occurs. As x becomes larger and larger, for
y to be observed the error must lie below a larger and larger negative
number. The expected value of the error term becomes more and more
negative, as shown in the bottom half of figure 16.1.

The implication of this is that the error term is correlated with the
explanatory variable, causing bias even asymptotically. If the expected
value of the error term were known it could be included in the
regression as an extra explanatory variable, removing that part of the
error which is correlated with the explanatory variables and thereby
avoiding the bias. The first stage of the Heckman procedure estimates
the expected value of the error and the second stage reruns the
regression with the estimated expected error as an extra explanatory
variable. The details of finding estimates of the expected value of the
error term are explained in the technical notes. It requires observations
on the explanatory variables for the limit observations, so the Heckman
procedure only works with censored data.

16.4 Duration Models

Economic analysis often focuses on the length of time a person or firm
stays in a specific state before leaving that state. A popular example is
the state of unemployment - what determines the duration of
unemployment spells? Duration models are used to investigate
empirically this issue.
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Typically the data available for duration analysis consists of two types
of observations. For the first type, the length of the unemployment spell
is known (an individual found work after five weeks, for example). For
the second type, the length of the unemployment spell is unknown
because at the time of gathering data the individual was in the middle of
an unemployment spell (an individual was still looking for work after
five weeks, for example). In the latter case the observations are
censored, implying that an estimation technique similar to that used for
limited dependent variables should be employed.

Models in this context are formalized by specifying a probability density
function for the duration of the unemployment spell. This is a function



of time t (measured from when the individual first became unemployed)
providing the "probability" that an unemployment spell will be of
length/duration t. Explanatory variables such as age, education, gender,
and unemployment insurance eligibility, are included in this formula as
well, to incorporate additional determinants of this probability.
Maximum likelihood estimation can be used. The likelihood ingredient
for each completed unemployment spell in the data is given by this
duration density formula. The likelihood ingredient for each
uncompleted unemployment spell in the data is given by an appropriate
cumulation of this duration density giving the probability of getting an
observation at least as great as the observed uncompleted spell. Thus
the likelihood function becomes a mixture of densities and cumulative
densities, just as in the Tobit analysis earlier.

Although the duration density function introduced above is the essential
ingredient in duration models in that it is used to produce the likelihood
function, discussion of duration models usually is undertaken in terms of
a different function, the hazard function. This function gives the
probability of leaving unemployment at time t given that the
unemployment spell has lasted to time t; it is a conditional rather than
an unconditional density function. The hazard function is the basis for
discussion because it is usually the phenomenon of most interest to
economists: What is the probability that someone who is unemployed
will leave that state during this week?

The hazard function can be derived mathematically from the duration
density function, so introduction of the hazard function does not change
the nature of the model. But because interest and economic theory
focus on the hazard function, it makes sense to choose a duration
density specification that produces a hazard function that behaves as we
believe it should. This explains why the duration densities used in
duration models do not take a familiar form such as the normal
distribution - they must be chosen so as to produce suitable hazard
functions.

Some special cases of hazard functions are illustrated in Figure 16.2.
The flat hazard, associated with the exponential duration density, says
that the probability of leaving the unemployment state is the same, no
matter how long one has been unemployed. The rising and falling
hazards, associated with Weibull duration densities (with different
Weibull parameter values giving rise to these two different hazards),
says that the probability of leaving the unemployment state
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Figure 16.2
Examples of hazard functions associated with different

duration densities

increases or decreases, respectively, as the unemployment spell
lengthens. The hazard associated with the log-logistic duration density
at first rises and then falls.

Explanatory variables such as age and gender enter by affecting the
level and/or shape of these basic hazard functions. Estimation is
simplified if a change in an explanatory variable simply shifts the basic
hazard up or down. As explained in the technical notes, this produces
what is called a proportional hazards model.

General Notes

16.1 Introduction



Maddala (1983) is an extensive reference on limited dependent
variables and modeling options. Amemiya (1984) is a classic survey
article. LIMDEP is the software of choice for estimation. Limited
dependent variable modeling is prominent in the analysis of
disequilibrium and switching phenomena; Maddala (1986) is a survey.

A major problem with limited dependent variable models is that
estimation is quite sensitive to specification errors such as omission of a
relevant explanatory variable
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(even if orthogonal), heteroskedasticity, and non-normal errors.
Maddala (1995) is a survey of specification tests in this context. Pagan
and Vella (1989) have advocated use of conditional moment tests in this
context; Greene (1997, pp. 972-4) is a good textbook exposition.
Selection bias can be tested by performing the Heckman two-stage
procedure and testing against zero the coefficient of the expected error
term. Greene (1997, p. 970) exposits a test for Tobit versus the more
general model in which a second equation determines whether y is
observed. Volume 34 (1,2) of the Journal of Econometrics is devoted
to specification tests in limited dependent variable models. Because of
this sensitivity to specification errors, attention has focused recently on
the development of robust estimators for this context. (Robust
estimation is discussed in chapter 19.) Volume 32 (1) of the Journal of
Econometrics is devoted to robust methods for limited dependent
variables.

Heteroskedasticity of known form can be dealt with by building it into
the likelihood function. Izadi (1992) suggests dealing with non-normal
errors by assuming the errors come from the Pearson family of
distributions of which the normal is a special case. These solutions
require dealing with awkward likelihood functions, some of which are
programmed into LIMDEP. Greene (1997, pp. 968-9) shows how an
LM test can avoid this difficulty.

16.2 The Tobit Model

The Tobit model was introduced by Tobin (1958) to model a limit of
zero expenditure. Garcia and Labeaga (1996) survey alternative
approaches to modeling zero expenditures. Veall and Zimmermann
(1996) survey goodness-of-fit measures (pseu-do-R2s) for Tobit and



duration models. Lankford and Wyckoff (1991) show how the Tobit
model can be generalized to incorporate a Box-Cox functional form.
Greene (1981) finds that the Tobit maximum likelihood estimates can
be approximated quite well by dividing the OLS estimates by the
proportion of nonlimit observations in the sample.

The estimated coefficients from censored and truncated models must be
interpreted with care. Suppose we are estimating an equation explaining
desired expenditure but that whenever it is negative we observe zero
expenditure. McDonald and Moffit (1980) show that although the
expected change in desired expenditure due to a unit change in an
explanatory variable is the coefficient of that explanatory variable, the
expected change in actual expenditure is not; for the latter the required
calculation must account for the probability of being above the limit and
changes therein. To be specific, they show that the expected actual
change is the change in expected expenditure of those above the limit
times the probability of being above the limit, plus the expected
expenditure of those above the limit times the change in the probability
of being above the limit. Note that this illustrates how Tobit contains the
elements of regression (expected expenditure, and changes therein, of
those above the limit) and the elements of probit (the probability, and
changes therein, of being above the limit). They discuss and illustrate
the implications of this for the use and interpretation of results of
studies employing this type of model. For example, we could be
interested in how much of the work disincentive of a negative income
tax takes the form of a reduction in the probability of working versus a
reduction in hours worked. In other cases, however, interest may focus
on the untruncated population, in which case the
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Tobit coefficients themselves are the relevant results since the Tobit
index reflects the underlying population.

16.3 Sample Selection

The Heckman two-stage estimator was introduced in Heckman (1976).
It is inferior to maximum likelihood because although it is consistent it is
inefficient. Further, in "solving" the omitted variable problem the
Heckman procedure introduces a measurement error problem, since an
estimate of the expected value of the error term is employed in the
second stage. In small samples it is not clear that the Heckman



procedure is to be recommended. Monte Carlo studies such as
Stolzenberg and Relles (1990), Hartman (1991), Zuehlke and Zeman
(1991) and Nawata (1993) find that on a MSE criterion, relative to
subsample OLS the Heckman procedure does not perform well when
the errors are not distributed normally, the sample size is small, the
amount of censoring is small, the correlation between the errors of the
regression and selection equations is small, and the degree of
collinearity between the explanatory variables in the regression and
selection equations is high. It appears that the Heckman procedure can
often do more harm than good, and that subsample OLS is surprisingly
efficient, and more robust to non-normality. Nawata (1994) and Nawata
and Hagase (1996) recommend using maximum likelihood, and discuss
computational considerations.

Limited dependent variable models can arise in a variety of forms.
Suppose for example that we have

with y being observed only if y > p. The likelihood function for this
model is discussed by Maddala (1983, pp. 174-7). For example, suppose
y represents wages of females and p represents the reservation wage.
Consider individuals with high e values, so that their actual wage
happens to be particularly high. Their reservation wage is more likely to
be exceeded and such people are likely to be employed. Individuals
with low e values, on the other hand, are more likely to have actual
wage below reservation wage and such people are likely not to be
employed. Thus using a sample of employed women to estimate the
wage function will contain a disproportionate number of observations
with high e values, biasing the estimators.

The preceding example is only one of several possible variants. One
alternative is to specify that instead of y being observed when y > p, it
is observed when p > 0. Bias arises in this case from the fact that often
the two errors, e and u, are correlated; see Maddala (1983, p. 231) for
the likelihood function for this case. Suppose, for example, that y
represents earnings and p represents the decision to emigrate. There
may be an unobservable element of u, call it "energy," that also affects
earnings, i.e. energy is also an element of e, so that u and e are
correlated. Immigrants as a group will have a disproportionate number
of people with high energy, so using observations on immigrants to
estimate the earnings function creates biased estimators of the earnings



function relevant to the population at large, or relevant to the
population of the country from which they emigrated.

An important variant of this last example is a context in which a
researcher is interest-
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ed in the impact of a treatment or program of some kind. Greene (1993,
pp. 713-14) has a good example of an equation determining earnings as
a function of several explanatory variables plus a dummy representing
whether or not an individual has a college education. An estimation
problem arises because individuals self-select themselves into the
college education category on the basis of the expected benefit to them
of a college education, biasing upward the coefficient estimate for this
dummy. A selection equation must be recognized, with an error term
correlated with the error term in the earnings equation.

16.4 Duration Models

Duration modeling goes by many different names in the literature. To
biologists it is survival analysis because it was originally developed to
analyze time until death. Engineers, interested in the breakdown of
machines, call it reliability or failure time analysis. Sociologists refer to
it as event history analysis. The literature in this area can be quite
technical, a notable exception being Allison (1984). Kiefer (1988) and
Lancaster (1990) are expositions aimed at economists, the latter quite
advanced. Goldstein et al. (1989) review software; the econometrics
package with the most extensive duration model estimating routines is
LIMDEP.

The exposition earlier was couched in terms of a continuous-time
analysis in which knowledge of the exact time of duration was
available. Although this may be reasonable for some types of economic
data, for example strike durations measured in days, often this
knowledge is not available. Unemployment duration, for example, is
frequently measured in weeks, with no knowledge of when during the
week of departure a particular individual left the unemployment state.
In this case all those leaving the unemployment state during that week
are grouped into a single discrete-time measure. Whenever the length of
time of these discrete units of measurement is relatively large, analysis
is undertaken via a discrete-time duration model, sometimes called a



grouped-data duration model. For a variety of reasons, explained in the
technical notes, estimation via a discrete-time duration model is a very
attractive alternative to estimation using a continuous-time duration
model, and so is becoming more and more the method of choice
amongst economists.

Technical Notes

16.1 Introduction

The likelihood functions for censored and truncated samples are quite
different. This can be illustrated with the help of figure 16.3, which
graphs the density function of the error e from figure 16.1. Consider a
particular value x3 of x. For y3 to be observable, e3 must lie to the left

of k - a - bx3; for y3 unobservable, e3 must lie to the right of k - a - bx3.
This result follows from the discussion of Ee above.

Suppose first we have a censored sample. If x3 corresponds to an
observable y, then there will be a specific e3 and the likelihood for that
observation is given by L3 in figure 16.3, the height of the density

function for e at e3. But if x3 corresponds to an unobservable (i.e.,
missing) value of y, we have no specific e3; all we know is that e3
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Figure 16.3
Explaining the likelihood for censored and truncated

models

must lie to the right of k - a - bx3. The likelihood of this observation is
thus the probability that e3 exceeds k - a - bx3, given by the lined area
in figure 16.3, and calculated as 1 minus the density function cumulated
to the point k - a - bx3. The likelihood for each observation in the
sample may be calculated in one of these two ways, depending on
whether the y value is observed or unobserved. Multiplying together all
of these likelihood expressions, some of which are densities and some of
which are cumulative densities, creates the likelihood for the censored
sample.

Suppose now we have a truncated sample. For every possible value of
x3 in the sample the associated error must come from the left of k - a -

bx3 in figure 16.3. Consequently the lined area should not be viewed as
part of the density of e3. Because of this, e3 can be viewed as being
drawn from the truncated normal distribution given by the dashed curve
in figure 16.3. This dashed curve is obtained by dividing the height of
the original normal distribution by the dotted area, forcing the area
under the dashed curve to equal 1. Thus the likelihood of the

observation y3 is given in figure 16.3 by . Note that  is a
complicated function of the data, consisting of the height of the normal
density function at the observation (y3, x3), divided by that density
function cumulated to the point k - a - bx3. Each observation will give
rise to a different dashed curve from which the likelihood of that
observation can be calculated. Multiplying together all these likelihood
expression creates the likelihood function for the entire sample.

16.3 Sample Selection

How does one go about estimating Ee to implement the Heckman
two-step procedure? Consider once again the example of figure 16.1 as
reflected in its supplementary graph figure 16.3. For any value x3 of x,
the corresponding error term e3 for an observed y3 has in effect been
drawn from the truncated normal distribution shown in
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figure 16.3 as the dashed curve, cut off at the point k - a - bx3. Thus Ee
is the expected value of this truncated normal distribution. A standard
formula for the calculation of Ee can be used if it is known how many
standard deviations k - a - bx3 represents. Estimation of (k - a - bx3)/s,
where s2 is the variance of the normal untrucated distribution, therefore
allows estimation of Ee.

In a censored sample the data on y can be interpreted as dichotomous,
with y taking the value 1 if observed and 0 if unobserved. Then a probit
analysis can be done on these data, generating for x3, say, an estimate
of the probability that y3 is observed. (Note: this cannot be done for a
truncated sample, since the x values for the unobserved y values are
also missing - this explains why the Heckman two-step method can be
used only with censored samples.) Given an estimate of this probability,
the dotted area in figure 16.3, it is easy to find the corresponding
number of standard deviations of the standard normal giving rise to that
probability, yielding the required estimate of (k - a - bx3)/s.

The standard formula for the expected value of a truncated distribution
is E(e|e < a) = m + sl(q) where q is the number of standard deviations,
(a - m)/s, of a from the mean m of e, and l(q) is -f(q)/F(q), the inverse of
the ''Mills ratio," where f is the density function for the standard normal
and f is its cumulative density function. Here m is zero and the estimate
of (k - a - bx3)/s is an estimate of q the inverse of the Mills ratio is
estimated and used as an extra regressor, reducing the bias (and
eliminating it asymptotically). For discussion of the interpretation of this
extra regressor's coefficient estimate see Dolton and Makepeace (1987).

For this example, maximum likelihood estimation is not costly, so the
two-step method is not used. However, the principles illustrated are
employed to generate an estimate of the expected value of the error for
more difficult cases such as the immigration example discussed earlier
in the general notes to section 16.3. In this example the expected value
of the error e in the earnings equation is nonzero because it is correlated
with the error u that determines the decision to emigrate. The expected
value of e is rsl(q) where r is the correlation between e and u.
Consequently, when the inverse Mills ratio l(q) is added as a regressor
for the second step of the Heckman method, its coefficient estimator
estimates rs.



16.4 Duration Models

Often the first step in undertaking estimation in a continuous-time
duration model is to plot a preliminary version of the hazard function by
calculating the fraction of observations leaving the unemployment state
during successive discrete time intervals. The measure for the fifth
week, for example, is the number of observations leaving
unemployment during the fifth week divided by the number of
observations which could have left unemployment during that week.
This picture can sometimes help determine the basic shape of the hazard
function, facilitating the development of an appropriate specification.
The two most popular ways of calculating this preliminary sketch of the
hazard (or related survivor) function are called the life table and
Kaplan-Meier methods.

A popular continuous-time duration model specification is the
proportional hazards model. In this model the hazard function is
composed of two separate parts, multiplied together. The first part is
exclusively a function of duration time. It is called the baseline hazard
and is usually written as l0(t). The second part is a function of
explanatory
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variables other than time and is traditionally chosen to take the form
exp(x'b) where x is a vector of observations on an individual's
characteristics (which may vary with time) and b is a parameter vector.
The hazard function is then written as

The key thing is that time itself is separated from the explanatory
variables so that the hazard is obtained simply by shifting the baseline
hazard as the explanatory variables change (i.e., for all individuals the
hazard function is proportional to the baseline hazard function). The
reason for its popularity is that estimation can be undertaken by
maximizing a much simpler function, called the "partial likelihood,"
instead of the full likelihood, with little loss in estimation efficiency.
Furthermore, it happens that the baseline hazard cancels out of the
partial likelihood formula, so that this estimation method has the
tremendous advantage of being insensitive to the specification of the



baseline hazard. This advantage is offset by the fact that the baseline
hazard and thus the full hazard function is not estimated. This
disadvantage is not of consequence if interest focuses exclusively on the
influence of the explanatory variables, as it often does.

Two ways of testing for the appropriateness of the proportional hazard
model are popular. First, different categories of the explanatory
variables should give rise to hazard functions that are proportional, so
plotting an estimated hazard function for males, say, should produce a
function roughly parallel to the estimated hazard function for females.
In the second method, an extra explanatory variable, measured as an
interaction of time with one of the existing explanatory variables, is
added to the specification. Upon estimation this variable should have an
estimated coefficient insignificantly different from zero if the
proportional hazards specification is correct. An LR test can be used.

To obtain a sense of the algebra of continuous-time duration models,
suppose f(t) is the duration density, reflecting the probability that a spell
of unemployment has duration t. The hazard function is then l(t) =
f(t)/[1 - F(t)] where F(t) is the cumulative density of t. The expression
[1 - F(t)] is called the survivor function since it gives the probability of
an individual surviving in the unemployment state at least to time t.
Each observation on a completed spell is entered into the likelihood
function as f(t) and each observation on an uncompleted spell is entered
as [1 - F(t)].

A popular density function to use for f(t) is the exponential f(t) = de-dt

where the parameter d is greater than zero. For this case F(t) = 1 - e-dt
and the hazard function is a constant l(t) = d. Other distributions for f(t)
give rise to hazard functions that are functions of t. For example, the
Weibull distribution is a generalization of the exponential with

and corresponding hazard

where the two Weibull parameters g and a are positive. Note that if a =
1 this distrib-
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ution becomes the exponential. If a < 1 the hazard function is
increasing, and if a < 1 it is decreasing. These were illustrated in figure
16.2.

Explanatory variables are incorporated into duration models by
specifying how they affect the hazard function, usually introduced in
ways that are computationally tractable. For the exponential

distribution, for example, the parameter d is modeled as ex'b. Since d-1
in this model is the mean duration, this is specifying that the mean
duration is determined by explanatory variables according to the

formula e-x'b. In the likelihood function d is replaced by e-x'b and
maximization is done with respect to the b vector.

Duration models assume that individuals with identical values of the
explanatory variables have exactly the same probability of leaving the
state of unemployment, in the same way that probit and logit models
assume that probabilities are deterministic. But we know that
observationally similar people differ because of unobserved
characteristics or just plain randomness; this is the reason why
specifications of behavior in OLS regressions include an error term. This
unobserved difference among individuals causes problems for duration
models. Suppose there are two types of people with an unobservable
difference in their "spunk." Those with a lot of spunk are very active in
seeking a job and so spend less time in the unemployment state than
those with less spunk. Consequently, over time those with less spunk
come to be over-represented in the set of those still unemployed, biasing
downward the hazard function. This unobserved heterogeneity problem
is addressed by adding a multiplicative error term with mean unity to
the hazard function, complicating still further the likelihood function
(this error must be integrated out of the likelihood expression). A
computationally tractable, and thus frequently employed density for this
error is the gamma density. Heckman and Singer (1984) contend that a
discrete error distribution with only a few possible values for this error
works well and facilitates computation.

Estimation in a discrete-time model is much simpler because a
complicated likelihood maximization problem is replaced with a familiar
logit estimation problem for which standard software programs are
available. This is accomplished by viewing each individual as
contributing not one but several observations to a giant logit likelihood
function. In the first time period each individual either stays or leaves



the state of unemployment, so a logit likelihood could be structured,
with appropriate explanatory variables, to capture this. Now consider all
the individuals who have not yet left the unemployment state and who
have not become censored, namely all the individuals for whom it is
possible to leave the unemployment state during the second time period.
In the second time period each of these individuals either stays or leaves
the state of unemployment, so a second logit likelihood, with the same
explanatory variables (whose values could be different if they vary with
time), can be structured to capture this. Similar logit likelihoods can be
formulated for each of the remaining time periods, with the number of
observations contributing to these likelihoods diminishing as individuals
are censored or leave the unemployment state. A giant likelihood can
then be formed by multiplying together all these separate-period
likelihoods. Each individual contributes several terms to this giant
likelihood, one term for each time period for which that individual was
at risk of leaving the unemployment state.

A baseline hazard can be built into this specification by including a
function of time among the explanatory variables. Alternatively, we
could allow the intercept in each of the separate-period logit
formulations to be different. If there are a total of k time periods, k
dummy variables, one for each period (taking the value one for that
period
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and zero for all other periods) are entered as additional explanatory
variables in the logit specification in place of the intercept. These
dummy variables allow each duration length to contribute to the
intercept of the logit specification separately, thereby modeling a
completely unrestricted baseline hazard.

This discrete-time estimation procedure for duration models has become
popular for several reasons. First, although most economic decisions are
not made at discrete times, the data we have available usually report
events as having occurred during some discrete time period rather than
at a specific time. Second, the partial likelihood approach becomes quite
difficult whenever more than one observation experiences the event
during a measurement period, a common phenomenon in economic
data. Third, it avoids having to deduce and program a complicated
likelihood function. Not all specifications have software available for
their estimation. Fourth, it permits an easy nonparametric way of



estimating the baseline hazard. And fifth, it provides a good
approximation to continuous-time duration models. For a good
economist-oriented exposition of discrete-time estimation see Jenkins
(1995). This does not mean that more complicated maximum likelihood
estimation is not employed; a popular proportional hazards approach
that allows the baseline hazard to be flexible is that of Meyer (1990).
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17
Time Series Econometrics

17.1 Introduction

Until not so long ago econometricians analyzed time series data in a way
that was quite different from the methods employed by time series
analysts (statisticians specializing in time series analysis).
Econometricians tended to formulate a traditional regression model to
represent the behavior of time series data, and to worry about things
like simultaneity and autocorrelated errors, paying little attention to the
specification of the dynamic structure of the time series. Furthermore,
they assumed that the fact that most time series economic data are
"non-stationary" (because they grow over time and so do not have a
fixed, "stationary" mean) did not affect their empirical analyses. Time
series analysts, on the other hand, tended to ignore the role of
econometric "explanatory variables," and modeled time series behavior
in terms of a sophisticated extrapolation mechanism. They
circumvented the stationarity problem by working with data that were
differenced a sufficient number of times to render them stationary.

Neither group paid much attention to the other until the appearance of
two types of disquieting (for econometricians) studies. The first set of
studies claimed that forecasts using the econometricians' methodology
were inferior to those made using the time series analysts' approach; the
second type claimed that running regressions on non-stationary data can
give rise to misleading (or "spurious") values of R2, DW and t statistics,
causing economists erroneously to conclude that a meaningful
relationship exists among the regression variables. Although technically
none of the CLR model assumptions is violated, inference using OLS is



invalid, causing erroneous specifications to be adopted. These
revelations caused econometricians to look very hard at what they were
doing, leading to extensive research activity, still ongoing, that has
markedly changed and improved the way in which econometricians
analyze time series data. The purpose of this chapter is to provide an
overview of this activity, summarizing various topics that reflect what
the terminology "time series analysis" has come to mean to
econometricians.
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17.2 Arima Models

The terminology "time series analysis" at one time referred to the
Box-Jenkins approach to modeling time series, a technique developed
by Box and Jenkins (1970) in the context of forecasting. This method
abandoned the econometric modeling approach of using explanatory
variables suggested by economic theory to explain/forecast, choosing
instead to rely only on the past behavior of the variable being
modeled/forecast. Thus in essence it is a sophisticated method of
extrapolation.

Suppose Y is the variable to be modeled/forecast. Box-Jenkins analysis
begins by transforming Y to ensure that it is stationary, namely that its
stochastic properties are invariant with respect to time (i.e., that the
mean of Yt, its variance, and its covariance with other Y values, say
Yt-k, do not depend on t). This is checked in a rather casual way, by
visual inspection of the estimated correlogram, a graph that plots the
estimated kth-order autocorrelation coefficient, rk, as a function of k.

(rk is the covariance between Yt and Yt-k, normalized by dividing it by
the variance of Y). For a stationary variable the correlogram should
show autocorrelations that die out fairly quickly as k becomes large.

Although many scientific time series data are stationary, most economic
time series data are trending (i.e., the mean changes over time) and thus
clearly cannot be stationary. Box and Jenkins claimed that most
economic time series data could be made stationary by differencing
(perhaps after taking logs to remove heteroskedasticity), and found that
usually only one or two differencing operations are required. This
creates a new data series, Y*, which becomes the input for the
Box-Jenkins analysis.



The general model for Y* is written as

where the f and q are unknown parameters and the e are independent
and identically distributed normal errors with zero mean. Note that this
model expresses Y* in terms only of its own past values along with
current and past errors; there are no explanatory variables as there
would be in a traditional econometric model. This general model is
called an ARIMA(p,d,q) model for Y. Here p is the number of lagged
values of Y*, representing the order of the autoregressive (AR)
dimension of the model, d is the number of times Y is differenced to
produce Y*, and q is the number of lagged values of the error term,
representing the order of the moving average (MA) dimension of the
model. The acryonym ARIMA stands for autoregressive integrated
moving average. The "integrated" means that to obtain a forecast for Y
from this model it is necessary to integrate over (sum up) the forecast
Y* because the Y* are differenced values of Y.

There are three basic steps to the development of an ARIMA model:

(1) Identification/model selection The values of p, d and q must be
deter-
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mined. The principle of parsimony is adopted; most stationary time
series can be modeled using very low values of p and q.

(2) Estimation The q and f parameters must be estimated, usually by
employing a least squares approximation to the maximum likelihood
estimator.

(3) Diagnostic checking The estimated model must be checked for its
adequacy and revised if necessary, implying that this entire process may
have to be repeated until a satisfactory model is found.

The most crucial of these steps is identification, or model selection. This
step requires the researcher to use his or her personal judgement to
interpret some selected statistics, in conjunction with a plot of the



correlogram, to determine which model the data suggest is the
appropriate one to employ. In this respect the Box-Jenkins method is an
art form, requiring considerable experience for a researcher to be able
to select the correct model.

17.3 SEMTSA

At first econometricians ignored the Box-Jenkins approach, although it
was not uncommon for the residuals in an econometric model to be
modeled as an ARIMA process. In the early 1970s however,
econometricians were forced to pay more attention to this approach by
studies showing that Box-Jenkins forecasting equations were
out-performing econometric forecasting models. At about the time that
these studies were appearing the Box-Jenkins methodology was being
extended to incorporate more than a single variable, the most extensive
generalization being multivariate Box-Jenkins, in which an entire vector
of variables is modeled as an ARIMA process. Some even claimed that
the econometric approach would be wiped off the map whenever it had
to compete against forecasts from multivariate Box-Jenkins models.

Econometricians responded to this slight by developing a (long overdue)
synthesis of econometric modeling and the Box-Jenkins/time series
methodologies. This synthesis, referred to as the structural econometric
time series approach, or SEMTSA, is based on the observation that
dynamic structural equation econometric models are special cases of
multivariate time series (Box-Jenkins) processes in which a priori
restrictions suggested by economic theory have been imposed on the
parameters. Furthermore, if the exogenous variables in the econometric
model can be viewed as being generated by a multiple time series
(ARIMA) process, then each of the individual endogenous variables in
the econometric model can be expressed as a univariate Box-Jenkins
ARIMA process.

Assumptions about the properties of the structural econometric model,
such as variable exogeneity and identifying restrictions, imply
restrictions on the parameters of these ARIMA equations that can (and
should) be tested. Since
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ARIMA models are estimated without imposing any restrictions, it
seems reasonable to conclude that the reason they out-forecast the
econometric method is that the econometric approach has imposed
inappropriate restrictions, i.e., it is not the econometric method that is at
fault, but rather the way in which it has been operationalized.

In the SEMTSA approach a traditional econometric structural model is
developed, incorporating the usual input from economic theory. The
implied properties of the corresponding ARIMA equations are derived.
Time series methods are then used to estimate the ARIMA equations
and they are checked for consistency with the restrictions implied by
the econometric model. Inconsistencies should prompt a reappraisal of
the econometric model; SEMTSA is thus a procedure for discovering
and repairing defects in proposed structural econometric models.

Box-Jenkins ARIMA modeling is atheoretical. Econometricians
acknowledge that ARIMA models are efficient summaries of the time
dependencies in the data, and that they are useful as benchmarks for
forecasting, but do not consider them satisfactory with regard to
explaining or understanding how the economy functions. They uncover
facts that realistic models must explain and in so doing aid the
formulation of such models; as such they can be viewed as
complements to, not substitutes for, traditional structural modeling.

17.4 Error-Correction Models

One reason for the relative success of ARIMA models is that traditional
econometric structural models were too static - their dynamic
specifications were not flexible enough to allow them adequately to
represent an economy which when observed is more frequently out of
equilibrium (going through a transition stage) than it is in equilibrium.
This lack of attention to the dynamics of models was a natural outcome
of the fact that economic theory has some ability to identify long-run
relationships between economic variables, as created by equilibrium
forces, but is of little help regarding the specification of time lags and
dynamic adjustments. There is a paucity of dynamic theory. Viewed
from this perspective, ARIMA models were seen to have two notable
characteristics: they were very flexible in their specification of the
dynamic structure of the time series, and they ignored completely the
information that economic theory could offer concerning the role of
long-run equilibria.



In light of this it seemed reasonable to structure econometric models to
incorporate information from economic theory about long-run
equilibrium forces and at the same time to allow for a very flexible lag
structure, permitting the data to play a strong role in the specification of
the model's dynamic structure. Providing the economic theory is
correct, this approach should be superior to the ARIMA methodology.
This line of thinking does not manifest itself in a new variant of the
traditional simultaneous equation model, however; instead, the
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variable to be explained/forecast is modeled via a single equation. The
only concession to the possibility of simultaneity is that if an
explanatory variable fails a test for exogeneity, estimation is undertaken
by an instrumental variables technique.

Economic theory plays two roles in the development of this equation.
First, it suggests explanatory variables for inclusion in this equation; and
second, it identifies long-run equilibrium relationships among economic
variables, which if not exactly satisfied will set in motion economic
forces affecting the variable being explained. The equation is developed
in two stages. First, a traditional econometric equation is specified, with
a generous lag structure (which is later pared down by testing
procedures) on all the explanatory variables, including lagged values of
the dependent variable. Second, this equation is manipulated to
reformulate it in terms that are more easily interpreted, producing a
term representing the extent to which the long-run equilibrium is not
met. This last term, one of the unique features of this approach, is called
an error-correction term since it reflects the current "error" in achieving
long-run equilibrium. A distinctive feature of these models is that the
long-run equilibrium position is not embodied in an explicit associated
set of simultaneous equations but instead is captured by one or more
error-correction terms. This type of model has consequently come to be
known as an error-correction model, or ECM.

As a simple example of this consider the relationship

where y and x are measured in logarithms, with economic theory
suggesting that in the long run y and x will grow at the same rate, so that



in equilibrium (y - x) will be a constant, save for the error. This
relationship can be manipulated (see the technical notes) to produce

This is the ECM representation of the original specification; the last
term is the error-correction term, interpreted as reflecting disequilibrium
responses. The terminology can be explained as follows: if in error y
grows too quickly, the last term becomes bigger, and since its
coefficient is negative (b3 < 1 for stationarity), Dyt is reduced,
correcting this error. In actual applications, more explanatory variables
will appear, with many more lags.

Notice that this ECM equation turns out to be in terms of differenced
variables, with the error-correction component measured in terms of
levels variables. This is what is supposed to give it an edge over ARIMA
models, since in ARIMA models the variables are all differenced, with
no use made of the long-run information provided by the levels data.
But this mixing of differenced and levels data does raise questions
concerning the legitimacy of having these two very different types of
variables both appearing in the same equation, much as
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one would be concerned about mixing stocks and flows, or the
proverbial apples and oranges. This turns out to be an extremely
important issue, identified with the concept of cointegration, discussed
in section 17.6.

17.5 Testing For Unit Roots

The Box-Jenkins approach is only valid if the variable being modeled is
stationary. Although there are many different ways in which data can be
nonstationary, Box and Jenkins assumed that the nature of economic
time series data is such that any nonstationarity can be removed by
differencing. This explains why, as noted above, the Box-Jenkins
approach deals mainly with differenced data. This concern of time
series analysts about differencing to achieve stationarity was for the
most part ignored by econometricians, for two reasons. First, it was
generally believed that although economic time series data looked
nonstationary, this was only because of an underlying trend, which



could be explained by exogenous factors such as population growth,
and if the trend were removed, the data would be stationary. And
second, it was thought that the validity of traditional econometric
analyses was not adversely affected by nonstationarity of the variables
being analyzed.

It came as a bit of a shock to econometricians, then, when studies
appeared claiming that most macroeconomic data are nonstationary,
because they are characterized by a "random walk" (this period's value
equal to last period's value plus a random error), even after a
deterministic trend has been removed. It was a further shock when
additional studies showed that statistics such as the t and DW statistics,
and measures such as R2, did not retain their traditional characteristics
in the presence of nonstationary data: running regressions with such
data could produce spurious results (i.e., results which erroneously
indicate, through misleading values of R2, DW and t statistics, that a
meaningful relationship among the regression variables exists). One
consequence of these discoveries is that it has become very important
when working with economic time series data to test for nonstationarity
before proceeding with estimation. This has forever changed the
character of all empirical work in macroeconomics.

How does one test for nonstationarity? It turns out that this is not an
easy thing to do. Box and Jenkins use a casual means (inspection of the
correlogram) to determine whether or not a series is stationary. A key
ingredient of their methodology, an ingredient adopted by
econometricians (without any justification based on economic theory),
is their assumption that the nonstationarity is such that differencing will
create stationarity. This concept is what is meant by the term
integrated: a variable is said to be integrated of order d, written I(d), if
it must be differenced d times to be made stationary. Thus a stationary
variable is integrated of order zero, written I(0), a variable which must
be differenced once to become stationary is said to be I(1), integrated of
order one, and so on. Economic variables are seldom integrated of order
greater than two, and if non-
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stationary are usually I(1). For ease of exposition what follows is
couched in terms of I(0) and I(1) variables.



Consider for illustrative purposes the simplest example of an I(1)
variable, a random walk. (Random walks have become prominent in the
macroeconomics literature since the development of rational
expectations; they are implications, for example, of the efficient market
hypothesis for real stock market prices, of hysteresis models of
unemployment, and of the permanent income hypothesis of
consumption.) Let yt = yt-1 + et, where e is a stationary error term, i.e.,
e is I(0). Here y can be seen to be I(1) because Dyt = et, which is I(0).
Now let this relationship be expressed in a slightly more general form as
yt = ayt-1 + et. If |a|< 1, then y is I(0), i.e., stationary, but if a = 1 then y
is I(1), i.e., nonstationary. Thus formal tests of stationary are tests for a
= 1, and because of this are referred to as tests for a unit root. (The case
of |a|> 1 is ruled out as being unreasonable because it would cause the
series yt to explode.) A wide variety of unit root tests have been
developed recently; most require the use of special critical values, even
when the test statistic itself takes a familiar form. A major problem is
that none is very powerful.

17.6 Cointegration

If the data are shown to be nonstationary, on the basis of an appropriate
unit root test, it is tempting to do as Box and Jenkins did, namely purge
the non-stationarity by differencing and estimate using only differenced
variables. But this would mean that valuable information from
economic theory concerning the long-run equilibrium properties of the
data would be lost, as was stressed by those developing the error-
correction model approach. On the other hand, the ECM approach
involved mixing data in levels and differences in the same equation,
which, if the levels data are I(1), means that the ECM estimating
equation could be producing spurious results.

Fortunately, econometricians have discovered a way out of this
dilemma. Recall that the levels variables in the ECM entered the
estimating equation in a special way: they entered combined into a
single entity that captured the extent to which the system is out of
equilibrium. It could be that even though these levels variables are
individually I(1), this special combination of them is I(0). If this is the
case, their entry into the estimating equation will not create spurious
results.

This possibility does not seem unreasonable. A nonstationary variable
tends to wander extensively (that is what makes it nonstationary), but
some pairs of nonstationary variables can be expected to wander in



such a way that they do not drift too far apart, thanks to disequilibrium
forces that tend to keep them together. Some examples are short-and
long-term interest rates, prices and wages, household income and
expenditures, imports and exports, spot and future prices of a
commodity, and exchange rates determined in different markets. Such
vari-
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ables are said to be cointegrated: although individually they are I(1), a
particular linear combination of them is I(0). The cointegrating
combination is interpreted as an equilibrium relationship, since it can be
shown that variables in the error-correction term in an ECM must be
cointegrated, and vice versa, that cointegrated variables must have an
ECM representation. This is why economists have shown such interest
in the concept of cointegration - it provides a formal framework for
testing for and estimating long-run (equilibrium) relationships among
economic variables.

One important implication of all this is that differencing is not the only
means of eliminating unit roots. Consequently, if the data are found to
have unit roots, before differencing (and thereby losing all the long-run
information in the data) a researcher should test for cointegration; if a
cointegrating relationship can be found, this should be exploited by
undertaking estimation in an ECM framework. If a set of I(1) variables
are cointegrated, then regressing one on the others should produce
residuals that are I(0); most tests for cointegration therefore take the
form of a unit root test applied to the residuals resulting from estimation
of the cointegrating (long-run equilibrium) relationship.

These results suggest the following methodology for practitioners. First,
use unit root tests to determine the order of integration of the raw data
series. Second, run the cointegrating regression suggested by economic
theory. Third, apply an appropriate unit root test to the residuals from
this regression to test for cointegration. Fourth, if cointegration is
accepted, use the lagged residuals from the cointegrating regression as
an error correction term in an ECM. Unfortunately, Monte Carlo studies
have shown that estimates of the cointegrating regression have
considerable small-sample bias, in spite of excellent large-sample
properties (''superconsistency"), and have suggested that the fourth step
above be replaced by estimation of the full ECM equation, i.e., it is
better to estimate the long-run relationship jointly with the short-run



dynamics rather than to estimate it separately.

Two major problems exist with the methodology sketched above. First,
using a single-equation representation is implicitly assuming that all the
explanatory variables are exogenous, which may not be the case. And
second, if there are more than two variables involved in the equation
being estimated, there could be more than one cointegrating
relationship, which unfortunately renders traditional estimation
procedures inappropriate. In light of this, it has become common not to
begin by using a single-equation model, but rather by adopting a more
general simultaneous-equation formulation in which each variable is
modeled in terms of lagged values of all the other variables. When
written in vector notation this becomes a vector autoregressive model,
or VAR, discussed in chapter 10. Within this more general framework
testing is undertaken to determine the number of cointegrating
relationships and the exogeneity of the variables. This is accomplished
by means of the Johansen procedure, discussed further in the general
and technical notes.
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General Notes

17.1 Introduction

Time series analysis does not have a twin "cross-section analysis,"
although the terminology "microeconometrics," referring to the
econometric analysis of large sets of observations on microeconometric
units, is becoming common. Problems peculiar to cross-section data are
treated elsewhere in this book under various titles, some examples of
which are error component models, logit analysis, limited dependent
variables, panel data, duration models and self-selection bias. At one
stage the expression ''time series analysis" was used synonomously with
"Box-Jenkins analysis," but now it has a much broader meaning to
econometricians, as the contents of this chapter explain. Gilbert (1989)
discusses several facets of the historical development of this modern
view of time series econometrics.

Nonstationary time series and cointegration has been a major growth
industry in econometrics recently, as noted by Phillips (1995) who
opines that "It is probably fair to say that the subject of nonstationary
time series has brought together a wider group of participants and has



excited more interest than any subject in econometrics since the
development of simultaneous equations theory." He has a good
discussion of this dramatic growth, reasons for econometricians'
interest, themes for future research, criticisms and controversies.
Granger (1997) is another good overall perspective on research in this
area. Harvey (1997) is a very interesting critique of the entire direction
taken by time series analysts, arguing that a better approach is to
formulate a structural model in levels in which the parameter values are
time-varying.

17.2 ARIMA Models

Granger (1982) claims that ARIMA should really have been called
IARMA, and that a key reason for the success of the Box-Jenkins
methodology is the pronounceability of their choice of acronym. It
should also be noted that ARIMA has been known to replace MARIA
in the well-known West Side Story song, allowing it to play a starring
role in graduate student skits!

Pankratz (1983) and Hoff (1983) are introductory texts for the
Box-Jenkins approach. Pindyck and Rubinfeld (1991, part 3) also have
a good exposition. Newbold (1983) has a good overview. Mills (1990) is
a comprehensive reference with lots of examples. Mills (1991) surveys
extensions to incorporate nonlinearities. For a survey of checks of
model adequacy in this context, see Godfrey and Tremayne (1988).

Mills (1990, chapters 24) stresses that data should be "explored" by
graphical means before formal analysis. All ARIMA modeling uses the
data to determine the specification, which means that one should not
use the same data to test the specification.

In econometric models, economic theory usually provides a model and
then it is imposed on the data. In contrast, ARIMA models allow the
data to determine the model. In allowing the data to do this, however,
parsimony, in the form of small p and q values, is a guiding principle.
Because a nonzero p value implies a model with an infinite q value, and
a nonzero q value implies a model with an infinite p value, a com-
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bination of small p and q values can capture an amazingly wide variety
of time series structures.



An ARIMA model in which no differencing is required is called an
ARMA model. An AR model is an ARMA model with q equal to zero;
an MA model is an ARMA model with p equal to zero. Thus, for
example, a first-order autocorrelated error has an AR(1) structure. A
purely random error is often called white noise; its ARIMA structure
has p = d = q = 0.

A modification of an ARIMA model, called a transfer model, allows an
explanatory variable to play a role in the general ARIMA formulation.
A variant of this is an intervention model, in which a large shock to a
time series is modeled by using a dummy variable. Mills (1990, chapters
12 and 13) has a good exposition.

Although a true Box-Jenkins analysis requires judgemental input at the
identification/model selection stage, there do exist some computer-
directed automatic model-selection methods, cited for example in Hill
and Fildes (1984) and Libert (1984).

Inference based on the autocorrelation function, as in the Box-Jenkins
methodology, is often called analysis in the time domain. An
analytically equivalent way of viewing the data is to transform the
autocorrelation function into the frequency domain, in which the data
are analyzed in terms of their cyclical properties. This approach to time
series is called spectral analysis. These two forms of data analysis
permit different insights into the properties of the time series and so are
complementary, rather than competitive. Spectral analysis has been
particularly helpful in analyzing seasonal factors and evaluating
deseasonalizing procedures. It has not proved useful in model
selection/identification, but it is hoped that it will be of value in testing
for and interpreting cointegration. A brief introduction to this
technically difficult area is presented in the technical notes.

17.3 SEMTSA

Granger and Newbold (1986, pp. 287-92) have an excellent survey and
discussion of the studies claiming that Box-Jenkins out-forecasts
econometric models.

Jenkins (1979, pp. 8894) has a good comparison of Box-Jenkins and
econometric forecasting methods, stressing the advantages of the
former. Granger and Newbold (1986, pp. 292-4) also have a good
discussion. On the synthesis between the two approaches, see Anderson
et al. (1983). Zellner (1979, pp. 636-40) has a good exposition of the
SEMTSA approach. Harvey (1997) presents a strong case for the



structural time series approach and a persuasive argument for why the
recent emphasis on unit roots, autoregressions and cointegration is
misplaced.

The VAR methodology, discussed in chapter 10, could be viewed as a
variant of multivariate Box-Jenkins.

Multivariate Box-Jenkins, or vector ARMA models, are not easy to
specify; see Mills (1990, chapter 14). Riise and Tjosthein (1984) suggest
that they are not worth the extra computational cost. For an effort to
simplify this problem, see Tsay (1989).

17.4 Error-correction Models

Davidson et al (1978) popularized the ECM approach; it is a good
example of its application. Malley (1990) is a good, short exposition of
ECMs, written for practition-
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ers. Alogoskoufis and Smith (1991) have a good survey of its history,
noting that there exist several different interpretations of ECMs. For
example, although error-correction models are usually interpreted as
reflecting partial adjustment of one variable to another, Campbell and
Shiller (1988) note that they could arise because one variable forecasts
another. Empirical work with ECMs tends to be undertaken by
modeling the time series relationships in the data and then, ex post,
interpreting the results, rather than by using economic theory to derive
relationships and imposing an error correction mechanism as an
auxiliary adjustment mechanism when estimating. One problem with
this traditional ECM approach, as stressed by Alogoskoufis and Smith,
is that parameterizations with quite different theoretical interpretations
are observationally equivalent, so that the interpretation of estimated
parameters must be qualified, something that is not always recognized.
For example, it may be that estimated long-run coefficients involve a
mixture of partial adjustment and expectations coefficients, inhibiting
proper interpretation.

Although economic theory gives little guidance regarding the nature of
dynamics, it does offer reasons for why economies may often be out of
long-run equilibrium. For a good summary and discussion, see Hendry,
Pagan and Sargan (1984, pp. 1037-40).



In its initial formulation an ECM is sometimes referred to as an
"autoregressive distributed lag" -there are lagged values of the
dependent variable appearing as explanatory variables (the
"autoregressive" part), and the other explanatory variables all have
several lags (the ''distributed lag" part). As noted in chapter 5, the "test,
test, test" methodology is typically employed to specify this model, in
particular to pare it down to a smaller number of right-hand-side
variables. This makes many practitioners nervous, since the presence of
lagged dependent variables invalidates many tests, as stressed by Kiviet
(1985). In an extensive Monte Carlo study, Kiviet (1986) concludes that
testing for autocorrelated errors in this type of model is best done by
using an F test to test the coefficients of lagged OLS residuals in a
regression of the OLS residuals on the lagged OLS residuals and the
original regressors (i.e., Durbin's m test). For a post-sample prediction
test the (small-sample) Chow F test is recommended. Dezhbakhsh
(1990) also recommends Durbin's m test, finding that it outperforms
Durbin's h test. Note that the Box-Pierce and Ljung-Box tests are
inappropriate because they are not valid whenever there exist regressors
other than lagged dependent variables.

One way of paring down the number of explanatory variables in an
ECM is by exploiting the fact that certain parameter restrictions imply
that a dynamic specification can be written with fewer lags but an
autocorrelated error, which may facilitate estimation. These parameter
restrictions are called common factors; COMFAC analysis is used to
test the validity of the relevant parameter restrictions (explained in
more detail in the technical notes). Note the implication that the finding
of autocorrelated residuals corresponds to a dynamic misspecification
rather than an inherently autocorrelated error. Hendry and Mizon
(1978) have a good exposition of COMFAC.

The fact that an ECM can be viewed as an ARIMA model incorporating
additional information can be of use in specification. For example, if the
ARIMA model fits better, it suggests that the ECM is misspecified in
some way.
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17.5 Testing for Unit Roots



There are several fundamental differences between a stationary and an
integrated (nonstationary) series. A stationary series has a mean and
there is a tendency for the series to return to that mean, whereas an
integrated series tends to wander widely. Stationary series tend to be
erratic, whereas integrated series tend to exhibit smooth behavior. A
stationary series has a finite variance, shocks are transitory, and its
autocorrelations rk die out as k grows, whereas an integrated series has
an infinite variance (it grows over time), shocks are permanent, and its
autocorrelations tend to one. These differences suggest some casual
means of testing for stationarity. For stationarity data a plot of the series
against time should cross the horizontal axis frequently, and the
autocorrelations should decrease steadily for large enough lags. For
nonstationary data the estimated variance should become larger as the
time series is extended, it should not cross the horizontal axis often, and
the autocorrelations should tend not to die out.

By repeated substitution, a random walk yt = yt-1 + et can be written as
yt = y0 + Set-i, from which it can be seen that the impact of an error on
an I(1) variable does not die out - it is permanent, implying that the I(1)
variable has an infinite variance. (Note that the y variable is obtained by
summing up, or integrating, the errors; this is the rationale for the
"integrated variable" terminology.) On the other hand, the stationary
process yt = ayt-1 + et, where |a| < 1, can by repeated substitution be

written as yt = aty0 + Saiet-i, from which it can be seen that the
influence of an error has a transitory effect, dying out as time passes.

Consider a random walk with drift, yt = m + yt-1 + et where m is a
constant. By repeated substitution, this can be written as yt = y0 + mt +
Set-i, which is clearly a "trending" variable, but a trending variable very
different from one that is "stationary about a deterministic trend."
Nelson and Plosser (1982) is a seminal study claiming that
macroeconomic data are better characterized as random walks with drift
than as stationary with a time trend.

For cogent critiques of the role of unit roots in econometrics see Sims
(1988), Christiano and Eichenbaum (1990) including comment by
Stock, Cochrane (1991) and comments by Cochrane and by Miron on
Campbell and Perron (1991) Campbell and Perron (1991) and Blough
(1992) note that in finite samples any trend-stationary process can be
approximated arbitrarily well by a unit root process and vice-versa, so
that any test of the one against the other must have power no greater
than size. Fortunately, it seems that the consequences of making an



error in this regard are not severe. For example, if the autoregressive
parameter is close to one its estimate should have a normal asymptotic
distribution, but in fact the unit root asymptotic distribution provides a
better finite-sample approximation, so erring by concluding there is a
unit root would be fortuitous. Similarly, near unit root variables are
better forecast using unit-root models than using stationary models.

Some computer packages, such as SHAZAM, PC-GIVE and RATS,
provide basic tests for determining the order of integration of variables.

17.6 Cointegration

Engle and Granger (1987) is the seminal paper on cointegration. An
early summary is Hendry (1986). Stock and Watson (1988a) is a useful
overview. There exist several survey papers discussing both
cointegration and unit root testing. Examples are
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Dolado et al. (1990), and McDermott (1990) and Muscatelli and Hurn
(1992). Holden and Thompson (1992) is a good introductory survey,
and good textbook expositions can be found in Harris (1995) and
Enders (1995). Banerjee et al. (1993) is a more advanced reference, but
their chapter introductions provide good summaries of the elements of
econometric analysis of nonstationary data. Murray (1994) presents an
amusing and instructive example of a drunk and her dog to illustrate
cointegration.

Most tests for cointegration are based on looking for unit roots in the
cointegration regression residuals. (Finding a unit root means no
cointegration.) Because these residuals have been produced by a
process which makes them as small as possible, applying a DF or ADF
test to these residuals would be biased toward finding cointegration.
This problem is resolved by using special critical values, tabulated for
some combinations of sample size and number of cointegrating variables
in Engle and Granger (1987) and Engle and Yoo (1987). For other cases
MacKinnon (1991) provides a response surface to estimate critical
values.

The essence of cointegration is that the cointegrated variables share a
common trend which is removed when producing the cointegrating
regression residuals. Because of the common trend there may be strong



multicollinearity, tempting a researcher to drop a variable. This would
be disastrous - the cointegration would be lost.

The error correction influence may not be linear. To capture this the
error correction term can be entered as a quadratic or in some other
nonlinear form.

The superconsistency of the estimates of the cointegrating relationship
parameters comes about because a parameter value different from the
true parameter value will give rise to an I(1) error term, which will have
an infinite variance and therefore produce a very high sum of squared
errors; the true parameter value, on the other hand, gives rise to an I(0)
error term, whose variance is finite, and thus should produce a markedly
smaller sum of squared errors. So a procedure that minimizes the sum of
squared errors should quickly zero in on the true parameter value as the
sample size grows, even in the presence of problems such as
simultaneous equations bias. Unfortunately, Monte Carlo studies, such
as Banerjee et al. (1986), have shown that this superconsistency does
not manifest itself in small samples. It is not obvious what is the most
appropriate way of estimating, but there is some concensus that the
long-run cointegrating relationship is best estimated as a by-product of
estimating the full error-correction model (with a generous lag length).
Banerjee et al. (1986) and Inder (1993) recommend doing this with
OLS. Note that it is not necessary that the cointegrated variables be
isolated in an error correction term for estimation - mixing levels and
differences regressors is acceptable because the cointegrated variables
automatically combine during estimation to resolve the dilemma of
mixed orders of integration. When there is more than one cointegrating
relationship (see below), Gonzalo (1994) recommends estimating with
the Johansen maximum likelihood procedure. On the other hand,
Hargreaves (1994) finds that the Johansen procedure only beats OLS if
one can be sure there is more than one cointegrating relationship.

Whenever more than two variables appear in a cointegrating
relationship new problems arise. First, to run the cointegrating
regression, one of the variables must be chosen to be the regressand,
and thus have a coefficient of unity. It turns out that OLS estimation of
the cointegrating parameters is sensitive to this choice of normalization.
Second, with more than two variables in the cointegrating relationship it
is possible that there is more than one set of cointegrating parameters. If
this is so, running the usual cointegrating regression will not yield
consistent estimates of any of these
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multiple sets of cointegrating parameters (mainly because estimation in
general produces estimates of a linear combination of these multiple sets
of cointegrating parameters), and will of course not alert one to the
existence of these additional cointegrating relationships. The methods of
Johansen (1988) and Stock and Watson (1988b) can be used in this
context, the former of which appears to have become the method of
choice, perhaps due to the availability of software. Ho and Sorensen
(1996) review the literature, provide an illustration and emphasize the
importance of determining the correct lag length.

In the Johansen method all the variables are viewed as endogenous,
with each expressed as a linear function of lagged values of itself and all
other variables. This set of equations is expressed mathematically in the
form of a single vector autoregressive equation, a VAR. Manipulation of
this vector equation produces a vector error correction equation in
which differenced vector terms are explained as lagged differenced
vector terms plus a lagged levels term which represents the error
correction phenomenon. It turns out that the number of cointegrating
vectors is equal to the rank of the matrix of coefficients associated with
the levels variables in the vector ECM equation. The first step of the
Johansen method consists of a test for the rank of this matrix. Following
this the parameters of this system are estimated simultaneously via
maximum likelihood.

The Johansen method has several advantages.

(a) First, it deals automatically with the problem of choosing a
normalization. None is imposed on the estimation procedure,
implying that afterwards an appropriate normalization must be
applied to render the cointegration results meaningful. This may
require no more than dividing through all the estimated cointegrating
parameters by the estimated parameter of the variable chosen to
have coefficient unity. But it may also require finding a linear
combination of the multiple cointegrating vectors that makes
economic sense: interpretation of multiple cointegrating vectors can
be frustrating. For example, some empirical studies of the demand
for money have found that one cointegrating vector represents the
equilibrium relationship between money demand and money supply
and a second, puzzling cointegrating vector represents the
equilibrium relationship between two interest rates included in the
specification. Some researchers deal with this problem by ignoring



those cointegrating vectors that seem not to make good economic
sense. This is akin to imposing slightly false restrictions to improve
mean square error. The bottom line here is that because of the
difficulty of interpreting estimates of the coinetegrating vectors, it is
important that economic arguments form the basis for imposing
restrictions. In general more than one cointegrating relationship does
not mean that there is more than one long-run equilibrium position.
More likely it means that there is one long-run equilibrium which
has embodied within it several sectoral equilibria, or cointegrated
subsets of variables as illustrated by the money demand example
above.

(b) Second, one guards against inconsistent estimation of the
cointegrating relationships by incorporating knowledge that there is
more than one cointegrating vector.

(c) Third, estimation (by maximum likelihood) of the short-run
dynamics is undertaken simultaneously, increasing the efficiency of
estimation.

(d) Fourth, estimation of the parameters in any single equation
incorporates information about what is happening in other equations
in the system. This advantage is
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of course offset by the fact that specification errors in other parts of
the system affect estimation of the parameters in all equations.

(e) Fifth, the Johansen method allows testing of restrictions on the
cointegrating vectors.

Harris (1994, 1995 Appendix) evaluates software for undertaking the
Johansen procedure. Cheung and Lai (1993) point to several finite-
sample shortcomings of the Johansen test for cointegration. Pagan
(1995) discusses the relationship between the traditional error
correction model and the VAR model associated with the Johansen
procedure, nothing that the latter is estimating a reduced form whereas
the former, thanks to assumptions about exogeneity, is estimating a
structural form. He notes that problems in interpreting cointegration
relationships may stem from the fact that because the Johansen method
is estimating a reduced form, the usual interpretation of the



cointegrating vector as a structural-form relationship depends on the
identification status of the structural form.

Note that when testing for cointegration if a relevant variable has been
omitted the test should fail to find cointegration; thus it is important that
testing be undertaken by beginning with the most general specification
and testing down.

Technical Notes

17.1 Introduction

The state space model is a generalization of the linear regression model
that provides a unifying framework for all dynamic linear models used
in econometrics. This model originated in the engineering literature,
where interest focuses on estimating the "state" of a system, such as the
location of a satellite, using noisy measurements. The Kalman filter is
used to create an optimal estimate of the state, given knowledge of the
parameters. In economics, however, these parameters are unknown, and
interest focuses on finding estimates for them. Econometricians have
used this state space framework to reformulate existing time series
models, allowing the powerful Kalman filter to facilitate estimation. In
these models the unobserved states have a variety of interpretations of
interest to economists, the most prominent of which is as time-varying
parameters. For example, an observed variable yt is specified as a linear
function of observed xt values with a time-varying parameter vector bt

(the "state" variable) plus an error term. The vector bt is in turn
determined by a transition equation in which bt is a linear combination
of itself lagged, plus an error term. A rich variety of overall error
specifications for this model can be created by altering the specification
of these two error terms. For discussion and illustrations see Engle and
Watson (1987) and Harvey (1987). Hall, Cuthbertson and Taylor (1992,
pp. 199217) and Darnell (1994, pp. 211-14) have good textbook
expositions. Diderrich (1985) and Welch (1987) note an instructive
connection between the state space estimation procedure and the mixed
estimation procedure of chapter 12.

17.2 ARIMA Models

A time series variable y is said to be strictly stationary if the properties
(e.g., mean, variance, etc.) of its elements do not depend on t. The word
stationary usually refers to
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weak stationarity, however, which requires only that the first two
moments of the yt process do not depend on t. This requires that the
mean and variance of yt are constant over time, and that the
autocovariances depend only on the lag (or time difference), not on t.
Strict stationarity and weak stationarity are equivalent if the yt are
distributed joint normally.

Stationarity for the AR process Yt = f1Yt-1 + f2Yt-2 + . . . + fpYt-p + et
requires that the roots of 1 - f1x - f2x2 - . . . - fpx2 - . . . - fpxp = 0 lie

outside the unit circle, or, equivalently, that the roots of xp - f1xp-1 -
f2xp-2 . . . - fp = 0 are all less than one in absolute value. Stationarity of
an ARMA process depends on the stationarity of its AR part. The MA
process Yt = et + q1et-1 + q2et-2 + . . . + qqet-q can be written as an

AR process if it is invertible, namely if the roots of 1 + q1x + q2x2 + . .
. + qqxq lie outside the unit circle.

The correlogram is a plot of the autocorrelation function - the
autocorrelation coefficient rk as a function of the lag, k. An estimate of
the correlogram is used as a visual aid for identification in Box-Jenkins
modeling. First, it should fall off to numbers insignificantly different
from zero if the series is stationary. Second, a rough 95% confidence

band can be drawn at  allowing the significance of the estimated
rk to be determined at a glance. (Note, though, that at the 95% level, for

every 20 estimates of rk plotted, we would expect, on the null
hypothesis that all the rk are zero, that one of the estimated rk would lie
outside this band.) Third, theoretical derivations of the autocorrelation
function show that certain patterns of the correlogram should
correspond to specific types of ARMA models. An experienced modeler
should be able to look at the estimated correlogram and on the basis of
what he or she perceives to be the pattern revealed there suggest a
particular ARMA model; it is at this stage that "ARMA modeling is an
art form" enters.

Some of the standard patterns may be easy to identify. A correlogram
with one estimated rk that is significantly different from zero, followed
by what appears to be a random series of estimated rk that are
insignificantly different from zero, corresponds to an MA(1) model. An



MA(2) model will have the first two estimated rk significantly different
from zero, with the rest random and insignificantly different from zero.
If the correlogram seems to be declining geometrically, an AR(1) model
is suggested, although it could also be an AR(2) (or higher) model. If it
declines geometrically, but reverses sign at each increment of k, an
AR(1) with a negative coefficient is suggested. If the first estimated rk is
significant but inconsistent with the geometrically declining pattern, an
ARMA(1,1) is suggested. If the correlogram looks like a damped sine
wave, an AR(2) or higher is suggested.

A significant rk at every twelfth value of k, say, suggests a seasonal
influence. But if the seasonal influence appears in conjunction with,
say, an AR(1) formulation, then the seasonal pattern will show up in
unusual ways (e.g., at lag 12 and lag 13, rather than just lag 12),
inhibiting the interpretation of the correlogram; because of this the
seasonality is usually removed before analysis. If the spike in the
correlogram at every twelfth value of k does not appear to die out as k
grows, the Box-Jenkins approach deals with this seasonality by taking a
seasonal difference, in this example by transforming yt to (yt - yt-12),
and fitting an ARMA model to the resulting data.

The order of an MA model can be determined from the correlogram: for
an MA(q) model rk is nonzero for k < q and is zero thereafter. For an
AR(p) model, however, the value of p cannot be determined from
looking at the correlogram, because different values of p give rise to
similar-looking correlograms. A second diagram, the par-
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tial autocorrelation function, is often used to determine the order of an
AR process. This is a plot of the estimate of the pth coefficient,
assuming an AR(p) model, against p. The order of the AR process is the
value of p beyond which the partial autocorrelations are insignificantly
different from zero (i.e., if an AR(3) process has generated the data,
then if we assume an AR(4) process and estimate the fourth lag
coefficient, it should be insignificantly different from zero). The 95%

confidence band for the partial autocorrelation function is also .
Some researches use a model selection criterion such as Akaike's AIC to
help in the selection of the magnitudes of p and q; see Mills (1990, pp.
138-9), who recommends the Schwarz and Hannan criteria.



Use of these visual identification techniques is a prominent feature of
the Box-Jenkins technique, but must be supplemented, after estimation,
by diagnostic checks, of which there are two main types.

(1) Overfitting This model is re-estimated for a value of p or q one
greater than that used for the selected model. The coefficient on this
extra lag should test as insignificantly different from zero; the MA
test of Godfrey (1979) is often employed.

(2) Portmanteau tests for white noise errors If the selected model is
correct, the residuals from estimating the model should be "white
noise," implying that their autocorrelations should be zero for all
lags (k). The Box-Pierce statistic and Ljung-Box statistic are often
used for this purpose but, as stressed by the survey of Godfrey and
Tremayne (1988), are not to be recommended.

Hall and McAleer (1989) use a Monte Carlo study to compare several
statistics used for determining the values of p and q, also concluding
that the Box-Pierce and Ljung-Box statistics cannot be recommended.
They suggest using instead the separate, or non-nested, test given by
McAleer et al. (1988).

Spectral analysis focuses on the cyclical components of a time series,
and tries to determine which cyclical frequencies play important roles in
explaining the variance of the time series. A single cycle is written as
Acos(wt + p) where A is the amplitude of the cycle, w is its frequency
(in terms of radians per unit time), and p is its phase. A is a crucial
variable in spectral analysis because it determines how widely the cycle
ranges and thus determines the variance of observations generated by
that cycle. p is of little interest because it simply determines the lateral
position of the cycle with respect to the origin. Now suppose a time
series yt can be written as the sum of a large number of cycles, each of
different frequency, so that we can write

Spectral analysis tries to estimate how much contribution to the overall
variance of the time series is made by the cycle corresponding to each
frequency. In loose terms, this is exposited by drawing a graph relating
frequency wi on the horizontal axis to the corresponding amplitude Ai
on the vertical axis. The discussion below provides an overview of how
this is done, and introduces some of the terminology used in this area of
time series analysis.



Suppose that every frequency in the range (0,p) contributes to the y
series, so that in effect y is the sum of an infinite number of cycles. It
can be shown that g(k), the autocovariances of y, can be written as
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Figure 17.1
A spectrum

where F(w) is a monotonically increasing function. (Notice that both A
and p have disappeared.) This property of F allows dF(w) to be written
as f(w)dw where f(w) is positive. Attention focuses on the variance of y,
which is g(0); since the cosine of zero is unity, this becomes



so that f(w)dw can be interpreted as the contribution to the variance of
cycles with frequencies in the range (w, w + dw). Because of the
obvious analogy to a density function, when normalized f(w) is called
the spectral density function, but when graphed against w it is usually
referred to as the variance spectrum, the power spectrum, or just the
spectrum.

In figure 17.1 the relatively high values of f(w) in between A and B
mean that of the infinite number of cosine terms added to yield y, those
with frequencies in the range between A and B have particularly large
amplitudes relative to other cosine terms, and thus make a relatively
larger contribution to the overall variance of y. If f(w) were flat, there
would be no cyclical elements (regularities) in y, suggesting that y is
white noise. A typical spectrum for an economic time series is high at
low frequencies, falls steeply, and becomes flat at high frequencies,
with an occasional peak at seasonal frequencies.

We saw earlier that there is a relationship between the autocovariances
and the spectrum, namely
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This relationship can be inverted by using the Fourier transform to give
the spectrum in terms of the autocovariances, namely

where the first summation is over all integer values of k, both positive
and negative, and the second is over all positive integer values of k. The
spectrum is thus the Fourier transform of the autocovariance function,
explaining why spectral analysis is sometimes called Fourier analysis,
and also explaining why analysis in the time domain and analysis in the
frequency domain are simply two different ways of looking at the data
that are analytically equivalent.

The formula above suggests an obvious way of estimating: just use the
g(k) estimates in this formula. (These estimates must be of a time series
from which trend and seasonal elements have been removed.) This
produces an estimate of the spectrum called the periodogram.



Unfortunately, although the periodogram is an asymptotically unbiased
estimate of the spectrum, it is not consistent, basically because of the
infinite summation (as k becomes very large the estimate of g(k) is
based on fewer and fewer observations and becomes unreliable). This
problem is circumvented by "smoothing" the periodogram.

This smoothing is accomplished by taking, for each frequency, a
weighted average of periodogram values for that and adjacent
frequencies, with the weights given by what is called the spectral
window, or kernel, which can be viewed as comparable to the kernel
used in non-parametric estimation. The window terminology arises from
the fact that the weighting system determines what part of the
periodogram is "seen" (i.e., has non-negligible weights) by the estimator.
The width of the spectral window, which is comparable to the class
interval when constructing a histogram, is referred to as the bandwidth.
It must be chosen with some care, since too small a bandwidth implies a
large variance, producing a choppy-looking estimated spectrum, and too
large a bandwidth may smooth out interesting features of the spectrum,
such as peaks. The fast Fourier transform is a method of performing
this calculation efficiently.

The literature on spectral analysis is very technical, made worse by the
fact that notation is not uniform. (For example, the spectrum is
sometimes measured in autocorrelations rather than autocovariances,
and the frequency is sometimes measured in cycles per unit time.) There
is no easy reference on spectral analysis; Chatfield (1984) is at a
relatively introductory level. For a more advanced look, concentrating
on applications in econometrics, see Granger and Engle (1984).

17.4 Error-correction Models

Nine different types of dynamic specifications can be formulated from
the equation yt = b1xt + b2xt-1 + b3yt-1 + eiby selecting particular

values of the three coefficients. For example, b2 = b3 = 0 yields a static
regression, b1 = b2 = 0 yields a univariate time series model, b3 = 0
yields a finite distributed lag, b2 = 0 yields a partial adjustment model,

b1b3 + b2 = 0 yields an autoregressive error model, and b1 + b2 + b3 =
1 yields an error-correction model. See Hendry et al. (1984, pp. 1040-9)
and Hendry (1995, chapter 7) for discussion.

Suppose yt = b0 + b1xt + b2xt-1 + b3yt-1 + et where y and x are
measured in logarithms, with economic theory suggesting that in the
long run y and x will grow at the
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same rate, so that in equilibrium (y - x) will be a constant. By setting yt
= yt-1 and xt = xt-1 to solve for the long-run equilibrium it is seen that
this requires that b1 + b2 + b3 = 1. Using this result, the original

relationship can be manipulated (subtract yt-1 from each side, add and
subtract both b1xt-1 and (b3 - 1)xt-1 on the RHS) to produce Dyt = b0
+ b1Dxt + (b3 - 1)(yt-1 - xt-1) + et. This is the ECM representation of
the original specification; the last term is the error-correction term,
interpreted as reflecting disequilibrium responses, and the b1Dxt term is
interpreted as reflecting equilibrium responses. An added feature is that
estimation of the parameters is enhanced by the fact that Dxt and (yt-1 -
xt-1) are closer to being orthogonal than are the variables in the original
relationship. In actual applications there are more explanatory variables,
and many more lags, but the manipulations used to produce the ECM
form are the same. Suppose in this example that y and x are integrated
of order one. If the equilibrium specification is correct the levels
variables are cointegrated (with cointegrating parameter unity)
rendering (yt-1 - xt-1) integrated of order zero, consistent with the
differenced variables.

In addition to the basic parameters of the ECM model, a researcher may
be interested in estimating combinations of these parameters, such as
the long-run elasticity (b1 + b2)/(1 - b3) in the example above. (This

elasticity is calculated by setting yt = yt-1 and xt = xt-1 and solving for
yt.) Manipulation of the ECM can produce equations facilitating the
estimation of such combinations. (In the example above, subtract b3yt

from both sides, add and subtract b2xt-1 on the RHS, and rearrange to
show that regressing yt on an intercept, Dxt,Dyt and xt-1 allows
estimation of the long-run elasticity as an instrumental variable estimate
of the coefficient on xt-1.) For examples and discussion see Bewley
(1979), Wickens and Breusch (1988), Bardsen (1989), and Banerjee et
al. (1990). Gurney (1989) is a good example of an empirical
implementation of one of these suggested transformation procedures.

A crucial ingredient in the estimation of an ECM is the assumption that
the term capturing the disequilibrium effect is correctly specified. If
estimation of the ECM does not produce residuals that are stationary, it



may be because the levels variables are not cointegrated, and this in
turn may be because a levels variable has inadvertently been omitted.
For example, an ECM explaining consumer prices could be developed
with an equilibrium specified in terms of prices and wages growing in
the long run at the same rate. But it may be that in the long run the ratio
of wages to prices is trending upward rather than constant, implying that
a time trend term should appear as one of the cointegrated levels
variables in the error-correction term. For a good exposition and
example of this see Hall and Brooks (1986).

COMFAC analysis is best explained via a simple dynamic model

which, using the lag operator L (where Lxt = xt-1), can be written as

If a = -d/b (or, equivalently, ab + d = 0) the polynomials in L
multiplying yt and xt have a common root of a and the terms involving
yt and xt have a common factor of (1 - aL). Dividing through by this
common factor produces

 
page_282

Page 283

In general, each common factor reduces the lag structure by one, so
that, for example, if there were four explanatory variables appearing
with extensive lags, and two common factors were found, eight
variables could be dropped, at a cost of having to estimate with a
correction for a second-order autocorrelated error. A Wald test is used
to test the common factor restriction ab + d = 0. MacKinnon (1992, pp.
112-13) suggests a simpler and more powerful test for this type of
dynamic specification, based on a Gauss-Newton regression.

17.5 Testing for Unit Roots



Suppose two unrelated series each contain a trend, and thus are
nonstationary. As the sample size grows, the trend will dominate,
causing the R2 between the two series to approach unity. (This is
basically because the total sum of squares, SST, will become infinite,
causing R2, as calculated by 1 - SSE/SST to approach one.) Consider
now the DW statistic, which is approximately equal to 2 - 2r*, where r*
is an estimate of r. It will approach zero, because an I(1) error term has
r = 1. And last consider the t statistic; it will blow up, basically because
of the high R2. These observations reflect the problem of spurious
regression results: unrelated I(1) series appear to be related, using
conventional methods. (Note that these phenomena suggest some
diagnostics for this, for example a high R2 in conjunction with a low
DW.) Granger and Newbold (1974) was one of the first papers bringing
this to the attention of econometricians; Hendry (1980) has a nice
example of cumulative rainfall explaining the price level. These and
other results, such as those of Nelson and Kang (1984), have been
shown, by recent theoretical studies, to be predictable consequences of
regression using integrated variables. In general, standard asymptotic
distribution theory does not apply to integrated variables and is a poor
approximation to finite sample results.

Consider for illustrative purposes the simplest case of a possibly
integrated variable, namely yt = ayt-1 + et, where y is I(1) if a = 1. By
subtracting yt-1 from each side this becomes Dyt = (a - 1)yt-1 + et,

suggesting that if Dyt were regressed on yt-1 the t statistic on the slope
coefficient could be used to test a = 1, with a sufficiently large negative
t statistic leading to rejection of the unit root null hypothesis. Several
tests for unit roots take this general form, namely a t statistic calculated
from running an auxiliary regression. Unfortunately, two problems arise
with this general procedure. First, under the null hypothesis of a unit
root this t statistic does not have a t distribution (and, in particular, is
not asymptotically normally distributed), so that special critical values
are required. And second, the special critical values are different
depending on what kind of I(1) process is being specified by the null
hypothesis. The auxiliary regression above might, for example, be Dyt =

m + (a - 1)yt-1 + et if the I(1) process is specified to be a random walk
with drift, rather than a pure random walk. Including a time trend in the
original specification is another possibility; this would imply an auxiliary
regression Dyt = m + bt + (a - 1)yt-1 + et where t is time, usually
expressed as a deviation from its sample mean.



The special critical values for the t statistic from the auxiliary
regressions noted above have been tabulated for several cases, many of
which appear in Fuller (1976) and Dickey and Fuller (1981), inter alia,
and are referred to as DF, or Dickey-Fuller tests. Other tabulations, for
additional sample sizes, or for additional special cases, are appearing
regularly, as for example in Guilkey and Schmidt (1989) and Schmidt
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(1990). The cases in question relate to various combinations of zero
versus nonzero values of m and b (e.g., m = b = 0, only m = 0, only b =
0, and neither equal zero) assumed in the auxiliary regression, as well as
(possibly different) values of these parameters assumed in the
data-generating process. This leads to a complicated testing strategy,
beginning with the most general auxiliary regression and working down,
moving from one set of critical values to another, as described, for
example, by Dolado et al. (1990, p. 255). Good textbook expositions of
this procedure can be found in Enders (1995, pp. 256-8) and Holden
and Perman (1994, pp. 63-6).

If the data-generating process has more than one lagged value of y on
the right-hand side (i.e., if it is autoregressive of higher order than one)
the ADF, or augmented Dickey-Fuller, test is employed. In this case the
auxiliary regression is adjusted by adding an appropriate number of
lagged Dy's to become Dyt = m + bt + (q - 1)yt-1 + SdiDyt-i + et and
the critical values are the same as those which would be relevant if the
lagged Dy's were not needed. Here q is the sum of all the coefficients on
the lagged dependent variables. To see how this comes about, consider
the simplest case:

Subtract yt-1 from each side, and add and subtract a2yt-1 on the
right-hand side to get

A pth-order autocorrelated error in the original specification gives rise
to an estimating equation with p lagged values of y serving as
regressors. (This was exposited in section 8.4 of the technical notes to



chapter 8 when describing the rationale of the Durbin two-stage
procedure.) Thus the ADF test is also employed to protect against the
possibility of an autocorrelated error. An alternative way of modifying
the DF test to deal with autocorrelated errors is due to Phillips and
Perron (1988) who adjust the DF statistic before consulting the
appropriate critical values. This avoids the loss of degrees of freedom
caused by the extra regressors used in the ADF test. Both this and the
ADF test are unaffected by heteroskedasticity.

The ADF test seems to be the most popular unit root test, because of its
simplicity and also because Monte Carlo studies such as Haug (1993,
1996) have found that it performs well. Harris (1992) finds that the size
and power properties of the ADF test are enhanced if a generous lag is
employed. He recommends the lag 12(N/100)0.25 as suggested by
Schwert (1989). On the basis of an extensive Monte Carlo study Dods
and Giles (1995) recommend the default method in the Shazam
econometrics package, based on testing for the highest significant lag in
the autocorrelation and partial autocorrelation functions of first-
differenced data. Cheung and Lai (1995) find that the small-sample
critical values for the ADF test depend on the lag order; they provide a
response surface equation to determine critical values.

A completely different test procedure is based on testing the DW
statistic equal to zero. Special critical values are required; see Bhargava
(1986). It is not as popular, however, because there is an indeterminant
region, and because the nature of the data-generating process assumed
is more restrictive. New ideas for testing for unit roots appear regularly.
Hansen (1995) shows that unit root tests can be much more powerful
when additional explanatory variables are included in the testing
regression. Mocan
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(1994) allows for a more flexible trend than the linear time trend. Yi et
al. (1995) find promising results by filtering the data before performing
the test. Leybourne (1994) bases a test on the fact that an I(0) variable
is likely to have its first negative autocorrelation appear at a lower lag
level than an I(1) variable. Leybourne (1995) finds that power can be
increased by using the maximum of two Dickey-Fuller test statistics,
one using the original data and one using these data in reverse order.
Sims and Uhlig (1991) argue that unit roots is a situation in which



Bayesian and classical probability statements cannot be reconciled, the
latter requiring modification. Volume 6 (4) of the Journal of Applied
Econometrics (1991) has an extensive and very interesting discussion of
unit root testing by Bayesian means.

The vast majority of unit root tests have non-stationarity, i.e., a unit
root, as the null hypothesis. (Note that when testing for cointegration
this implies that the null is no cointegration because it is no
cointegration that corresponds to a unit root!) Because the traditional
classical testing methodology accepts the null unless there is strong
evidence against it, unit root tests usually conclude that there is a unit
root. This problem is exacerbated by the fact that unit root tests
generally have low power. Kwiatkowski et al. (1992) introduced a test
for unit roots which adopts stationarity as the null hypothesis. They do
this by modeling a time series as a sum of a deterministic trend, a
random walk and a stationary error, and then testing for the random
walk having zero variance. Unsurprisingly, they frequently draw
conclusions opposite to those of the traditional unit root tests. Critical
values for this KPSS test can be found in Sephton (1995). This result
supports results from other renegade testing methods, such as Bayesian
methods. See Kwiatkowski et al. for references. Leybourne and
McCabe (1994) extends the KPSS test.

All unit root tests have difficulty discriminating between an I(1) process
and an I(0) process with a shift in its mean, as noted by Rappoport and
Reichlin (1989), among others. To see why, picture a stationary series
bumping along at a low level and then jumping to a higher level where it
continues to bump along. A trend line fitted through these data will have
an upward slope, causing unit root tests to be fooled by this structural
break. As an example, consider the possibility that output growth is
trend stationary over extended periods but is subject to major shocks
such as the Great Depression or a productivity slowdown. Enders
(1995, pp. 243-8) has a good exposition of unit root tests in the context
of structural breaks. Gregory and Hansen (1996a,b) suggest using the
smallest (i.e., largest negative) of ADF t values calculated for different
structural break points. Banerjee, Lumsdaine and Stock (1992) suggest
some alternative tests.

The power of unit root tests depends much more on the span of the
data, ceteris paribus, than on the number of observations i.e., for
macroeconomic data where long business cycles are of importance, a
long span of annual data would be preferred to a shorter span with, say,
monthly data, even though the latter case may have more observations.
(A caveat is that the longer span has a greater chance of containing a



structural break.) This does not mean that one should throw monthly
observations away if available because extra observations of any form
are of value. Rossana and Seater (1995) find that temporal aggregation
of economic time series, such as converting monthly data to annual
data, creates substantial losses in information and can cause misleading
results in empirical analysis. In particular, they find that long-run
business-cycle variation present in monthly data disappears when these
data are aggregated to annual data. They recommend using quarterly
data which are not as
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plagued by measurement error as monthly data, and do not suffer
severely from temporal aggregation problems. Osborn (1990) finds that
seasonal unit roots are rare and that economic time series are typically
integrated of order one with a deterministic seasonal pattern imposed.
Cointegration could appear as a seasonal phenomenon; see Ilmakunnas
(1990) or Hurn (1993) for good examples of how this can be handled.

ADF tests are sensitive to nonlinear transformations of the data, such as
when a variable is found to be non-stationary in levels but stationary in
logarithms. Franses and McAleer (1997) propose a means of testing if
the data have been adequately transformed in this respect.

An alternative way of testing for nonstationarity models the underlying
process using the concept of fractional integration. The traditional
analysis examines (1 - aL)yt, with nonstationarity corresponding to a >
1. In contrast, we could adopt a different model and examine (1 - L)dyt,
where d > 0.5 corresponds to nonstationarity. For this to be viable we
must allow d to take on non-integer values, hence the name fractional
integration. Although there are higher computational costs, modeling in
terms of fractional integration has several advantages. It allows a
continuous transition from non-unit root behavior to a unit root, it is
better suited to capturing low frequency (long memory) behavior and so
is able more adequately to model long-term persistence, and it nests
both difference stationary and trend stationary models. In short, it
provides a more flexible alternative against which to test unit roots, and
because of this empirical studies using this approach tend to reject a unit
root. See Sowell (1992) and Crato and Rothman (1994). In this context
ARIMA becomes ARFIMA, autoregressive fractionally-integrated
moving average.



17.6 Cointegration

The ''superconsistency" result arises because as the sample size
increases, the "denominator" (X'X)-1 of the expression for the bias of
the OLS estimate increases much more quickly than usual, since the X
data do not hover around a constant level. This overwhelms the
"numerator," eliminating the asymptotic bias that would otherwise
characterize this estimate in the presence of contemporaneous
correlation between the error and the regressors due to simultaneity.
This creates the consistency. In addition it can be shown that this bias
disappears at a rate proportional to T rather than, as is usual, at a rate
proportional to, this is why the super prefix is used.

The logic of the Johansen procedure can be exposited by drawing a
crude parallel with the simplest version of the single-equation case.
Suppose yt = ayt-1 + et which by subtracting yt-1 from each side can be
rewritten as Dyt = (a - 1)yt-1 + et. This is the traditional form in which a
unit root test is undertaken, consisting of testing for a - 1 equal to zero.
(This can be generalized by adding additional lags of y and other
explanatory variables in current or lagged form.) Think of this as saying
that the only context in which it is legitimate to regress differenced y on
levels y is when the coefficient on levels y is zero or levels y is
stationary.

Now consider a similar equation, but this time in terms of an N × 1
vector z where the elements of z are individual time series connected by
the general vector equation
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where A is an N × N matrix of coefficients. (This would be generalized
by adding additional lags of z; readers should recognize this from
chapter 10 as a VAR.) The first row of A for example, consists of the N
coefficients associated with expressing the first element of zt as a linear
function of the N elements of zt-1. Subtracting zt-1 from each side we
get



a multivariate version of the equation used above to test for unit roots.
Now think of this as saying that the only context in which it makes
sense to regress a differenced element of z on all its levels elements is
when a row of A-I when multiplied down the levels elements creates
zero or creates a stationary variable. The number of rows of A-I that do
not create zero when multiplied down a vector is equal to the rank of
A-I, so testing for the rank of A-I can be interpreted as testing for the
number of cointegrating vectors. Further, the rank of A-I is equal to the
number of its nonzero characteristic roots (eigenvalues). Johansen's
ltrace and lmax test statistics for the number of cointegrating vectors are
based on estimates of the characteristic roots.

By normalizing A-I to put a coefficient of unity on a chosen variable,
A-I can be rewritten as qb where b is a matrix of normalized
cointegrating row vectors and q is a matrix containing the speed-
of-adjustment parameters associated with the error-correction terms
corresponding to each of the coinegrating vectors. The first row of q, for
example, contains the speed-of-adjustment parameters for each of the
error-correction (cointegrating relationships) terms in the first equation.
Suppose for example there are only two cointegrating relationships, the
parameters of which appear in the first two rows of b. Then only the
first two columns of q will have non-zero values - the number of
cointegrating relationships is equal to the number of non-zero columns
of q. The Johansen procedure tests for the rank of A-I (equal to the
number of non-zero columns of q) and then uses maximum likelihood,
sometimes referred to as reduced rank regression in this context, to
estimate q and b. Hypotheses about the parameters are tested by
checking to see if imposing restrictions reduces the number of
cointegrating vectors.

Suppose the nth row of q consists entirely of zeros. This means that the
error-correction terms do not enter into the equation determining the
nth variable, implying that this variable is (weakly) exogenous to the
system. Tests for exogeneity exploit this.
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18
Forecasting

18.1 Introduction

Although the creation of good parameter estimates is often viewed as
the primary goal of econometrics, to many a goal of equal importance is
the production of good economic forecasts. The preceding chapter on
time series econometrics makes this evident: some time series
techniques were developed solely for the purpose of forecasting. The
purpose of this chapter is to provide a brief overview of economic
forecasting; no effort is made to describe forecasting methods, since
textbooks doing this abound.

Economic forecasting methods can be classified into two very broad
categories.

(1) Causal forecasting/econometric models Once estimates of the
parameters of an economic model are available, the model can be
employed to forecast the dependent variable if the associated values of
the independent variables are given. It is this forecasting method,
relying on the causal interpretation of the economic model in question,
that is usually meant by the terminology "econometric forecast." The
model used can range in sophistication from a single equation with one
or two explanatory variables to a large simultaneous-equation model
with scores of variables.

(2) Time series models Time series can be characterized as consisting of
a time trend, a seasonal factor, a cyclical element and an error term. A
wide variety of techniques is available to break up a time series into
these components and thereby to generate a means of forecasting
behavior of the series. These methods are based on the supposition that
history provides some guide as to what to expect in the future. The most
sophisticated of these time series techniques is Box-Jenkins analysis; it
has become so common in economic forecasting that it is usually what
is referred to when economists (as opposed to business forecasters) talk
about the time series method. (See chapter 17.)
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18.2 Causal Forecasting/Econometric Models



Suppose the model Yt = a + bxt + et is assumed to satisfy the CLR
model assumptions, and data for T periods are used to estimate a and b
using OLS. If the value of X in time period T + 1 is given as XT+1, then

YT+1 is forecast as . Four potential sources of

error exist when using  to forecast YT+1.

(1) Specification error It may not be true that the assumptions of the
CLR model are met, in particular that all the relevant explanatory
variables are included, that the functional form is correct, and that there
has been no change in regime.

(2) Conditioning error The value of XT+1, on which the forecast is
conditioned, may be inaccurate.

(3) Sampling error The estimates aOLS and bOLS, rather than the true

(unknown) values of a and b, are used in calculating 

(4) Random error The calculation of  implicitly estimates eT+1 as
zero when its true value may differ considerably from zero.

Although each of these four sources of error plays a role in making

 diverge from YT+1, only sources (3) and (4) above are used to
derive the forecast interval, shown in figure 18.1. This interval covers
the actual value being fore-



Figure 18.1
Confidence intervals for forecasting
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cast in, say, 95% of repeated samples (assuming no specification or
conditioning errors); in figure 18.1 it is given for each value of X as the
vertical distance between the two 95% confidence bands. The interval
is smallest at the average value of the given data set used to estimate a
and b; as predictions are made for values of X further and further away
from this average, these intervals become larger and larger. Inside the X
data set we have information on the behavior of Y and so can be fairly
confident about our forecasts; outside the data set the opposite is the
case.

If error sources (1) and (2), the specification and conditioning errors,

are absent,  is the best linear unbiased forecast and the forecast
interval in figure 18.1 is "tighter" than that of any alternative linear
unbiased forecast. This is because in that circumstance aOLS and bOLS
are BLUE. From this it should be clear that the two main objectives of
econometrics - obtaining good parameter estimates and generating good



forecasts - are tied closely together, at least in so far as the error sources
(1) and (2) above can be ignored. The influence of these specification
and conditioning errors, particularly the former, prompts many
econometricians to adjust estimates from their models in light of
information about factors in the economy whose influences are not
incorporated in their model. In fact, this "judgemental modification" of
econometric models, consisting of a blend of qualitative information and
the forecaster's experience (and often referred to as "tender loving
care"), is viewed as an essential ingredient of the process of forecasting
from an econometric model. Examples are forecast modifications
undertaken in light of a major strike, an application of moral suasion by
a policy authority, or the announcement of a future oil price increase.

18.3 Time Series Analysis

The main competitors to econometric models for forecasting purposes
are Box-Jenkins, or ARIMA models, explained in some detail in chapter
17. Univariate Box-Jenkins models are sophisticated extrapolation
methods, using only past values of the variables being forecast to
generate forecasts; they ignore the many explanatory variables which
form the foundation of econometric models. There are several reasons
why forecasters should be interested in these naive models: thanks to
improved computer software, they are easy and cheap to produce; the
extra information required to estimate a proper econometric model may
be expensive to obtain; forecasts from such models can serve as a
useful benchmark for comparison purposes; forecasts from this process
can be combined with other forecasts to produce improved forecasts;
and they are useful as a preliminary step for further modeling - they
clarify the nature of the data and make clear what behavior patterns
require explanation.

During the 1970s controversy raged over the relative forecasting merits
of econometric models and ARIMA models, prompted by studies
claiming the superiority of the ARIMA models. As noted in chapter 17,
this led to a synthesis
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of the two approaches, and prompted the development of models, such
as ECMs, that paid more attention to dynamics. In retrospect, the
reason why econometric models performed so poorly in these



comparisons was because of misspecification errors in the econometric
models, primarily with respect to their dynamic structure. It is generally
acknowledged that whenever specification or conditioning errors render
econometric models impractical (which some claim is most of the time),
the Box-Jenkins approach has considerable merit for forecasting. It is
also recognized that if an econometric model is outperformed by an
ARIMA model, this is evidence that the econometric model is
misspecified.

18.4 Forecasting Accuracy

There are several ways of measuring forecasting accuracy and thereby
comparing one forecasting method to another. In all of the methods
mentioned below, the forecasts and forecast errors referred to are errors
in forecasting extra-sample observations.

(1) Mean absolute deviation (MAD) This is the average of the absolute
values of the forecast errors. It is appropriate when the cost of forecast
errors is proportional to the absolute size of the forecast error. This
criterion is also called MAE (mean absolute error).

(2) Root mean square error (RMSE) This is the square root of the
average of the squared values of the forecast errors. This measure
implicitly weights large forecast errors more heavily than small ones and
is appropriate to situations in which the cost of an error increases as the
square of that error. This "quadratic loss function" is the most popular in
use.

(3) Mean absolute percentage error (MAPE) This is the average of the
absolute values of the percentage errors; it has the advantage of being
dimensionless. It is more appropriate when the cost of the forecast error
is more closely related to the percentage error than to the numerical size
of the error.

(4) Correlation of forecasts with actual values For this measure actual
changes (not the levels) of the variable being forecast are regressed on
the forecasts of these changes and the resulting R2 is used as a measure
of forecasting accuracy.

(5) Percentage of turning points forecast This criterion is relevant if
prediction of turning points, rather than numerical accuracy of
forecasts, determines the payoff from forecasting.



(6) Conditional efficiency A forecast A is said to be conditionally
efficient relative to forecast B if B possesses no useful information
beyond that contained in A. One way of determining this is to combine
A and B into a best combination forecast and see if the variance of the
resulting forecast error is significantly smaller than that resulting from
forecasting with A alone.
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There is some agreement in the literature that the "best" forecasting
method, overall, is a "combined" forecast, formed as a weighted
average of a variety of forecasts, each generated by a different
technique. If the principles on which these different forecasts are based
are sufficiently different from one another, this average should prove
superior to any single forecasting technique because the errors in the
separate forecasts will tend to cancel one another. In the context of
model specification problems, this suggests that good forecasts do not
come from using a single, favorite model specification, but rather come
from combining results from a variety of reasonable models. The
weights for the combined forecast are found by regressing the actual
values on all the competing forecasts (including an intercept). There are
many variants of this combined forecasting methodology.

General Notes

18.1 Introduction

When estimating parameter values, the failures of econometrics are
shielded from public view by the fact that the true parameter values are
unknown and thus cannot be compared with their estimated values. This
protection does not exist when econometrics is used for forecasting -
eventually predicted and actual values can be directly compared.
Unfortunately for econometricians, most such comparisons have not
shown their forecasts to be particularly accurate. This has prompted
jokes from critics, such as "If an economist is someone who guesses
wrong about the economy, an econometrician is someone who uses a
computer to guess wrong about the economy." Economists reply with
"We only forecast to show the world that we have a sense of humour."

Joking aside, economists' forecasting record is not good. Martin
Feldstein, chairman of the US Council of Economic Advisors, was
quoted (Time, August 27, 1984, p. 46) as saying "One of the great



mistakes of the past 30 years of economic policy has been an excessive
belief in the ability to forecast." Nobel prize-winner Wassily Leontief
(1971, p. 3) noted that "in no other field of empirical enquiry has so
massive and sophisticated a statistical machinery been used with such
indifferent results." Non-economists are much blunter in their
assessment, as evidenced by US Treasury Secretary Donald Regan's
statement (Time, August 27, 1984, p. 46) that, "If you believe them,
then you also believe in the tooth fairy."

One way of defending economic forecasts is to appeal to Alice-
in-Wonderland logic: " '. . . how can you possibly award prizes when
everybody missed the target?' said Alice. 'Well,' said the Queen, 'Some
missed by more than others, and we have a fine normal distribution of
misses, which means we can forget the target.' "

Even if forecasts are poor, there are none better, and perhaps a poor
forecast is better than none at all. Not everyone believes that economic
forecasts are as poor as they are made out to be, however, or that the
quality of what some claim to be poor forecasts is so bad that they
cannot be useful. Klein (1984) has a good exposition of how forecasts
are used and examples of their success in this regard. Armstrong et al.
(1978) is a source of interesting debate on this subject. Simon (1994)
argues that
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although economic forecasting is notoriously bad in the short run, it is
quite good in the long run, primarily because economic laws tend to
dominate over long periods of time.

Not all forecasting methods can be neatly classified into one of the two
categories structured here. A prominent example is the leading indicator
approach; Klein and Moore (1983) have a good survey of its use.

The discussion of this chapter is couched entirely in terms of forecasting
time series data. For forecasting cross-sectional data, only the
econometric approach can be used. In this context, Gencay and Yang
(1996) find that nonparametric methods (discussed in chapter 19)
outperform methods that rely on a parametric functional form.

Faulhaber and Baumol (1988, pp. 591-2) is a concise history of the
modern economic forecasting industry in the United States.



18.2 Causal Forecasting/Econometric Models

A variant of causal forecasting is simulation. The impact on the
economy of a policy change is simulated by using the econometric
model to forecast into the future. Challen and Hagger (1983) have a
good discussion.

For further discussion of the role played by the conditioning error, see
Johnston (1984, pp. 198200), Ashley (1983), and Feldstein (1971).

Forecasting unknown values is called ex ante forecasting; forecasting
known values is called ex post forecasting.

Many critics of econometric forecasting claim that, for example, the
model and parameter estimates used relate to the 1980s, for which data
are available, but not to the 1990s, for which forecasts are required.
Streissler (1970) even goes so far as to define econometrics as dealing
with predictions of the economic past. Both Streissler (1970) and
Rubner (1970) severely criticize economic forecasting. In the
macroeconomic context the problem of regime changes is particularly
nettlesome, as noted by Lucas (1976), since the behavior of rational
individuals should change whenever the policy environment within
which they live changes. This "Lucas critique", as it has come to be
known, is largely ignored by econometricians, mainly because it does
not appear to be of substantive magnitude, as argued by Doan et al.
(1984) and Favero and Hendry (1992). For a contrary view see Miller
and Roberds (1991).

Forecast intervals are sometimes used to test the specification of a
model - if the actual value falls within the forecast interval, the model
specification is confirmed. In the context of testing the specification of
a dynamic model (such as an ECM), it is often referred to as a
post-sample predictive test. As noted earlier, this test is equivalent to
the variant of the Chow test employing period-specific dummy
variables.

Fair (1984, chapter 8) explains a method of measuring the influence on
prediction of model misspecification. Simulation is used to obtain the
forecast error variance due to conditioning error, sampling error and
random error. The difference between this variance and the actual
forecast error variance is attributed to specification error.

An intuitive explanation for why the confidence interval widens as X
moves further away from its average value in the data set in figure 18.1



is as follows. Suppose the error term for one of the data points were
slightly different. This would change slightly the estimates of a and b. If
this is visualized in figure 18.1, it should be clear that the predicted
value of Y at the mid-point of the data set will change by a small
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amount, because the new estimating line will cut the old near that point.
It will diverge markedly from the old the further one goes beyond the
bounds of the data set.

The best linear unbiased forecast in the context of the GLS model
differs from that of the CLR model in two ways. First, the GLS
estimates are used instead of the OLS estimates, and second, if the
errors are autocorrelated, the estimated values of past errors can be
used to help predict future errors. For example, if et = ret-1 + ut, then
the error in the (T + 1)th time period would be predicted as, rather than
0. See Goldberger (1962). Many econometricians claim that failure to
account for autocorrelated errors (characteristic of simultaneous
equation model estimation) is a significant factor leading to poor
forecasts.

Young (1982) and Challen and Hagger (1983, pp. 18490) have good
discussions of judgemental modification/tender loving care. See also
Howrey et al. (1974) and Evans et al. (1972).

Belsley (1984a) has a good discussion of the impact of multicollinearity
on forecasting.

18.3 Time Series Analysis

Makridakis (1976, 1978) and Anderson (1977) provide an extensive
survey of time series methods (not just Box-Jenkins). For a useful
perspective on the future of time series forecasting, see Chatfield
(1988).

Fildes and Makridakis (1995) note that empirical findings on time series
forecasting accuracy have identified several anomalies which have been
ignored by theoretical time series analysts who seem not to be interested
in the out-of-sample forecasting performance of their techniques. Even
if time series analysts are more interested in parameter estimation and
testing, they should be testing their specifications by evaluating their



out-of-sample forecasting performance.

As should be evident from the discussion of nonstationarity in chapter
17, forecasting with I(1) variables is not reliable - a random walk can
appear to give reasonable predictions of another random walk, for
example.

An excellent summary of the controversy concerning the relative merits
of Box-Jenkins and econometric models for forecasting can be found in
Granger and Newbold (1986, pp. 28792). Nelson (1972) is an early
study favoring Box-Jenkins; McNees (1982) presents a convincing case
for econometric models. Dorfman and McIntosh (1990) report a
forecasting contest in which an econometric forecasting method which
exploits knowledge of the true data-generating process does not
dominate competing forecasting methods. Misspecifying an econometric
model by omitting a relevant explanatory variable need not spell
disaster. If the omitted explanatory variable A is correlated with an
included explanatory variable B, ordinary least squares produces a
biased coefficient estimate for B that ensures unbiased forecasts for
situations in which the historical correlation between A and B
continues.

The VAR methodology (discussed in chapter 10), which can be viewed
as a variant of multivariate Box-Jenkins, is often used for forecasting.
As shown by Hafer and Sheehan (1989), its forecasting accuracy varies
dramatically over alternative lag structures. The use of modest lag
lengths is recommended. On the other hand, as noted in the general
notes to section 10.5 of chapter 10, imposing reasonable restrictions on
VARs, such as those advocated by the Bayesians to temper the
influence of lagged
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variables, improves their performance markedly. Shoesmith (1995) finds
that combining a Bayesian VAR with an error correction model (see
chapter 17) improves forecasting. He warns that addition of error
correction terms corresponding to cointegrating vectors which do not
test significantly different from zero harms forecasts.

When using the Box-Jenkins methodology to forecast a constructed
variable, for example (GNP/P), it is not clear whether it is better to
forecast GNP and P separately to produce the forecast, or to forecast



(GNP/P) directly. Kang (1986) suggests that the former approach is
better.

18.4 Forecasting Accuracy

Granger (1996) offers several suggestions for how forecasters might
improve accuracy: use more up-to-date information as input; make
better use of past forecast errors, leading indicators and expected
values; incorporate legged error correction terms; correct for the
tendency for change to be underforecast; and be quicker to recognize
structural breaks, temporarily switching to an adaptive model such as a
random walk.

Criteria for selecting a forecasting method are discussed in Dhrymes et
al. (1972) and Granger and Newbold (1973). See also Maddala (1977,
pp. 3437) and Granger and Newbold (1986, pp. 27687). For a survey of
characteristics of various measures of forecasting accuracy, see
Armstrong (1978, pp. 31929).

Leitch and Tanner (1995) argue that failure of high-priced forecasters to
outperform simple methods on the basis of measures like mean square
forecast error is not relevant because profitability from using forecasts
comes from success in directional forecasting. They claim that
measured on this criterion professional forecasters outperform simple
forecasting methods. Directional forecasting is an example of
classification analysis, discussed in chapter 15. Kamstra and Kennedy
(1997) discuss how combining of such "qualitative" forecasts might be
undertaken.

Mahmoud (1984) is an excellent survey of studies on accuracy in
forecasting. His general conclusions are that quantitative methods
outperform qualitative (subjectively oriented) methods so long as there
are adequate data and no obvious regime changes have taken place; that
simple methods are as accurate as sophisticated methods; and that
amalgamating forecasts offers an improvement over the best of the
individual forecasting methods.

A popular method of evaluating a predictor is to regress the actual
changes on the predicted changes and a constant. If the intercept
estimate tests insignificantly different from 0 and the slope coefficient
tests insignificantly different from 1, the predictor is said to be a good
one. (More than one predictor may satisfy his criterion, however, in
which case some additional criterion must be introduced; see Granger
and Newbold, 1973.)



Armstrong (1978, p. 86) presents a graph reflecting his findings that a
small amount of forecasting expertise dramatically improves the
accuracy of forecasts but thereafter further expertise does not improve
(and may even worsen) forecasts. He concludes that for forecasting the
cheapest expert should be hired. Why then is it the case that the most
expensive forecasters using the most complex forecasting methods tend
to be hired? His explanation for this (p. 399) is the "rain dance theory":
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The rain dance has something for everyone. The dancer gets
paid. The clients get to watch a good dance. The decision-maker
gets to shift the problem onto someone else in a socially
acceptable way. (Who can blame him? He hired the best dancer
in the business.)

The term ''conditional efficiency" was introduced by Granger and
Newbold (1973). A similar concept was used by Nelson (1972), who
suggested formulating the variable to be forecast, y, as a linear
combination of the two forecasts A and B, to get yt = kAt + (1 - k)Bt +
et and estimating k by regressing (y - B) on (A - B). A test of k = 1 can
be used to test for the conditional efficiency of A. This methodology has
been extended to include an intercept and additional forecasts. It is
suggested that all econometric model forecasts be automatically tested
in this way against an ARIMA model. Fair and Shiller (1989) introduce
a similar concept.

In the evaluation of forecasting mechanisms and the testing of rational
expectations, much has been made of the necessity for forecasts to be
unbiased. Zellner (1986a) notes that this assumption of unbiased
forecasts may not be warranted; its validity depends on the loss function
employed by those forecasting. In general, estimation of parameters to
be used for forecasting should incorporate the loss function/criterion
used to evaluate the forecasts.

Clemens (1989) is an excellent survey of the combining forecasts
literature. When forecasting by using the combining forecasts
methodology, one is always on the lookout for forecasts to include in
the combining. Two obvious cases are sometimes overlooked. If a series
is stationary, then the mean is a potential (albeit inefficient) forecast
warranting inclusion. (This explains the result of Granger and



Ramanathan (1984) that including an intercept in the combining
regression improves the results.) If the series is integrated of order one,
then its most recent value is a good forecast and so worthy of inclusion.

Spiro (1989) notes that forecasters tend to be conservative, causing the
combining methodology to underpredict change. He suggests correcting
for this bias by regressing the actual values A on the group average
forecasts F and F - At-1 and using the result to modify future Fs.

Makridakis et al. (1982) report the results of a forecasting competition
known as the M-competition, in which 1,001 time series were forecast
using a wide variety of competing forecasting methods. Zellner (1986b)
notes that in this competition the Bayesian forecasting procedure
produced the lowest overall average MSE forecast. He also notes that it
is unfair to expect the Bayesian estimator to perform well on other
criteria unless the loss function used to produce the Bayesian forecast is
modified to reflect the criteria being used for evaluation. For a response
see Fildes and Makridakis (1988).

"Normative forecasting" is an approach to forecasting in which
evaluation of a forecast in terms of its accuracy becomes less important
than its utility in producing "good" decisions or policies. For example, a
deliberately exaggerated forecast of pollution would score well on this
criterion if it induced people to take the appropriate measures to solve
the actual problem.
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Technical Notes

18.2 Causal Forecasting/Econometric Models

The variance of the forecast error, from which the confidence interval is

constructed, is given by the formula  where X0 is a
vector of regressor observations corresponding to the value of the
dependent variable that is to be forecast. The first term in this
expression results from estimating the error term as zero; the second
term results from the use of OLS estimates rather than the true
parameter values. (Notice that the variance-covariance matrix of the
OLS estimator, s2(X'X)-1, appears in this second term.) Salkever (1976)
presents a computationally attractive way of calculating this variance,



as well as the forecasts themselves, using period-specific dummy
variables; see section 14.5.

18.4 Forecasting Accuracy

The mean square error of a predictor can be broken down into three
parts. The first, called the bias proportion, corresponds to that part of
the MSE resulting from a tendency to forecast too high or too low,
reflected by the extent to which the intercept term in the regression of
actual changes on predicted changes is nonzero. The second, called the
regression proportion, corresponds to that part of the MSE resulting
from other systematic influences, reflected by the extent to which the
slope coefficient in this regression differs from 1. The third, called the
disturbance proportion, measures that part of the MSE resulting from
an unpredictable error (measured by the variance of the residuals from
this regression). This decomposition (see Theil, 1966, pp. 2636)
provides useful information to someone attempting to evaluate a
forecasting method. (An alternative decomposition, also due to Theil,
into bias, variance and covariance proportions has been shown by
Granger and Newbold (1973) to have questionable meaning.)

A common statistic found in the forecasting context is Theil's inequality
(or "U") statistic (see Theil, 1966, pp. 2636), given as the square root of
the ratio of the mean square error of the predicted change to the
average squared actual change. For a perfect forecaster, the statistic is
zero; a value of unity corresponds to a forecast of "no change." (Note
that an earlier version of this statistic has been shown to be defective;
see Bliemel, 1973.)
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19
Robust Estimation

19.1 Introduction

Estimators designed to be the "best" estimator for a particular
estimating problem owe their attractive properties to the fact that their
derivation has exploited special features of the process generating the
data, features that are assumed known by the econometrician.



Knowledge that the CLR model assumptions hold, for example, allows
derivation of the OLS estimator as one possessing several desirable
properties. Unfortunately, because these "best" estimators have been
designed to exploit these assumptions, violations of the assumptions
affect them much more than they do other, sub-optimal estimators.
Because researchers are not in a position of knowing with certainty that
the assumptions used to justify their choice of estimator are met, it is
tempting to protect oneself against violations of these assumptions by
using an estimator whose properties, while not quite "best," are not
sensitive to violations of those assumptions. Such estimators are
referred to as robust estimators.

We have on occasion encountered such estimators. An example is the
heteroskedasticity-consistent estimator of the variance-covariance
matrix of the OLS estimator. This estimator reduces the sensitivity of
inference using OLS to erroneous assumptions made about the variance
of the error term. The OLS estimator can itself in some contexts be
viewed as a robust estimator - it was noted in chapter 10 that in the
context of simultaneous equation estimation the OLS estimator is not as
sensitive as its competitors to problems such as multi-collinearity and
errors in variables.

Although generically a robust estimator is one that is insensitive to
violations of any of the assumptions made about the way in which the
data are generated, in practice most robust estimators have been
designed to be resistant to erroneous assumptions regarding the
distribution of the errors. The next two sections discuss this type of
robustness; the final section of this chapter discusses an estimation
procedure designed to be robust to a wider variety of erroneous
modeling assumptions. The topic of robustness has become quite
popular recently in econometrics, as researchers have become aware of
the extreme sensitivity of some of their estimation procedures, such as
Tobit estimation, to non-normality of the error term.
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19.2 Outliers and Influential Observations

When the errors are distributed normally, the OLS estimator in the CLR
model is best unbiased, meaning that among all unbiased estimators it
has the smallest variance. Whenever the errors are not distributed



normally, a weaker result holds, namely that the OLS estimator is best
linear unbiased (BLUE), meaning that among all linear unbiased
estimators it has the smallest variance. If the distribution of the errors is
"fat-tailed," in that it frequently produces relatively large errors, it turns
out that linearity is unduly restrictive: in the presence of fat-tailed error
distributions, although the OLS estimator is BLUE, it is markedly
inferior to some nonlinear unbiased estimators. These nonlinear
estimators, called robust estimators, are preferred to the OLS estimator
whenever there may be reason to believe that the error distribution is
fat-tailed.

Observations that have large residuals associated with them are thought
to reflect the presence of a fat-tailed error distribution, so a search for
such "outliers" is usually the first step in addressing this potential
problem. An easy way to look for outliers is to plot the OLS residuals
and see if any observations are relatively large. This is not a good
method; a large error when squared becomes very large, so when
minimizing the sum of squared errors OLS gives a high weight to this
observation, causing the OLS estimating line to swing towards this
observation, masking the fact that it is an outlier. (The fact that the OLS
line swings so much in response to a single observation is why OLS
performs poorly in the presence of fat-tailed error distributions.) A
better method is to investigate the ith observation, say, by running the
regression without the ith observation and seeing if the prediction error
for the ith observation is significantly large. This is repeated to check all
observations.

The rationale for looking for outliers is that they may have a strong
influence on the estimates produced by OLS, an influence that may not
be desirable. The type of outlier discussed above, an observation with
an unusually large error, is only one of two kinds of outlying
observations that can have a strong influence on OLS estimates. The
second type of outlier is an observation with an unusual value of an
explanatory variable, referred to as a leverage point. Consider a graph
of the dependent variable plotted against a single explanatory variable,
with a group of observations clustered in a small area, and a single
observation with a markedly different value of the explanatory variable;
this single observation will have a strong influence on the OLS
estimates, so much so that it is as worthy of special attention as are the
outliers discussed earlier.

It should now be evident that what one should be looking for is not just
"outliers," of whatever type, but observations that have a strong
influence on the OLS estimates; such observations are called influential



observations. Measures for the detection of influential observations are
based on comparing OLS coefficient (or error) estimates calculated
using the entire data set, to OLS estimates calculated using the entire
data set less one observation. Any observation which,
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when dropped, causes the OLS estimates to change markedly is
identified as an influential observation.

19.3 Robust Estimators

Once influential observations have been identified it is tempting just to
throw them away. This would be a major mistake. Often influential
observations are the most valuable observations in a data set; if for
years interest rates or relative energy prices do not change much, when
they do change the new observations are exactly what is needed to
produce good estimates. Furthermore, outliers may be reflecting some
unusual fact that could lead to an improvement in the model's
specification.

The first thing that should be done after influential observations have
been identified is to examine these observations very carefully to see if
there is some obvious reason why they are outliers. There may have
been an error in measuring or classifying the data, or the data may have
been entered into the computer erroneously, for example, in which case
remedying these mistakes is the best solution; if a mistake cannot be
remedied, then throwing an observation away is justified. There may be
an unusual circumstance associated with an observation, such as an
earthquake or an accountant's "extraordinary item," in which case some
thought should be given to modifying the model to allow incorporation
of this observation.

If influential observations remain after this examination, it is not
obvious what should be done. If as a result of this examination the
researcher is convinced that these observations are bona fide and
therefore valuable, OLS should not necessarily be abandoned, but if
some suspicion remains that the data may have errors from a fat-tailed
distribution, then a robust estimator could be used. Five general types of
robust estimators are discussed below.



(1) M estimators The sum of squared error terms can be viewed as a
weighted average of the absolute values of the errors, where the weights
are their own values. From this point of view, OLS minimizes a
weighted sum of absolute error values, where the weights are the
magnitudes of the absolute error values. The idea behind an M estimator
is to use different weights, in particular to use weights that do not
continue to grow in magnitude as the absolute value of the error term
grows. Some examples should clarify this:

(a) Make every weight one, in which case this estimator would
minimize the sum of absolute errors.

(b) Let the weight be the absolute value of the error until it reaches
some arbitrarily determined value, say b, at which point the weight
stays at b for all absolute error values greater than b.

(c) Follow the previous option, but when the value of the absolute
error reaches an arbitrarily determined value c, have the weights
decrease (as a
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linear function of the absolute value of the error) until they become
zero (at value d, say), after which point they stay zero. This would
throw away all observations for which the absolute value of the
associated residual is greater than d.

(d) Option (c) above could be approximated by a sine curve.

(2) Lp estimators This estimator results from minimizing the sum of the
absolute values of the errors each raised to the pth power, where p is
usually a value between one and two. When p = 2, the OLS estimator
results; when p = 1, this estimator minimizes the sum of absolute errors.
The value chosen for p should be lower the fatter are the tails of the
error distribution, but beyond this vague guidance, the choice of p,
unfortunately, is arbitrary.

(3) L estimators These estimators are linear combinations of sample
order statistics, the most attractive of which are regression quantiles. A
regression quantile is an estimate of a coefficient that results from
minimizing a weighted sum of the absolute values of the errors, with
positive errors weighted differently from negative errors. The 0.25



regression quantile, for example, results from using the weight 0.25 for
positive errors and the weight 0.75 for negative errors. The qth
regression quantile is the coefficient estimate that results from
minimizing the weighted sum of absolute values of the errors, using the
weight q for positive errors and the weight (1 - q) for negative errors.
Note that when q = 0.5 this becomes identical to the estimator that
minimizes the sum of absolute values of the errors. L estimators are
calculated by taking a weighted average of several of these regression
quantile estimates, with the quantiles and weights chosen for this
purpose determined arbitrarily. Two popular versions are the Gatswirth,
in which the one-third, one-half and two-thirds regression quantiles are
weighted 0.3, 0.4 and 0.3, respectively, and the trimean, in which the
one-quarter, one-half and three-quarters regression quantiles are
weighted 0.25, 0.5 and 0.25, respectively.

(4) Trimmed least squares This is basically a method for throwing away
some observations. The 0.05 and the 0.95 regression quantiles, say, are
calculated, and observations with negative residuals from the former,
and positive residuals from the latter, are thrown away. This should
eliminate about 10% of the observations. OLS is used on the remaining
observations to produce the a-trimmed least-squares estimate, where in
this example a is 10%.

(5) Bounded influence estimators The OLS estimator has an unbounded
influence function, meaning that the influence of an aberrant
observation on the coefficient estimate grows steadily as that
observation becomes more and more aberrant. A bounded influence
estimator, or BIF, is designed to limit, or bound, the influence an
aberrant observation can have on the coefficient estimate. This is
accomplished by minimizing a weighted sum of squared errors, where
the weight for each observation is chosen so as to limit, or bound, that
observation's influence on the estimation result. Influential observations
are downweighted; other observations retain their weight of unity. Such
estimators are operational-
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ized by defining what is meant by "influence" and choosing a bound.
The bound is usually chosen such that the efficiency of BIF would not
be too much lower, say 5% lower, than that of OLS were the data
suitable for OLS. This in effect would mean that one would be paying



5% insurance premium for protection against the possibility of data
unsuitable for OLS.

19.4 Non-Parametric Estimation

A completely different alternative to the robust methods discussed
above allows the data to determine the shape of the functional form
without any guidance/constraints from theory. Since this involves the
use of techniques which have no meaningful associated parameters,
they are called non-parametric procedures. The distribution of the error
term, for example, is not viewed as taking a specific functional form,
ruling out maximum likelihood estimation, and the relationship between
the dependent and independent variables is not forced into a
constraining parametric structure. Because the specification is
unconstrained, conclusions drawn from non-parametric procedures are
robust to erroneous assumptions that might have been made had the
estimating problem been parameterized in the usual way. Two types of
non-parametric analysis are popular: Artificial neural network models
allow the data to dictate the specification via an extremely flexible
functional form without economic meaning, and kernel estimation
allows the data to determine a specification using no functional form at
all.

Artificial Neural Networks

Artificial neural networks, called neural nets for short, model the
unknown function by expressing it as a weighted sum of several
sigmoids, usually chosen to be logit curves, each of which is a function
of all the relevant explanatory variables. An example is given in the
technical notes. This amounts to nothing more than an extremely
flexible functional form for which estimation requires a non-linear-least-
squares iterative search algorithm based on gradients. (See the technical
notes to section 6.3 for a discussion of such algorithms.)

This unusual flexible functional form comes from the vast artificial
neural network literature developed by scholars investigating how the
brain (composed of networks of neurons) works and how that process
can be mimicked on a computer. Unfortunately, econometricians have
retained the terminology of this literature, making it difficult for
practitioners to understand the essence of this modeling process. For
example, this literature speaks of an input layer, a hidden layer and an
output layer, each containing "nodes." Each node in the input layer
takes a piece of information and feeds it to the brain where several
hidden nodes (inside the brain) each process all this information and



then each pass on one piece of processed information to the output
layer where a node uses all these
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pieces of processed information to compute the value of an output
variable. In econometricians' terms the nodes in the input layer are just
the explanatory variables, the nodes in the hidden layer each take all the
explanatory variable values and calculate a different logit function, and
the node in the output layer takes a weighted average of these logit
results to produce the dependent variable estimate. A natural
generalization is to have more than one node in the output layer,
permitting simultaneous estimation of more than one dependent
variable.

This functional form is remarkably flexible and for that reason is very
appealing. In fact, it is too flexible in that it can twist and turn to fit
peculiarities of the data and thereby mislead regarding the underlying
specification of the functional form. As described in the technical notes,
estimation requires that care be taken to ensure that such overfitting is
avoided.

Kernel Estimation

A popular alternative to neural nets is to specify y = m(x) + e where
m(x) is the conditional expectation of y with no parametric form
whatsoever, and the density of the error e is completely unspecified.
The N observations yi and xi are used to estimate a joint density
function for y and x. The density at a point (y0, x0) is estimated by
seeing what proportion of the N observations are "close to" (y0, x0). As
explained in the technical notes, this procedure involves using a formula
called a kernel to weight nearby observations, explaining why this
non-parametric procedure is called kernel estimation. Once the joint
distribution has been estimated it is possible to find the marginal
distribution of x (by integrating the joint density over y) and then the
conditional distribution of y given x (by taking the ratio of these joint
and marginal distributions). It is important to note that these
distributions are not "found" in the sense that a formula is identified for
them in the usual parametric way. What is meant is that for a given
value of x, the height of the conditional density, say, can be estimated.



This conditional distribution can be used to find several items of
interest. The conditional expectation of y given x, namely m(x), could
be estimated, and the equivalent of a "regression coefficient" could be
estimated by estimating the change in m(x) resulting from a unit change
in x. The conditional variance of y could be estimated, yielding an
estimate of the variance of the error term.

If the variance of the error term is not the same for all values of x, there
is heteroskedasticity. For each observation this non-parametric
methodology could be used to estimate the variance of the error term. If
m(x) were known to be linear, these estimates of the variance could be
employed as input to a standard EGLS estimation procedure to produce
estimates of the coefficients of m(x). This would in effect be combining
non-parametric and parametric methods, a procedure called
semi-parametric estimation, which is applicable in contexts in which a
researcher is comfortable parameterizing some parts of the
specification, but not others.
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General Notes

19.1 Introduction

Stigler (1973, p. 872) explains some of the history of the word robust:
"In the eighteenth century, the word 'robust' was used to refer to
someone who was strong, yet boistrous, crude, and vulgar. By 1953
when Box first gave the word its statistical meaning, the evolution of
language had eliminated the negative connotation: robust meant simply
strong, healthy, sufficiently tough to withstand life's adversities."

Robust estimation methods can play a role in model specification. For
example, should OLS differ markedly from a robust estimate, one
should take a fresh, hard look at one's data and model specification.
Janson (1988), and especially the associated commentary, is a useful
perspective on this dimension of robust estimation. See also Belsley
(1986a) and associated commentary.

Zellner (1981) has stressed that outliers can be of particular value in
specification - unusual and surprising facts can generate major advances
as generalizations are sought to explain them. On the other hand, care
must be taken because an outlier could cause adoption of a



data-specific specification. Franses and Biessen (1992) suggest a
method of checking if outliers have led to the inclusion of an
explanatory variable in a specification.

A drawback of robust estimation methods is that they usually require
that errors be distributed symmetrically and be independent of the
regressors, assumptions that may not be appropriate in some
econometric problems. Godfrey and Orme (1991) discuss testing for
skewness of the residuals.

19.2 Outliers and Influential Observations

As a prelude to looking for outliers or influential observations, many
researchers test for non-normality of errors. Most such tests, strictly
speaking, require observations on the actual errors, but White and
McDonald (1980) suggest that these tests remain viable if OLS residuals
are used instead. Maddala (1977, pp. 305-8) reviews such tests,
recommending the Shapiro-Wilk test. Poirier et al. (1986) suggest a new
test statistic with attractive properties. Among econometricians the
Jarque-Bera test (see the technical notes) is very popular.

The presence of non-normal errors does not necessarily imply that one
of the robust estimators described earlier should be employed. Butler et
al. (1990) model the distribution of the errors as a generalized t
distribution and estimate its parameters along with the regression
parameters. This allows the estimation procedure automatically to adapt
to the error distribution. Similar results concerning the benefits of
making the estimation procedure such that it adapts to the nature of the
residuals it finds were found using different methods by McDonald and
White (1993).

Testing for an outlier due to a large error can be accomplished most
easily by using an observation-specific dummy, as discussed in chapter
14. To investigate the ith observation, say, run the regression with an
observation-specific dummy for the ith observation; the t statistic for
the coefficient on this dummy tests for whether this observation is an
outlier. This is repeated for all N observations; since in effect one would
be looking at the maximum over all observations, the appropriate
critical value
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should be that associated with an a/2 level divided by N. This t statistic
is a normalized prediction error, sometimes called the studentized
residual.

There are two main statistics popular for checking for whether the ith
observation is influential. One is DFFITS, the (normalized) change in
the OLS estimate of the ith value of the dependent variable resulting
from omitting the ith observation when calculating the OLS coefficient
estimates. The other is DFBETA, the (normalized) change in an OLS
coefficient estimate resulting from omitting the ith observation. Belsley
et al. (1980) discuss these measures and their extensions.

All of the methods of searching for outliers and influential observations
that were discussed earlier involve looking at summary statistics; a
natural alternative to this is to look at the data themselves through
graphical means. Numerical summaries focus on expected values
whereas graphical summaries focus on unexpected values. Exploratory
data analysis (EDA, discussed in the general notes to section 5.1 of
chapter 5) is an approach to statistics which emphasizes that a
researcher should begin his or her analyses by looking at the data, on
the grounds that the more familiar one is with one's data the more
effectively they can be used to develop, test and refine theory. This
should be viewed as an ingredient of robust estimation.

19.3 Robust Estimators

Judge et al. (1985, pp. 829-39) discuss M estimators, L estimators, and
trimmed least squares, including how hypothesis testing can be
undertaken with them, along with appropriate references. The
regression quantile was introduced by Koenker and Bassett (1978).
Krasker et al. (1983) give a good description of BIF. Koenker (1982) is
a more advanced survey of robust methods in econometrics.

The estimator minimizing the sum of the absolute values of the errors is
a special case of the M estimator, the Lp estimator, and the L estimator.
It is called the LAR (least absolute residual), LAE (least absolute error)
or MAD (minimum absolute deviation) estimator. Estimation can be
undertaken by solving a linear programming problem. An alternative is
to divide each observation by the square root of the absolute value of
the OLS residual (from raw data) and run OLS on the transformed data;
when iterated this may converge on the LAR estimator. Taylor (1974)
and Narula and Wellington (1982) have good surveys of LAR



estimation. See also Dielman and Pfaffenberger (1982).

The name M estimator stands for "maximum-likelihood-type" estimator.
If normally distributed errors are assumed, maximizing the likelihood
function produces a set of first-order conditions with a certain generic
structure. An M estimator is estimated by replacing a key function in
this generic structure with an alternative functional form.

Bounded-influence estimation is computationally awkward. Welsch
(1980) uses an approximation, minimizing a weighted sum of squared
residuals, with weight unity for every observation for which the
absolute value of DFFITS is less than 0.34 and for other observations a
weight 0.34 times the inverse of the absolute value of that observation's
DFFITS. This makes it look a lot like an M estimator.

Zaman (1996, chap. 5) has a good discussion of recent advances in
robust regression, such as estimating by minimizing the sum of the T/2
smallest squared errors and identifying bad influential observations by
noting if they have high residuals associated with robust estimates.
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19.4 Non-parametric Estimation

For interpretation of neural nets modeling it is useful to know that the
iterative process of searching for the best fitting equation is likened to
the system (brain) ''learning," or being "trained" via "examples"
(observations). This process is called "backpropagation" because at
each iteration ("epoch") the residual is fed "backwards" through the
equation to determine the gradient needed to change optimally the
parameter values for the next iteration. Smith (1993) is an unusually
clear exposition of neural networks for statistical modeling, spelling out
these parallels, describing a variety of estimation procedures, and
offering practical advice on technical details such as what starting
values should be used for the iterative minimization procedure. See also
Warner and Misra (1996).

Hardle (1990) and Pagan and Ullah (1997) are comprehensive surveys
of non-parametric estimation; Ullah (1988) and Robinson (1986) are
brief surveys. Robinson surveys semi-parametric estimation. Using a
flexible functional form is an alternative to nonparametric estimation,
but with the exception of a totally unconstrained flexible form such a



neural nets, is only satisfactory over limited ranges of explanatory
variables. A major drawback to the nonparametric procedure is that it
requires a large sample size. In parametric problems the speed at which
estimated parameters tend to the true value is typically proportional to
n-½, but is usually much slower in the non-parametric context.

Econometricians are hoping that semi-parametric methods will be
successful in dealing with censored data, because conventional
estimation in this context has been shown to be quite sensitive to the
error specification. See Horowitz and Neumann (1989) and Moon
(1989).

Cleveland, Devlin and Grosse (1988) suggest an alternative
nonparametric method called loess, "regression by local fitting." For
each value x0 of an explanatory variable vector a specified number of

observations in the data set that are "closest" to x0 are selected. These
observations are used to predict the associated y0 value using a
regression minimizing a weighted average of squared residuals, where
the weights vary inversely with the distance of each x observation from
x0.

Technical Notes

19.3 Robust Estimators

The Jarque-Bera test, introduced by Jarque and Bera (1980) has
become popular because it is easy to compute, asymptotically
independent of other common diagnostic checks on regression residuals,
and intuitively appealing because it combines testing asymmetry and
kurtosis. Because it does not perform well in small samples, Urzua
(1996) suggests a small-sample adjustment, and Deb and Sefton (1996)
provide small-sample critical values.

When the errors are distributed normally their third moment should be
zero and their fourth moment should be three times their second
moment (variance). The Jarque-Bera test is a joint test of these two
phenomena. Using the residuals, the estimated third moment divided by
an estimate of its standard deviation should in large
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samples be distributed as a standard normal. And the estimated fourth
moment minus three times the estimated variance, divided by an
estimate of its standard deviation should also in large samples be
distributed as a standard normal. Since these standard normals turn out
to be independent of one another, the sum of their squares, the
Jarque-Bera statistic, is distributed as a chi-square with two degrees of
freedom.

It can be shown that LAR is more efficient than OLS whenever the
error distribution is such that the sample median is a better (more
efficient) measure of location (estimate of the mean of the distribution)
than is the sample mean. The LAR estimator is the MLE is the error has
a double-exponential (Laplace) distribution: f(e) = (1/2l)exp(-|e|/l), and
so is best unbiased, with a variance half that of the OLS estimator, as
shown by Harvey (1990, pp. 117-18). OLS is still BLUE, though; LAR
is not linear.

19.4 Non-parametric Estimation

The most popular version of the neural nets functional form is based on
using logits. It is written as

where k is the number of logits averaged, the bi are the weights used in
averaging the logits, and the qi are linear functions of the explanatory
variables.

Figure 19.1 illustrates this for a simple case in which there is only one
explanatory variable x and four logits are averaged. In the lower part of
this figure are drawn four logit functions which are weighted and
summed to produce the nonlinear function shown in the upper part of
figure 19.1. In this example there are thirteen unknown parameters: the
intercept a the four bi weights for taking the weighted average of the
four logits; and the slope and intercept parameters of each logit. Even
with only four logits this functional form is very flexible. It is easy to
capture dramatic jumps or drops by introducing a very steep logit which
moves rapidly from near zero to near one (or vice versa) at the point
where the change occurs. The shape can be influenced by changing the
b values as well as by changing the parameters of the individual logits.



In addition, it is possible to append traditional terms to the function for
y above, so that, for example, we could add a linear term in x.

By choosing a large number of logits to average a modeler can fit
literally any functional form. A healthy number of logits should be
chosen to ensure that the minimization-of-squared-errors process avoids
local minima, but doing so runs the very real danger of overfitting -
matching the data so well that the neural net reflects peculiarities of this
data set rather than the general underlying specification. To guard
against overfitting, as the search process iterates to find parameter
values periodic cross-validations are conducted - checking to see if an
estimated specification performs well on data that have not been used in
estimation, usually chosen to be about a third of the data. Whenever the
sum of squared errors of this out-of-sample data starts to rise,
overfitting has begun. If it never rises there are not enough logits to
create overfitting which means there are probably not enough logits to
capture the underlying functional form, so more logits should be added.
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Figure 19.1
Illustrating neural net modeling
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To use neural nets for qualitative dependent variables the neural nets
function is written as the logit of the y function given earlier and the
qualitative dependent variable is coded 0.1 and 0.9 rather than zero and
one. (This is done because minimizing the sum of squared errors will
otherwise lead the output y value to be pushed out to plus or minus
infinity in an effort to estimate one or zero.) A logit transformation of
the y variable is typically used for quantitative variables as well,
because it enhances the estimation procedure; the minimum value of the
dependent variable is set to 0.1 and the maximum to 0.9, with the other
values interpolated appropriately.

Estimation of density functions is crucial to kernel estimation. Suppose
N observations on a variable x are available to estimate a density
function for x. If a normal functional form could be assumed, one would
just use the observations to estimate the two parameters of this
functional form, the mean and variance, and then the density for any
value x could be estimated using estimates of these parameters plugged
into the formula for the normal density. The whole point of
non-parametric analysis is to avoid making any assumptions about the
functional form of the density, so a completely different approach must
be taken.

A possible method of estimating the density of x is to construct a
histogram. This is unsatisfactory for at least three reasons. First, it is not
smooth - it has little jumps as one moves from interval to interval.
Second, it is affected by how the intervals have been defined - if
intervals of unit length were defined as, say, from 1.0 to 2.0 to 3.0, etc.,
rather than as 1.5 to 2.5 to 3.5, etc., it is possible that a quite different
picture of the density would emerge. And third, it is sensitive to the
length of the interval chosen. One way of addressing these problems is
to use a local histogram approach - employ a moving interval to
calculate the histogram heights.

Figure 19.2 shows a blow-up of a section of possible x values. The little
 represent observations on x. Consider the height of the density for

the value x = 18.0.



Figure 19.2
Explaining local histogram variation
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Following the logic of a histogram, it is planned to measure the height of
this density by the fraction of the total number of observations that are
found in an interval centered on x = 18.0. If we choose this interval to
be of unit length, it will stretch from 17.5 to 18.5, as shown in figure
19.2. There are five observations in this interval, so the height of the
density function at x = 18.0 is measured as 5/N. If we slide this interval
a small distance to the right, say, there will be no change in the number
of observations in this interval, so the same height, 5/N, corresponds to
values of x just above 18.0. Once this interval has slid far enough that
its right-hand edge captures the observation at x = 18.6, though, the
interval will contain six observations, and so starting at 18.1 (the current
mid-point of the interval) the height of the estimated density jumps to
6/N. This estimated height stays at 6/N until the interval center has
moved to 18.2, at which point the interval loses the observation at 17.7
and so the estimated height jumps down to 5/N. For values of x between
18.2 and 18.3 the estimated density remains at 5/N, but it then jumps
back up to 6/N because the sliding interval will pick up the observation
18.8.



If the interval is slid to the left from its original position (centered over
18.0), there is no change in the number of observations in the interval
until the left-hand edge of the interval reaches 17.4, so the estimated
density stays at 5/N until x falls to 17.9, at which point it jumps to 6/N.
It stays at this level until x falls to 17.8, where it jumps down to 5/N. At
x = 17.7 it drops to 4/N, and so on.

Although the local histogram methodology has removed the
arbitrariness associated with the choice of interval break points, the
other two problems mentioned earlier still exist, namely the
discontinuity and the sensitivity to choice of interval length. The first of
these problems is resolved by using a generalization of a local histogram
estimator, which is best explained through a reinterpretation of the local
histogram methodology.

The local histogram approach estimates the density of x at a particular
point x0 as the fraction of the total number of x observations that are
"close to" x0, where "close to" is defined by the choice of interval
width, arbitrarily set equal to one in the example above. This could be
interpreted as the sum over all observations of 1/N times a weight for
each observation, where the weight is one for each observation in the
interval and zero for each observation outside the interval. This
interpretation is extremely useful, because it makes evident the
following two phenomena. (a) The discontinuity in the estimated density
function is caused by the discontinuity in these weights - as an
observation moves into or out of the interval, its weight takes a
discontinuous jump, causing the estimated density to jump. (b) All
observations in the interval, no matter what their proximity to x0, have
the same weight; it would seem reasonable to put a bigger weight on
observations closer to x0.

With this perspective, it seems reasonable to devise a weighting system
for this estimating procedure that is continuous and weights
observations closer to x0 more heavily. A favorite weighting function
used for this purpose is a standard normal density function, expressed as
a function of the distance from x0 to an x observation. Note that in
addition to continuity, it puts a nonzero weight on all observations, with
observations close to x0 having high weights (heights of the standard
normal density near its mean) and observations far away from x0 having
negligible weights (heights of the standard normal density out in its
tails).



To recapitulate, using N observations x1, . . ., xN, the density function
for x is now being estimated at a point x = x0 as a weighted sum over all
observations of 1/N, where the weight for the ith observation xi is given
by the height of the standard nor-
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mal density function evaluated at (xi - x0). The "weighting function"
role being played here by the standard normal density could be played
by any positive function of (xi - x0) that integrates to unity. Such a
function is referred to as a kernel and the resulting density estimator for
x is called a kernel estimator.

Although the introduction of the kernel has resolved the problems noted
earlier, there remains an issue - how is the kernel chosen? Clearly the
kernel should be symmetric and centered at zero. It turns out, in
practice, that the functional form of the kernel is not important (so the
choice of the normal distribution is uncontroversial), but that the choice
of variance for the kernel is very important. This suggests that an
appropriate kernel could be of the form N(0,h2), where the standard
deviation h is chosen with some care. A small value of h means that the
kernel puts non-negligible weight only on observations very close to x0;
thus the choice of h is analogous to the choice of interval width
introduced earlier. Because the magnitude of h determines which
observations are "looked at" (given non-negligible weight), h is
sometimes called the window width.

Evaluating N(0,h2) at (xi - x0) yields the same value as h-1 times N(0,1)

evaluated at (xi - x0)/h, so the standard normal could be retained as the
kernel if the latter approach to calculation of the kernel estimator is
employed. This is in fact what is done, giving rise to the following
formula for the kernel estimator:

where K is the kernel function.

Unfortunately there is no agreed method of selecting the window width.
If it is chosen to be "too small," too few observations will have a
non-negligible weight and the resulting density estimate will appear
rough (or "undersmoothed" - this is why h is sometimes also called the
smoothing parameter). If it is chosen to be "too large," too many



observations will have a non-negligible weight, "oversmoothing'' the
density. (For example, it could estimate a bimodal density by a
unimodal density.) This introduces extra bias into the estimation
procedure, because observations not extremely close to the x value for
which the density is being calculated do not "belong." Thus there is a
trade-off between variance and bias - a high value of h reduces the
variance of the density estimate (because it causes more observations to
be used) but introduces more bias.

The logic of all this suggests that h should decrease as the sample size
increases, and in fact it can be shown that the optimal value of h is
proportional to the inverse of the fifth root of the sample size.
Unfortunately, there is no agreed method for selecting the factor of
proportionality. A further problem is that a value of h that is suitable for
estimation of the main body of the density of x may not be large enough
for estimation of the tails of that distribution (because there are fewer
observations in the tails), suggesting that some method of allowing h to
vary might be appropriate; doing so creates variable-window-width
estimators. Despite these problems, there is some agreement that cross-
validation should be used to aid in selecting the window width. Set some
data aside before estimation; if the average squared error of these data
begins to rise, the window width has become too small.

The choice of smoothing parameter can also depend on the purpose of
the analysis. One might deliberately oversmooth for presentation
purposes or help in selecting an appropriate parametric model, for
example, or undersmooth to examine more carefully a local structure.
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Estimation of a multivariate density function is a straightforward
generalization of the kernel estimator. Suppose we wish to estimate
f(y,x), the joint density of y and x; the kernel estimator is changed in
only two regards. First, the kernel function K*(y,x) must be a bivariate
density function, and second, the h in 1/hN now becomes h2. To
estimate the marginal density of x this expression is integrated over y to
produce an estimator that takes the form of a kernel estimator with
kernel function K equal to the integral of K*(y,x) over y. What is
important here is that now the conditional distribution of y given x,
f(y|x), can be estimated as the ratio of the joint density to the marginal
density of x, and can be used to obtain things like the conditional mean



of y given x.

In the relationship y = m(x) + e, where m is a function of unknown
form, m(x) is the conditional expectation of y, and can be calculated as
E(y|x) = yf(y|x)dy. Performing this calculation using for f(y|x) the
estimate of it that results from the discussion above produces, after
some algebra,

where the summations run over all observations. This could be
calculated for several values of x, producing an empirical representation
of the unknown functional form m. This formula can be exploited to
produce an estimate of the conditional mean of any function of x,
simply by replacing yi by the relevant function of x; an example given
later is the conditional variance.

For a particular x = x0, this formula can be viewed as taking a weighted

average of observations "close to"x0, where "close to" is determined by
the window width h, and the weights are defined by the kernel function
K. If x were discrete, and we had several observations on y at x = x0,
then the average of these y values would be the usual estimate of the
conditional expectation of y at x0. This is exactly what would be
produced by the formula given above for a sufficiently small value of h
and a weighting function that is of the zero/one discontinuous type
discussed earlier.

The "regression coefficient" in the context of non-parametric estimation
is the partial derivative of m with respect to x. One way of estimating it
is to estimate m(x) for x = x0 and then for x = x0 + d; the difference
between these two estimated m values, divided by d, is the estimate of
the regression coefficient. Unless m is linear, it will vary with x.

The variance of the error term is the variance of y conditional on x. For
a homoskedastic error this would be the same for all values of x. In
general terms, this variance is given by

the second term of which can be estimated by the square of m*(x) given
earlier, and the first term of which can be estimated by using the
formula for m*(x) with yi replaced by . A more general formula results



from estimating ei by yi - m*(xi) and then using the formula for m*(x)
with yi replaced by the square of this estimated ei.

A partial linear model y = Xb + m(z) + e is an example of a
semi-parametric analysis. Estimation proceeds by fitting y and X
nonparametrically as a function of z. Then the resulting residualized y is
regressed on residualized X to get bOLS and m(z) is obtained by fitting

y - XbOLS nonparametrically with z.
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Appendix A:
Sampling Distributions, the Foundation of Statistics

It cannot be stressed too strongly how important it is for students to
understand the concept of a sampling distribution. This concept
provides a unifying logic which permits econometrics' algebraic
manipulations to be seen in context, making clear what econometricians
are trying to accomplish with all their proofs, formulas and algebraic
derivations. The purpose of this appendix is to provide an exposition of
this concept and the implications it has for the study of econometrics.

1 An Example

Suppose that you have 45 observations on variables x and y and you
know that y has been produced from x by using the formula y = bx + e
where e is an error with mean zero and variance s2. Note that there is
no intercept in this linear relationship, so there is only one unknown
parameter, b, the slope of x. This specification means that y1, the first
observation on y, was created by multiplying x1, the first observation on
x, by the unknown number b and then adding e1, the first error,
obtained randomly from a bowl of errors with mean zero and variance
s2. The other 44 observations on y were created in similar fashion.

You are interested in estimating the unknown parameter b. Suppose the
formula b* = Sy/Sx has been suggested, where the subscripts have been
omitted for convenience. This suggestion just involves putting the data
into an algebraic formula to produce a single number that is proposed as



the estimate of b. Suppose this is done using your data, producing b* =
2.34. Is this a good estimate of the unknown b?

Since y = bx + e you can substitute this into the formula to get

From this it is apparent that this formula is such that it is equal to b plus
an expression that involves the unknown e values. Because the e values
are positive about half the time and negative about half the time, it
looks as though this expression involving the errors is probably going to
be fairly close to zero, suggesting that this formula is reasonable in that
it appears to be creating a suitable estimate of b.

Consider the estimate b* = 2.34. How close 2.34 is to b clearly depends
on the particular set of 45 error terms that were drawn out of the bowl
of errors to produce the y
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observations. If in obtaining the data, mostly large positive errors were
drawn, b* would substantially overestimate b (assuming Sx is positive).
If mostly large negative errors were drawn, b* would substantially
underestimate b. If a more typical set of errors were drawn, b* would
produce an estimate fairly close to b. The point here is that the set of 45
unknown error terms drawn determines the estimate produced by the b*
formula and so there is no way of knowing how close the particular
estimate 2.34 is to the true b value.

This problem is addressed via the concept of the sampling distribution.
Suppose for a moment that you know the true value of b. Visualize
obtaining 45 error terms, calculating y using b, the x values and these
errors, computing b*, and recording the result. Mentally do this a
million times, each time grabbing 45 new error terms. This produces a
million hypothetical b* values, each produced by mimicking exactly the
process thought to be generating the actual y data. These million b*
values can be used to construct a histogram of possible b* values. This
histogram should show that very high values of b* will be relatively rare
because such a b* value would require an unusual draw of 45 error
terms. Similarly, very low values of b* will also be rare. Values of b*



closer to the true b value will be more common because they would
result from more typical draws of 45 errors. This histogram estimates a
distribution of b* values, providing a picture of the relative probabilities
of obtaining different b* values during this conceptual repeated
sampling procedure. This distribution is called the sampling distribution
of b*. The sampling distribution of a statistic tells us the relative
frequency with which values of that statistic would occur if we
repeatedly drew new sets of errors.

2 Implications for Studying Econometrics

The logic of the sampling distribution is the foundation of classical
statistics, with several important implications. If these implications are
understood, the study of econometrics becomes much easier.

(1) Using b* to produce an estimate of b can be conceptualized as the
econometrician shutting his or her eyes and obtaining an estimate of b
by reaching blindly into the sampling distribution of b* to obtain a single
number.

(2) Because of 1 above, choosing between b* and a competing formula
b** comes down to the following: Would you prefer to produce your
estimate of b by reaching blindly into the sampling distribution of b* or
by reaching blindly into the sampling distribution of b**?

(3) Because of 2 above, desirable properties of an estimator b* are
defined in terms of its sampling distribution. For example, b* is
unbiased if the mean of its sampling distribution equals the number b
being estimated. These properties are discussed in sections 2.5, 2.6 and
2.7 of chapter 2.

(4) The properties of the sampling distribution of an estimator b*
depend on the process generating the data, so an estimator can be a
good one in one context but a bad one in another. Much of econometric
theory is concerned with finding for a particular data-generating process
the estimator with the most attractive sampling distribution; the OLS
estimator, for example, has an attractive sampling distribution in some
applications, but a less attractive sampling distribution in others, such as
when the error is correlated with an explanatory variable.

(5) The properties of the sampling distribution also depend on the
sample size. A larger sample size means that there is more information
used in producing a parameter
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estimate and so the variance of its sampling distribution is smaller, and
in some cases bias diminishes as the sample size grows. This is discussed
in section 2.8 of chapter 2.

(6) Most algebraic derivations in econometrics are trying to find the
characteristics of the sampling distribution of a statistic. Since interest
focuses almost exclusively on the mean and variance of the sampling
distribution, students must become expert at finding means and
variances of distributions.

(7) All statistics, not just parameter estimates, have sampling
distributions. An F value, for example, is a test statistic rather than a
parameter estimate. Hypothesis testing is undertaken by seeing if the
value of a test statistic is unusual relative to the sampling distribution of
that test statistic calculated assuming the null hypothesis is true.
Suppose it is stated that under the null a statistic is distributed as an F,
for example. This means that if the null hypothesis is true the sampling
distribution of this statistic is described by the numbers in the F table
found in most statistics textbooks. Econometricians work hard to find
test statistics which have sampling distributions described by familiar
statistical tables.

3 Calculating Sampling Distributions

There are three basic techniques employed to learn the properties of a
statistic's sampling distribution.

(1) For simple problems algebraic derivations can be undertaken to
deduce the properties of a sampling distribution, such as in the following
examples.

(i) In the example above where y = bx + e, the mean and variance
of the sampling distribution of b* can easily be calculated to be b
and 45s2/(Sx)2, respectively. If there had been a nonzero intercept
so that y = a + bx + e, the mean of the sampling distribution of b*
would be b + 45a/Sx, illustrating how the sampling distribution
depends on the data-generating process.



(ii) As described in chapter 3, when the data have been generated
by the CLR model with y = Xb + e and V(e) = s2I, the mean of the

sampling distribution of bOLS is b and its variance is s2(X'X)-1. If in
addition e is distributed normally (the CNLR model), this sampling
distribution is also normal in shape, and the OLS estimate of a
parameter divided by its estimated standard error has a sampling
distribution described by the t table provided in most statistics texts.

(iii) When N values of x are drawn randomly from a distribution
with mean m and variance s2, the sampling distribution of x has
mean m and variance s2/N. This is a result all students are expected
to "remember" from introductory statistics. A central limit theorem
is usually invoked to conclude that when N is of reasonable size this
sampling distribution is normal in shape.

(2) When the algebra is too difficult to derive the properties of a
sampling distribution, as is often the case, two alternative techniques are
used. The first of these is to perform the algebra allowing the sample
size to become very large. This simplifies the algebra (as explained in
the technical notes to section 2.8), allowing "asymptotic" or "large-
sample" properties (see appendix C) of the sampling distribution of the
estimator or test statistic to be derived. This asymptotic distribution is
often a remarkably good proxy for the sampling distribution when the
sample is of only modest size. Consider the following examples.
 

page_315

Page 316

(i) Nonlinear functions of parameter estimates have complicated
small-sample distributions whose asymptotic properties can usually
easily be derived. An example is steady-state parameter estimates
calculated as nonlinear functions of short-run parameter estimates.

(ii) Whenever the error is correlated with an explanatory variable,
the sampling distribution of OLS exhibits undesirable properties and
is often replaced by an instrumental variable (IV) estimator, as
discussed in section 9.2 of chapter 9. The IV estimator has an
intractable small-sample sampling distribution but its asymptotic
distribution can be derived straightforwardly.



(iii) W, LR and LM tests, described in section 4.5 of chapter 4, have
very complicated small-sample distributions, but asymptotically are
each distributed as a chi-square.

(3) The second method of determining the properties of a sampling
distribution when the algebra is too difficult is to perform a Monte Carlo
study, discussed in section 2.10 of chapter 2. In a Monte Carlo study
typical parameter values are selected, observations on non-stochastic
variables are chosen, and a computer is used to draw error terms. The
computer is then programmed to create hypothetical data according to
the process thought to be generating the actual data. These data are
used to calculate a value for the statistic under investigation. Then the
computer creates new error terms and uses them to produce a new
hypothetical data set, allowing calculation of a second value of the
statistic. This process is repeated until a large number, say 5,000, of
hypothetical values of the statistic are created. These 5,000 values are
used via a histogram to picture the sampling distribution, or more likely,
to estimate the relevant properties (such as its mean, variance or values
cutting off 5% tails) of this statistic's sampling distribution. Below is a
description of how a Monte Carlo study would be conducted to examine
the sampling distribution of b* for our earlier example. (Other examples
appear in several of the exercises of appendix D).

(a) Choose 45 values for x, either by using the x values from an
actual empirical study or by using the computer to generate 45
values in some way.

(b) Choose values for the unknown parameters, say a = 1, b = 2 and
s2 = 4.

(c) Have the computer draw 45 error terms (e) randomly from a
distribution with mean zero and variance 4.

(d) Calculate 45 y values as 1 + 2x + e.

(e) Calculate b* and save it. (If comparing to another estimator, one
would also at this stage calculate the competing estimate and save
it.)

(f) Return to step (c) and repeat this procedure until you have, say,
5,000 b* estimates.



(g) Use the 5,000 b* values to draw a histogram representing the
sampling distribution of b*. Since usually the sampling distribution is
characterized by only three measures, its mean, its variance, and its
MSE these 5,000 values would be used to estimate these properties,
as explained in section 2.10 of chapter 2.
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Appendix B:
All about Variance

The purpose of this appendix is to gather together the basic formulas
used to compute and estimate variances in econometrics. Because these
formulas are discussed in textbooks, no proofs, and only a few
examples, are provided. It is strongly recommended that students
become intimately familiar with these results, as much attention is paid
in econometrics to efficiency, requiring assessment of estimators'
variances.

1 Definition

Suppose x is a scalar random variable with probability density function
(x); to make the discussion below more relevant x can be thought of as

a coefficient estimate  and thus  would be its sampling distribution.
The variance of x is defined as

In words, if you were randomly to draw an x value and square the
difference between this value and the mean of x to get a number Q,
what is the average value of Q you would get if you were to repeat this
experiment an infinite number of times? Most derivations in
econometrics are done using the expected value notation rather than the
integral notation, so the latter is not seen much.

The covariance between two variables, x and y, is defined as



where (x,y) is the joint density function for x and y. In words, if you
were randomly to draw a pair of x and y values, subtract their means
from each and multiply them together to get a number Q, what is the
average value of Q you would get if you were to repeat this experiment
an infinite number of times? Notice how the expected value notation
avoids the messiness of the double integral notation.

If x is a vector of length k, its variance-covariance matrix is defined as
the k by k matrix

described in the technical notes of section 2.6. It has the variances of
the individual
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elements of x down the diagonal, and the covariances between these
elements in the off-diagonal positions.

2 Estimation

The definitions given above refer to the actual, or theoretical, variance,
not to be confused with an estimate of V(x), which can be calculated if
some data are available. Consider the following examples:

(a) For x a scalar, if we have N observations on x, say xi through xN,
then V(x) is usually estimated by s2 = S(xi - x)2/(N -1).

(b) If we have N corresponding observations on y, say yi through yN,
then C(x,y) is usually estimated by sxy = S(xi - x)(yi - y)/(N - 1).

(c) If x is the error in a regression model with K explanatory variables
(including the intercept), then V(x) is usually estimated by s2 = SSE/(N -
K).

(d) When x is a vector, its variance-covariance matrix is estimated using
the estimating formulas given in (a) and (b) above to fill in the
individual elements of this matrix.



3 Well-known Formulas

Variances for several special cases are so well known that they should
probably be memorized, even though their derivations are easy:

(a) The variance of x, the sample mean of N randomly drawn
observations on a variable x: V(x) = V(x)/N.

(b) The variance of a linear function of x, say w = a + bx where a and b
are constants: V(w) = b2V(x).

(c) The variance of the sum or difference of two random variables, say
w = z ± y: V(w) = V(z) + V(y) ± 2C(z,y).

4 More-general Formulas

The following are some more-general formulas, of which the
well-known results given above are special cases.

(a) The variance-covariance matrix of bOLS in the CLR model y = Xb
+ e: V(bOLS) = V(e)(X'X)-1 = s2(X'X)-1. If there is only an intercept in
this regression, so that X is a column of ones, bOLS = y. Furthermore, in

this case V(e) = V(y), so that this formula yields V(bOLS) = V(y) =
V(y)/N, exactly the formula of 3(a) above.

(b) Nonlinear function g(x) of a scalar x: asymptotically, .
The rationale behind this formula is explained in the technical notes to
section 2.8. If g(x) = a + bx, a linear function, then V(g(x)) = b2V(x),
exactly the formula of 3(b) above.

(c) Univariate linear function w = a'x of a vector x, where a is a vector
of constants: V(a'x) = a'V(x)a.
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If x = (z,y)' and a = (1,1)' then w = z + y and 

which when multiplied out yields V(w) = V(z) + V(y) + 2C(z,y), exactly
the formula of 3(c) above.



(d) Univariate nonlinear function g(x) of a vector x: asymptotically,

 where  is a vector whose ith element is
the partial of g with respect to the ithe element of x. Note that this is the

same as the previous formula with  replacing the vector a.

(e) Multivariate linear function w = Ax of a vector x, where A is a
matrix of constants (so that w is now a vector, each element of which is
a linear combination of the elements of x): V(w) = AV(x)A'. The
asymptotic formula for a multivariate nonlinear function is the same as
this, using the matrix of partial derivatives for the matrix A.

5 Examples of the More-general Formulas

(a) Example for 4(b) variance of the nonlinear function of a scalar.
Suppose we regress logs on logs and produce a forecast of lny which has

variance V(), and we wish to forecast y by . Then asymptotically

(b) Example for 4(c), univariate linear function of a vector. Suppose
aOLS and bOLS have variances V(aOLS) and V(bOLS), and covariance

C(aOLS, bOLS). Consider Q = 2aOLS + 3bOLS. Then by definition

Or, using the formula from 4(c), we have  and so

which when multiplied out produces exactly the same answer.

(c) Second example for 4(c), univariate linear function of a vector.
Suppose y = Xb + e = a + dw + qq + e and we have used the data to
estimate bOLS = (X'X)-1X'y, so V(bOLS) = s2(X'X)-1.



Given the values w0 and q0, we forecast y0 by

 
page_319

Page 320

The variance of this forecast is 

Continuing with this example, the forecast error is

The first three terms are constants, so the variance of the forecast error

is the same as the variance of  which using the formula for the
variance of the difference between two random variables gives

The covariance is zero since e0 is in no way connected to the

ingredients of 

(d) Example for 4(d), univariate nonlinear function of a vector. Suppose

The long-run, or equilibrium, elasticity of y with respect to x is q =

b2/(1-b1), estimated as . Then from 4(d) above:



Because of the zero in the first element of the derivative vector, we
could have truncated this vector and combined it with the
corresponding (lower right) block of V(bOLS).

(e) Example for 4(e), multivariate linear function of a vector. Suppose

and we specify that the b values are determined as a polynomial
distributed lag of the form

This implies that

which can be written as b = Ad, with the 4 by 3 matrix A containing the
numbers 1, 1, 1, 1 in the first column, 0, 1, 2, 3 in the second column,
and 0, 1, 4, 9 in the third column.
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The d vector can be estimated by running an OLS regression on
transformed data (explained in any textbook discussion of the
polynomial, or Almon, distributed lag) to obtain dOLS and an estimate

of its variance V(dOLS). To estimate the b vector, the estimator

 is used, with 

6 Cramer-Rao Lower Bound

No asymptotically unbiased estimator has a variance-covariance matrix
smaller than the Cramer-Rao lower bound. Since if this bound is
attained it is attained by the maximum likelihood estimator, it is
customary to consider the Cramer-Rao lower bound to be the variance
of the MLE, and to estimate the variance of the MLE by an estimate of
the Cramer-Rao lower bound.



The Cramer-Rao lower bound is the inverse of the information matrix,
which is the expected value of the negative of the matrix of second
partial derivatives of the log-likelihood with respect to the parameters
being estimated:

where q is the vector of parameters to be estimated. In the CNLR model
q would consist of b and s2. This calculation yields the formula for the
information matrix, the inverse of which is the variance-covariance
matrix of qMLE; an estimate of this produces the estimated variance-
covariance matrix.

There are three different ways of estimating the information matrix.
First, the information matrix itself can be evaluated at the MLE. This
involves finding the formula for the expected value of the negative of
the Hessian (the matrix of second derivatives) of the log-likelihood
function, something that may be computationally difficult. Second, the
negative of the Hessian of the log-likelihood could be used. This avoids
having to find expected values, but still requires taking second
derivatives. Third, the outer product of the gradient (OPG) could be
used, exploiting a theoretical result that the expected value of the OPG
is equal to the information matrix. Let g be the gradient (first derivative
vector) of the component of the log-likelihood corresponding to a single
observation. The OPG estimate of the information matrix is the sum
over all observations of gg'. For an exposition of why this result holds,
see Darnell (1994, pp. 254-5). This is computationally attractive
because it requires only taking first derivatives. Unfortunately, studies
such as Davidson and MacKinnon (1983) have shown that it is not
reliable.

Notes

The presence of an additive constant has no impact on variance; when
the mean is subtracted out before squaring, additive constants are
eliminated.

Another well-known variance formula: the variance of , the sample
proportion of successes, say, in N random observations from a

population with a true fraction p of successes, is  Note

that the number of successes is N . Using 3(b) above, ,

yielding .



Knowing that the variance of a chi-square is twice its degrees of
freedom can sometimes be useful.
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Appendix C:
A Primer on Asymptotics

The rationale behind asymptotic distribution theory, and the reasons for
econometricians' interest in it, are presented in chapter 2. The purpose
of this appendix is to provide an overview of the technical details of
asymptotics. Readers are warned that to keep this presentation
readable, many not-quite-correct statements appear; for those interested
in mastering the details, several recent advanced textbooks have good
presentations, for example Greene (1997, pp. 115-29, 270-99) and
Judge et al. (1985, ch. 5). A good advanced reference is Greenberg and
Webster (1983, ch. 1). White (1984) is very advanced, Kmenta (1986,
pp. 163-72) and Darnell (1994, pp. 45-9, 290-3, 217-22) have good
expositions at the beginner level.

Asymptotic distribution theory is concerned with what happens to a

statistic, say  as the sample size T becomes very large. To emphasize

the role of the sample size,  is sometimes written as . In particular,
interest focuses on two things:

(a) Does the distribution of  collapse on a particular value (i.e.,
become heavily concentrated in the neighborhood of that value) as the
sample size becomes very large? This leads to the large-sample concept
of consistency.

(b) Does the distribution of  approximate a known form (e.g., the
normal distribution) as the sample size becomes very large? This allows
the development of large-sample hypothesis testing procedures.

To address these questions, two concepts of convergence are employed.
Convergence in probability is used for (a) above, and convergence in
distribution is used for (b).

1 Convergence in Probability



Suppose that as the sample size becomes very large the distribution of

 collapses on the value k. Then  is said to converge in probability

to k, or has probability limit k, written as plim. =k. If k equals b, the

number that  is estimating,  is said to be consistent; k - b is called the

asymptotic bias of  as an estimator of b.

A popular means of showing consistency is to show that the bias and the

variance of  both approach zero as the sample size becomes very
large. This is called convergence in quadratic mean or convergence in
mean square; it is a sufficient condition for convergence in probability.
Consider, for example, the sample mean statistic from a sample drawn
randomly from a distribution with mean m and variance s2. Because the
sample
 

page_322

Page 323

mean is unbiased in small samples, it has zero bias also in large samples,
and because its variance is s2/T, its variance approaches zero as the
sample size becomes very large. Thus the sample mean converges in
quadratic mean and therefore is a consistent estimator of m.

A major reason for using asymptotic distribution theory is that the
algebra associated with finding (small-sample) expected values can
become formidable whenever nonlinearities are involved. In particular,

the expected value of a nonlinear function of  say, is not equal to the

nonlinear function of the expected value of  Why this happens is
explained in the technical notes to section 2.8. This problem disappears
when using asymptotics, however, because the plim of a nonlinear

(continuous) function of  is the nonlinear function of the plim of  This
is referred to as Slutsky's theorem; the reason for this is also explained
in the technical notes to section 2.8. As an example, suppose you have
an unbiased estimator p* of the multiplier p = 1/(1 - b) but you wish to
estimate b. Now b = 1 - p-1 so it is natural to suggest using 1 - (p*)-1 to
estimate b. Since this is a nonlinear function of the unbiased estimate p*
it will be biased, but, thanks to Slutsky's theorem, asymptotically
unbiased.



Consider now the task of showing the consistency of the OLS estimator
in the CLR model y = Xb + e. Since bOLS can be written as b +
(X'X)-1X'e we have plim bOLS = b + plim(X'X)-1X'e. It is instructive to
spell out fully the logic of the remainder of the argument.

(a) (X'X)-1X'e is multiplied and divided by T, producing
(X'X/T)-1(X'e/T).

(b) Slutsky's theorem is used to break the plim into two halves, namely

and then is used again to bring the first plim inside the inverse sign,
producing

(c) It should now be evident why the Ts were inserted. X'X is a matrix
consisting of sums, with each extra observation adding something to
each of these sums. As T becomes very large some of these sums will
undoubtedly become infinite. (All the diagonal elements are sums of
squares; if there is an intercept, the upper left corner of this matrix is
equal to T.) Consequently it would not make much sense to find
plim(X'X). In contrast, by examining plim(X'X/T) we are in effect
looking at the average values of the elements of the X'X matrix, and
these are finite under a fairly broad set of assumptions as the sample
size becomes very large.

(d) To proceed further it is necessary to make some assumption about
how extra observations on the independent variables are obtained as the
sample size grows. The standard assumption made is that these extra
observations are such that plim(X'X/T) is equal to a finite, invertible
matrix Q. Loosely speaking, Q can be thought of as the expected value
of the X'X matrix for a sample of size one. Theoretical results are often
expressed in terms of Q; it must be remembered that, operationally, Q
will be estimated by X'X/T.

(e) We now have that plim bOLS = b + Q-1plim(X'e/T). It is tempting at
this stage to use Slutsky's theorem once again to break plim(X'e) into
plimX'plime. This would not make sense, however. Both X and e have
dimension T, so as the sample size grows X becomes a bigger and bigger
matrix and e a longer and longer vector.
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(f) What does a typical element of X'e/T look like? Suppose the ith
explanatory variable is w. Then the ith element of X'e/T is Swtet/T. In
the CLR model the w are fixed in repeated samples, and the expected
value of e is zero, so the expected value of Swtet/T is zero. What about

the variance of Swtet/T? It is equal to , which
approaches zero as the sample size becomes very large (since the term

 is finite, approaching the ith diagonal element of Q). Thus
because the expected value and variance both approach zero as the
sample size becomes very large (i.e., convergence in quadratic mean)
the plim of X'e/T is the zero vector, and thus plim bOLS = bbOLS is
consistent in the CLR model.

(g) A more straightforward way of obtaining convergence in quadratic
mean for this case, and thus consistency, is to note that because bOLS is
unbiased in small samples it is also unbiased in large samples, and that
the variance of bOLS can be written as s2(X'X)-1 = (s2/T)(X'X/T)-1
which approaches zero as the sample size becomes very large.

(h) The observant reader will have noticed that the assumption that
plim(X'X/T) equals a finite invertible matrix rules out a very common
case, namely a regressor following a growth trend. If the regressor
values grow as the sample size grows, plim(X'X/T) will become infinite.
Fortunately, this does not cause insurmountable problems, mainly
because if this becomes infinite its inverse becomes zero. Look again at
the argument in (g) above. The key is that (s2/T)(X'X/T)-1 converges to
zero as the sample size becomes very large; this comes about because
(s2/T) approaches zero while (X'X/T)-1 is assumed to approach a finite
value. In the case of a trending regressor this latter term also approaches
zero, aiding the convergence of (s2/T)(X'X/T)-1 to zero.

(i) A key element in (f) above is that the expected value of Swtet/T is
zero. If w is stochastic, rather than fixed in repeated samples, this will
happen if w is contemporaneously independent of the error term. This
reveals why it is only contemporaneous dependence between a
regressor and the error term that leads to asymptotic bias.

2 Convergence in Distribution



Suppose that as the sample size becomes very large the distribution T of

 becomes virtually identical to a specific distribution . Then  is said
to converge in distribution to (sometimes expressed as converging in
distribution to a variable whose distribution is ). The distribution is

called the limiting distribution of ; the intention is to use this limiting
distribution as an approximation for the unknown (or intractable) small-

sample distribution of . Two difficulties are apparent.

First, we saw earlier that in most applications the distribution of 
collapses to a spike, so it doesn't make sense to use it to approximate

the small-sample distribution of . This difficulty is overcome by

transforming/normalizing  to prevent its distribution from collapsing.
The most common way of accomplishing this is to focus attention on the

distribution of . For the example of bOLS in the CLR
model, it is easy to see that as the sample size becomes very large the

mean of  is zero and its variance is s2Q-1.

Second, how are we going to know what form (e.g., normal distribution)

the distribution of  takes as the sample size becomes very
large? This problem is solved by appealing to a central limit theorem.
Central limit theorems in effect say that the sam-
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ple mean statistic is distributed normally when the sample size becomes

very large, i.e., that the limiting distribution of  is a normal

distribution if  is a sample average. It is remarkable that so many
statistics can be shown to be functions of a sample mean statistic,
allowing a central limit theorem to be exploited to derive limiting
distributions of known form.

To illustrate this consider once again bOLS in the CLR model. If the

errors were distributed normally, bOLS would be normally distributed
with mean b and variance s2(X'X)-1. If the errors are not distributed
normally, the distribution of bOLS is difficult to describe and to utilize
for hypothesis testing. Instead of trying to derive the exact distribution



of bOLS in this circumstance, what is usually done is to approximate
this exact distribution with what is called the asymptotic distribution of
bOLS.

3 Asymptotic Distributions

The first step in finding this asymptotic distribution is to find the limiting

distribution of . Look first at ,

which can be rewritten as . Following our earlier discussion,
suppose the ith explanatory variable is w. Then the ith element of

. Notice that Swtet/T is a sample average of the
wtets, and that the common mean of the wtets is zero. Consequently a
central limit theorem can be applied to show that the limiting

distribution of  is normal with mean zero. The variance can
be derived as s2Q.

We can now apply a very useful theorem concerning the interaction
between plims and limiting distributions: if one variable has a plim and
another variable has a limiting distribution, then when dealing with their
product the first variable can be treated as a constant in so far as the
limiting distribution of that product is concerned. Thus, for example,
suppose plimaT = a and the limiting distribution of bT is normal with
mean am and variance s2. Then the limiting distribution of aTbT is

normal with mean am and variance a2s2. To be even more specific,

suppose has limiting distribution N(0, s2), and plim s2 = s2;

then the limiting distribution of 

We wish to use this theorem to find the limiting distribution of

. Since plim(X'X/T)-1 = Q-1 and the

limiting distribution of is N(0, s2Q), the limiting distribution of

 is N(0,Q-1s2QQ-1) = N(0, s2Q-1).

It is customary, although not technically correct, to use the expression
''the asymptotic distribution of bOLS is N(b, (s2/T)Q-1)" to refer to this
result. This distribution is used as an approximation to the unknown (or
intractable) small-sample distribution of bOLS; in this example, bOLS is
said to be asymptotically normally distributed with mean b and
asymptotic variance (s2/T)Q-1. On the assumption that the sample size



is large enough for this distribution to be a good approximation (it is
remarkable that such approximations are typically quite accurate for
samples of modest size), hypothesis testing proceeds in the usual
fashion, in spite of the errors not being normally distributed. Since Q is
estimated by X'X/T, operationally the variance (s2/T)Q-1 is estimated by
the familiar s2(X'X)-1.

Joint hypotheses are tested via the usual F(J, T - K) statistic, or, in its
asymptotic incarnation, J times this F statistic, which is distributed
asymptotically as c(J). This is justified by appealing to another
extremely useful theorem: if a statistic converages in distribution to x,
then a continuous function g of that statistic converages in distribution
to
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g(x). For example, if the limiting distribution of q* is N(0, 1), then the
limiting distribution of (q*)2 is c(1).

Another way of dealing with nonlinearities is to appeal to the result that

if a statistic  is distributed asymptotically normally then a continuous
function g of that statistic is distributed asymptotically normally with

mean  and variance equal to the variance of  times the square

of the first derivative of g with respect to , as described in appendix A
and the technical notes to chapter 2.

Notes

The terminology  is used to express convergence in probability, so

aT a means that aT converges in probability to a. The terminology

 is used to express convergence in distribution, so 
means that the limiting distribution of aT is the distribution of x. If the
distribution of x is known to be N(0, 1), for example, this is often

written as .

A formal definition of consistency is as follows: an estimator  of b is

consistent if the probability that  differs in absolute value from b by
less than some preassigned positive number d (however small) can be



made as close to one as desired by choosing a suitably large sample size.
This is usually written as

where d is any arbitrarily small positive number.

The discussion above has on occasion referred to the plim as the
asymptotic expectation. Unfortunately, there is some confusion in the
literature concerning this: some people define the asymptotic
expectation to be the plim, but most define it to be the limit of the
expected value, which is not the same thing. Although in virtually all
practical applications the two are identical, which explains why most
people treat them as being equivalent, it is possible to find cases in
which they differ. It is instructive to look at some examples.

(1) Suppose prob  and prob where T is
the sample size. The plim is b, but the asymptotic expectation is b +
1.

(2) Suppose we have a sample on x of size T and estimate the
population mean m by m* = x1/2 + Sxi/2(T - 1) where the
summation runs from 2 to T. The asymptotic expectation is m, but
the plim is x1/2 + m/2.

(3) Consider the inverse of the sample mean statistic as an estimate
of a nonzero population mean m. Its plim is m-1, but its asymptotic
expectation does not exist (because of the possibility that the sample
mean is zero).

The plim and the asymptotic expectation will be the same whenever
they both exist and the variance goes to zero as the sample size goes
to infinity.

The above examples illustrate why convergence in quadratic mean is
not a necessary condition for consistency.

A stronger form of convergence in probability, called almost sure
convergence, is sometimes encountered. The former allows some erratic
behavior in the converging sequence, whereas the latter does not.



The order of a statistic is sometimes encountered when dealing with
asymptotics. A statistic q* is said to be at most of order Tk if plim q*/Tk
is a nonzero constant. For
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example, since X'X/T converges to Q, X'X is at most of order T. The big
O notation, X'X = O(T) is used to denote this. The little o notation q =
o(Tk) means the statistic q is of smaller order than Tk, implying that
plim q/Tk = 0. Typically, for coefficient estimators that are biased, but

consistent, the order of their bias is  meaning that this bias
disappears at a rate proportional to the square root of the sample size:

plim  (bias) is a constant. For the OLS estimator of the cointegrating
vector, discussed in chapter 17, the bias disappears at a rate
proportional to T, explaining why this estimator is called

"superconsistent." In this example, the usual transformation 

suggested earlier is inappropriate; the transformation  must be
used for this case.

Note that although strictly speaking the limiting/asymptotic distribution
of bOLS is a degenerate spike at b, many econometricians speak of the

asymptotic distribution of bOLS as normal with mean b and asymptotic
variance (s2/T)Q-1. This should be interpreted as meaning that the

limiting distribution of  is normal with mean zero and
variance s2Q-1.

Continuing to speak loosely, an estimator's asymptotic variance cannot
be calculated by taking the limit of that estimator's variance as the
sample size becomes very large, because usually that limit is zero. In
practice it is common for it to be calculated as

There exist several central limit theorems, which are applicable in
differing circumstances. Their general flavor is captured by the
following: if x is the average of T random drawings from probability
distributions with common finite mean m and (differing) finite



variances, then the limiting distribution of  is normal with
mean zero and variance the limit of the average of the variances.

A consistent estimator is said to be asymptotically efficient if its
asymptotic variance is smaller than the asymptotic variance of any
other consistent estimator. Sometimes this refers only to estimators that
are distributed asymptotically normally. The maximum likelihood
estimator, whose asymptotic variance is given by the Cramer-Rao lower
bound, is asymptotically efficient, and therefore is used as a benchmark
in this regard.
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Appendix D:
Exercises

This appendix contains exercises on a variety of topics. Several points
should be noted.

(1) Why is a set of exercises included in this book? Problem sets found
in textbooks range widely in quality and level. Since this book is
designed to supplement econometrics texts, it seemed appropriate to
include a set of problems offering instructors an alternative.

(2) What I have provided may not be suitable for all students and
instructors. For the most part these problems focus on an understanding
of the material, rather than on numerical calculation or mathematical
manipulation; in this respect they reflect the flavor of the book. The
questions are designed for students at intermediate levels of study -
beyond the rank beginner and below the advanced graduate student. In
my experience, students (at whatever level) who understand what is
going on find these questions easy, whereas students who do not, find
them difficult. In particular, students who do not understand the
material very well have difficulty in figuring out what the questions are
asking and why. Instructors should use judgement in selecting problems
suitable for their students. Asterisked problems require more difficult
algebraic manipulations. Answers to the even-numbered questions
appear in appendix E.



(3) I believe that students do not fully understand an issue if they
cannot describe clearly how to conduct a Monte Carlo study to
investigate that issue. This is why so many Monte Carlo questions
appear in this appendix. Some of these questions provide the structure
of a Monte Carlo study and ask students to anticipate the results; these
questions should be attempted first, because they help students learn
how to structure their own Monte Carlo studies. Kennedy (1998) offers
advice on using Monte Carlo questions with students.

(4) Two notable shortcomings of this set of problems are that there are
no case studies (problems dealing with real numbers, showing how
actual empirical problems are handled) and no computer exercises. Both
these types of questions are valuable and should be a prominent part of
econometrics courses. Lott and Ray (1992) address this need by
providing the data for and questions on 50 economics journal articles.
Berndt (1991) is an applied econometrics text full of computer-oriented
questions.

(5) Most of these problems have been classroom tested, but some have
not. Regardless of how often they have been tested, I am amazed at
how frequently I must rewrite, either to correct mistakes or to clarify. I
have no doubt that this appendix will be full of shortcomings; I would
be grateful for suggestions for improvement, or ideas for questions for
inclusion in a future edition.
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(6) Exercises have been grouped into several categories, listed below
for reference purposes:

A Monte Carlo: General

B Calculating Expected Values and Variances

C Best Unbiasedness

D Mean Square Error

E Applications of Expected Values in Economic Theory

F OLS: Monte Carlo



G OLS: General

H OLS: Numerical Examples

I Transforming Variables

J OLS: Estimating Variances

K OLS with Restrictions

L Theoretical Results for Multivariate Regression

M Pooling Data and Missing Observations

N Multicollinearity

O Dummy Variables: Interpretation

P Dummy Variables: Estimation

Q Dummy Variables: Hypothesis Testing

R Dummy Variables: Modeling Structural Breaks

S Maximum Likelihood: General Principles

T Maximum Likelihood: Examples

U Bayesian: General

V Bayesian: Priors

W Hypothesis Testing: Monte Carlo

X Hypothesis Testing: Fundamentals

Y Hypothesis Testing: Power

Z Hypothesis Testing: Examples

AA Hypothesis Testing: Numerical Examples

BB Test Statistics

CC Hypothesis Testing: Theoretical Derivations

DD Pre-test Estimators



EE Non-nested Hypothesis Tests

FF Nonspherical Errors: Monte Carlo

GG Nonspherical Errors: General

HH Heteroskedasticity: General

II Autocorrelated Errors: General

JJ Heteroskedasticity: Testing

KK Heteroskedasticity: Numerical Examples

LL Autocorrelated Errors: Numerical Examples

MMSURE: Numerical Examples

NN Stochastic Extraneous Information

OO Nonspherical Errors: Theoretical Results

PP Heteroskedasticity: Theoretical Results

QQ Autocorrelated Errors: Theoretical Results

RR Dynamics

SS Stochastic Regressors: Monte Carlo

TT Measurement Error
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UU Instrumental Variables

VV Simultaneous Equations

WWHausman Tests

XX Qualitative and Limited Dependent Variables: Monte Carlo



YY Qualitative Dependent Variables

ZZ Limited Dependent Variables

AB Duration Models

A Monte Carlo: General

1 Suppose you have programmed a computer to do the following:

i. Draw randomly 25 values from a standard normal
distribution.

ii. Multiply each of these values by 3 and add 2.

iii. Take their average and call it A1.

iv. Repeat this procedure to obtain 500 averages A1 through
A500.

v. Compute the average of these 500 A values. Call it Abar.

vi. Compute the variance of these 500 A values. Call it Avar.

(a) What is this Monte Carlo study designed to investigate?

(b) What number should Abar be close to? Explain your logic.

(c) What number should Avar be close to? Explain your logic.

2 Suppose you have programmed a computer to do the following:

i. Draw randomly 100 values from a standard normal
distribution.

ii. Multiply each of these values by 5 and add 1.

iii. Average the resulting 100 values.

iv. Call the average A1 and save it.

v. Repeat the procedure above to produce 2000 averages A1
through A2000.



vi. Order these 2000 values from the smallest to the largest.

(a) What is your best guess of the 1900th ordered value? Explain
your logic.

(b) How many of these values should be negative? Explain your
logic.

3 Suppose you have programmed a computer to do the following:

i. Draw 50 x values from a distribution uniform between 10
and 20.

ii. Count the number g of x values greater than 18.

iii. Divide g by 50 to get h1.

iv. Calculate w1 = h1(1 - h1)/50.

v. Repeat this procedure to get 5000 h values h1 to h5000 and
5000 w values w1 to w5000.

vi. Calculate the average hav and the variance hvar of the h
values, and the average wav of the w values.

(a) What is this Monte Carlo study designed to investigate?

(b) What number should hav be close to? Explain your logic.

(c) What number should hvar be close to? Explain your logic.

(d) What number should wav be close to? Explain your logic.

4 Suppose you have programmed a computer to do the following:

i. Draw 60 x values from a distribution uniform between 0 and
100.

ii. Count the number g of x values less than 20.

iii. Repeat this procedure to get 5000 g values g1 to g5000.

iv. Calculate the average gav and the variance gvar of the g
values.
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(a) What is this Monte Carlo study designed to investigate?

(b) What number should gav be close to? Explain your logic.

(c) What number should gvar be close to? Explain your logic.

5 Explain how to perform a Monte Carlo study to investigate the
relative merits (bias and variance) of the sample mean and the sample
median as estimates of the true mean when data with sample size 44
have come from a normal distribution with mean 6 and variance 4.

6 Suppose we have 20 observations from N(m, s2).

(a) Explain how to perform a Monte Carlo study to check if the
sample variance is an unbiased estimate of s2.

(b) The variance of the sample variance is 2s4/(N - 1) where N is
the sample size. Explain how to perform a Monte Carlo study to
confirm this.

7 Suppose x is distributed uniformly between a and b. From a sample
size 25 you wish to estimate the mean of the distribution of 1/x2.
Student A suggests using the formula (1/x)2, and student B suggests
using the formula S(1/x2)/25. Explain in detail how you would use a
Monte Carlo study to evaluate these two suggestions. Hint: Be careful
choosing a and b. Second hint: You need somehow to find the mean of
the distribution of 1/x2. Work it out algebraically, or explain how to find
it using a Monte Carlo study.

8 Consider the case of N independent observations on a random
variable x which has mean m and variance s2.

(a) Explain in detail how you would conduct a Monte Carlo study
to verify that the variance of the sample mean statistic is s2/N.

(b) What is the usual estimator of the variance of the sample mean
statistic for this case?



(c) Explain in detail how you would conduct a Monte Carlo study
to verify that this estimator is unbiased as an estimate of the
variance of the sample mean statistic.

9 Suppose you have conducted a Monte Carlo study to investigate, for
sample size 25, the bias of an estimator b* of the slope coefficient in the
relationship y = 2 + 3x + e where you drew 400 repeated samples of
errors (e) from a normal distribution with mean zero and variance 9.0.
Your study estimates the bias of b* as 0.04 and the variance of b* as
0.01. You are not sure whether 0.04 is small enough to be considered
zero.

(a) From the information provided, test the null hypothesis that b*
is unbiased.

(b) Explain how, if given the 400 b* values, you could perform this
test without calculating a test statistic.

10 Explain how to conduct a Monte Carlo study to examine the relative
merits of the sample mean and the sample median, for sample size 25,
when each observation comes with probability 95% and 5% from
N(50,4) and N(50,100), respectively.

*11 Suppose you have 27 random observations on a variable x which
you know is distributed normally with mean m and variance 6. You
wish to estimate q = m3, and propose using q* = (x)3.

(a) Explain in a sentence why q* is biased in small samples but not
in large samples.

(b) What formula would you use to estimate the variance of q*?

(c) Explain in detail how you would undertake a Monte Carlo study
to examine how well your formula in (b) does in estimating the
actual variance of q* for a sample size of 27.

Hint: View q* as a nonlinear function of x. Second hint: You
will have to estimate the actual variance of q* in your Monte
Carlo study.
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12 Suppose you program a computer to draw 800 errors from a standard
normal distribution and then you multiply them by 2, add 6 and square
them. Next you take their average and call it A. Of what number should
A be an estimate?

13 Suppose you have programmed a computer to do the following:

i. Draw 20 x values from a standard normal distribution.

ii. Multiply each x value by 2 and add 8 to produce 20 w
values.

iii. Subtract the average of the w values from each w value to
obtain 20 y values.

iv. Square the y values and add them to obtain s.

v. Divide s by 19 to get a1, divide s by 20 to get b1 and divide
s by 21 to get c1.

vi. Repeat this procedure to get 4000 a, b, and c values.

vii. Compute the averages and variances of the 4000 a, b and c
values.

viii. Subtract four from each a, b and c value, square the result
and then average each set of 4000 squared values to produce
A, B and C.

(a) Which of the three averages computed in step vii should be
closest to four? Explain why.

(b) Which of the three variances in computed in step vii should be
the smallest? Explain why.

(c) What is the purpose of step viii? Which of A, B and C should be
the smallest? Hint: Check the technical notes to section 2.9 of
chapter 2.

14 Consider observations from a production line in which the proportion
of defectives is q. For a sample of size 60, say, the usual estimate q is q*
= k/60 where k is the number of defectives in the sample. From
elementary statistics, the variance of q* is v = q(1 - q)/60, estimated by



v* = q*(1 - q*)/60.

(a) Explain how to perform a Monte Carlo study to verify that v* is
an unbiased estimate of v.

(b) How would you test that the bias is zero?

B Calculating Expected Values and Variances

1 Suppose the pdf of x is given by f(x) = kx(2 - x) for 0 < x < 2 and zero
otherwise. Find E(x) and V(x). Hint: Your answer should be two
numbers.

2 For a fee of $2 you toss three fair coins and are paid $(x2 - x) where x
is the number of heads thrown. What is your expected profit from
playing?

3 Suppose the pd of the monthly demand x for a perishable product is
given by (x), with only six possible demand quantities:

x 100 200 300 400 500 600

(x) 0.05 0.10 0.25 0.35 0.15 0.10

Production costs are $10 per unit and the fixed price is $15, so that for
each unit sold profit is $5 and for each unit left unsold a loss of $10 is
suffered. Assuming you produce to maximize expected profit, what is
your expected profit and the variance of your profit? Hint: Use "trial
and error" by trying various supplies.

4 Suppose x is distributed uniformly between a and b. Derive the
textbook formulas for Ex and V(x), in terms of a and b. Explain your
calculations.

5 Suppose there is an infinite number of stores, half charging $1 and
half charging $2.
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You decide to check three stores randomly and buy from a store which
has the minimum of the three prices checked. What is the expected



value of the price you will pay?

6 Suppose x and y are iid (independently and identically distributed),
each with probability distribution p(2) = 0.5 and p(3) = 0.5. Is E(x/y)
smaller than, greater than or equal to (Ex)/(Ey)? Be explicit.

7 Suppose Ea* = a and V(a*) = 4a/T + 16a2/T2, where T is the sample
size. Answer each of the following true, false, or uncertain, and explain.

(a) a* is asymptotically unbiased as an estimator of a.

(b) The asymptotic variance of a* is zero.

(c) a* is consistent.

(d) a* is asymptotically efficient.

8 Suppose you have a sample of size 25 from a distribution with
nonzero mean m and variance 50. The mean of your sample is 2.
Consider estimating the inverse of m by the inverse of the sample mean.
Although the expected value of this statistic does not exist, it is
nonetheless consistent.

(a) Explain in one sentence how consistency can be deduced.

(b) What estimate would you use for the variance of this statistic?

9 Consider three stocks, A, B and C, each costing $10, with their
returns distributed independently, each with mean 5% and variance 6.

(a) What are the relative merits (mean and variance of returns) of
portfolio 1, consisting of 30 shares of A, and portfolio 2, consisting
of 10 shares of each of A, B and C?

(b) Suppose that the returns from A and B have correlation
coefficient -0.5 (so that their covariance is -3) but they are
uncorrelated with returns from C. How are the properties of
portfolios 1 and 2 affected?

(c) "If stocks tend to move together so that their returns are
positively correlated with one another, then diversification will not
reduce risk." True, false, or uncertain? Explain.



(d) "If stocks A and B are perfectly negatively correlated, then a
portfolio with 50% A and 50% B has a zero expected return and
zero variance." True, false, or uncertain? Explain.

10 Suppose you have T observations from the density f(x) = lxl-1 for 0
< x < 1. Find a method of moments estimator for l.

11 Suppose you have N observations on x, where x is distributed
uniformly between 10 and an unknown parameter l.

(a) Derive a method of moments estimator for l.

(b) What is its variance? Hint: For x ~ U(a,b), Ex = (b - a)/2 and
V(x) = (b - a)2/12.

12 Sample variances of x are usually calculated by dividing the sum of x
minus xbar squared by N - 1 which "corrects for degrees of freedom."
What does this correction accomplish?

C Best Unbiasedness

1 Suppose y = bx + e where the xs are non-stochastic and the es are iid
with mean zero and variance s2. Consider estimating b by the slope of a
line drawn between the origin and one of the plotted observations.
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(a) What is the bias of this estimator?

(b) What is its variance?

(c) Which of the observations would you choose to calculate this
estimate? Why?

(d) Does this estimator possess the usual desirable asymptotic
properties? Explain in one sentence why or why not.

2 Suppose y = a + bx + e where the es are iid with mean zero and
variance s2. Suppose the data are divided evenly into two groups
denoted by the subscripts a and b, and b is estimated by b* = (ya -
yb)/(xa - xb) where ya is the average of all the y observations in group



a, etc.

(a) Find the expected value and variance of b*.

(b) How would you allocate observations into the two groups?
Why?

3 A professor asked two students to come up with the best possible
estimate of a parameter b by searching the literature. Student A found a
study with an unbiased estimate b* = 5.0, with variance 8.0, from a
regression with an R2 of 0.86. Student B found a completely different
study with an unbiased estimate b** = 6.0, with variance 4.0, from a
regression with an R2 of 0.43. They could not agree on what to report to
the professor, so they asked a friend for advice. Not wishing to offend
either student, the friend elected to be diplomatic, and advised them to
report b*** = 5.5, the average of the two estimates.

(a) Which of these three estimates do you prefer? Explain why. Be
explicit.

(b) What would you have told these students had they come to you
for advice? Explain.

(c) Kmenta (1986, p. 257) has a similar question in which the two
students are each running the same regression but with different
data sets. How would your answer to part (b) change in this case in
which the two data sets are available?

4 Suppose the independent random variables x and y have variances 4
and 16, respectively. You wish to estimate the difference between their
means, and can afford to take a total of 30 observations. How many
should you draw on x and how many on y?

5 Two independent samples drawn from the same population resulted in
unbiased estimates b* and b**, with variances Vb* and Vb**. Consider
estimating with the linear combination b*** = ab* + (1 - a)b**.

(a) What value of a would you choose?

(b) Explain the common sense of your answer to part (a) (for
example, does it give sensible answers for the obvious special
cases?).



6 Suppose y = a + bx + e where the CLR model assumptions hold and
you have N observations. A friend suggests estimating b with

In what sense is your friend's suggestion good and in what sense is it not
so good?

D Mean Square Error

1 Suppose x is distributed with mean m and variance s2. Given a sample
of T independent observations on x, under what condition would
estimating m by b* = 0 (i.e.,
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ignore the data and estimate by zero) be superior, on the MSE criterion,
to using b** = x?

2 Suppose we have the sample x1, x2, and x3, drawn randomly from a
distribution with mean 4 and variance 9.

(a) Does m* = (x1 + x2 + x3)/3 or m** = (x1 + x2 + x3)/4 have the
smaller MSE as an estimator of b = 4?

(b) Can you draw any general conclusion from this example? If so,
what? If not, why not?

3 Suppose b* is an unbiased estimator of b. Let b** = ab* where a is
some number. Find the value of a (in terms of b and Vb*) that
minimizes the MSE of b**. Why is this estimator not used more often?
Hint: Use the result that MSE = var + bias2.

*4 A generalization of the MSE criterion is to weight the squared bias
and the variance differently, minimizing (wB2 + V), where w is a
positive weighting factor. Suppose x has nonzero mean m and variance
s2 and we have a random sample of size T. It can be shown that the
''minimum weighted MSE linear" estimator of m is m* = Sx/[T +
(s2/wm2)].



(a) Derive this result. Hints: Express your estimator as Satxt,

express x as xt = m + et, and notice that the normal equations are
symmetric in the as and so can be solved via one equation by
equating the as.

(b) Is the minimum MSE linear estimator smaller or larger in
absolute value than the BLUE?

(c) Suppose as our criterion that we want to minimize the sum of
the relative bias (bias of the estimator relative to the population
mean) squared and the relative variance (variance of the estimator
relative to the variance of the population). Express the resulting
estimator as a "shrinking factor" times the BLUE.

E Applications of Expected Values in Economic Theory

*1 Suppose there is an infinite number of stores, with prices distributed
uniformly over the $1 to $2 interval.

(a) Calculate the expected minimum price found by randomly
entering two stores. (The answer can be found in Stigler, 1961, p.
213). Hint: Find the distribution of the minimum price by finding
the probability that a given p is the minimum price.

(b) Explain how to conduct a Monte Carlo study to verify your
answer.

*2 Suppose we know that the overall price level P is distributed

normally with mean m and variance  and that pk, the price of
the kth good, deviates randomly from P by an amount d which is

distributed normally with mean zero and variance ;\k. Given
knowledge of pk, the "rational expectations" value of P is the mean of
the distribution of P conditional on pk. Express this rational expectation

in terms of pk,m,  and  . Hint: The probability of

getting a particular P, given pk, is proportional to prob(P) X prob(d = pk
- P), and so the conditional density is normal, and thus symmetric, so
that the mean can be found by maximizing with respect to P. The
answer can be found in Lucas (1973, p. 326).

F OLS: Monte Carlo



1 Suppose you have programmed a computer to do the following:
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i.Draw 20 x values from a distribution uniform between 2 and
8.

ii.Draw 20 z values from a standard normal distribution.

iii.Compute 20 w values as 5 + 2x + 9z.

iv.Draw 20 e values from a standard normal distribution.

v.Compute 20 y values as 1 + 4x + 3e.

vi.Regress y on x and save the R2 value, q1, and the adjusted
R2 value aq1.

vii.Regress y on x and w and save the R2 value, s1, and the

adjusted R2 value as1.

viii.Repeat this procedure from iv to get 3000 q, aq, s and as
values.

ix.Compute the averages of these sets of 3000 values to get Q,
AQ, S and AS, respectively.

(a) What should be the relative magnitudes of Q and S? Explain
your reasoning.

(b) What should be the relative magnitudes of AQ and AS? Explain
your reasoning.

2 Suppose you have programmed a computer to do the following:

i.Draw 50 x values from a distribution uniform between 3 and
12.

ii.Draw 50 z values from a standard normal distribution.

iii.Compute 50 w values as 4 - 3x + 8z.



iv.Draw 50 e values from a standard normal distribution.

v.Compute 50 y values as 2 + 3x + 4e.

vi.Regress y on x and save the x slope coefficient estimate b1.

vii.Regress y on x and w and save the x slope coefficient bb1.

viii.Repeat this procedure from iv to get 1000 b and bb values.

ix.Compute the averages of these sets of 1000 values to get B
and BB, respectively.

x.Compute the variances of these sets of 1000 values to get
VB and VBB, respectively.

(a) Should B or BB be closer to three?

(b) Should VB or VBB be closer to zero?

3 Suppose the classical linear regression model applies to the money
demand function m = a + by + dr + e and you have 25 observations on
income y and on the nominal interest rate r, which in your data are
negatively correlated. You wish to compare the OLS b estimates
including versus omitting the relevant explanatory variable r.

(a) Explain in detail how to do this with a Monte Carlo study.

(b) What results do you expect to get? Why?

(c) How would you expect your results to differ if y and r are
positively correlated in your data?

(d) How would you expect your results to differ if y and r are
uncorrelated in your data?

*4 Suppose y = bx + e and you have two observations on (y, x), namely
(6, 1) and (7, 2). You estimate b by OLS and wish to do a bootstrap to
estimate its variance. What estimate for the variance of bOLS do you
expect to get (your answer should be a specific number), and how does
it compare to the usual OLS estimate of this variance? Hint: Don't
forget the small-sample adjustment - see the technical notes to section
4.6.



5 Suppose the CLR model applies to y = a0 + a1x + a2q + a3w + e
where the observations on the explanatory variables are not orthogonal
and you are concerned about estimating a3. You wish to undertake a
Monte Carlo study to examine the payoff of incorporating (true)
extraneous information of the form a1 + a2 = 1.
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(a) What is meant by "payoff" in this context?

(b) Explain in detail how you would conduct this study.

(c) What results do you expect to get?

(d) If "true" in parentheses above had been "false," how would
your answer to part (c) differ?

G OLS: General

1 For observations on investment y and profits x of each of 100 firms, it
is known that y = a + bx + e and it is proposed to estimate a and b by
OLS.

(a) Suppose every firm in the sample had the same profits. What, if
any, problem would this create?

(b) If the distribution of profits over the firms were not normal, we
would not be able to apply the CNLR model. True, false, or
uncertain? Explain.

(c) If the conditional variance of investment (given profits) were
not the same for all firms, we would be unable to rely on the CLR
model to justify our estimates. True, false, or uncertain? Explain.

(d) If the CLR model is applicable, then we should use the OLS
estimator of b because it is the BLUE. True, false, or uncertain?
Explain.

2 If the errors in the CLR model are not normally distributed, although
the OLS estimator is no longer BLUE, it is still unbiased. True, false, or
uncertain?



3 Suppose the CLR model applies to y = a0 + a1x + a2w + e. If the data
are cross-sectional at a point in time and w does not vary in the cross-
section, should you include w anyway to avoid bias in your estimate of
a1? Explain.

4 Suppose the CLR model applies to y = bx + e. The slope coefficient in
the regression of x on y is just the inverse of the slope from the
regression of y on x. True, false, or uncertain? Explain.

5 Suppose you regress family weekly food expenditure (E) on family
income (Y) and get a negative slope coefficient estimate. Omission of
the explanatory variable family size (F) may have caused this
unexpected sign. What would have to be true about F for this to be the
case? Explain your reasoning. Hint: Write F as an approximate linear
function of family income.

6 Suppose income = a + b(experience) + d(education) + g(sex) + q(age)
+ e.

(a) What would you speculate the direction of the bias of the
estimate of b to be if age were omitted from the regression?

(b) If the dummy for sex were omitted? Explain your reasoning.

7 Suppose the CNLR model applies to y = a + bx + e. Your sample has
only positive x values, producing bOLS = 3, which you are told is an
overestimate. Is your intercept estimate more likely to be an
overestimate or an underestimate, or are they equally likely? Explain
your reasoning, and illustrate the common sense of your answer on a
diagram showing the true regression line.

8 How would you interpret the estimated intercept resulting from a
production-function regression of Dlny on DlnL and DlnK?

9 Consider applying OLS to a consumption function C = a + bY and to
the corresponding saving function S = g + dY where for all observations
Y = C + S.

(a) Show that dOLS = 1 - bOLS.
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(b) The sum of squared residuals is the same for each regression.
True, false, or uncertain? Explain.

(c) The R2s are the same for each regression. True, false, or
uncertain? Explain.

10 Suppose y + a + b(x + d)-1 + e. Suggest a search procedure, using
OLS regression, to find the least squares estimates. Hint: Search over d.

11 Suppose we have T observations from a CLR model y = a + bx + e.
Let b* result from regressing y on x and an intercept. Suppose we have
extraneous information that the intercept a is zero. In this context, some
have suggested using the "raw moment estimator" b** = Sxy/Sx2, or the
"ratio estimator" b*** = Sy/Sx, or the ''mean of the slopes" estimator
b**** = S(y/x)/T instead of b*. Assuming that a is in fact zero:

(a) Find the expected value and variance of each of these three
estimators.

(b) Which estimator would you choose? Why? Hint: Which one is
BLUE?

12 Consider an estimate b* of the slope of x, which results from
regressing y on an intercept and x, and b** which results from
regressing y on an intercept, x and w. Explain in a single sentence for
each the circumstances in which

(a) b* = b**.

(b) b* tests significantly different from zero but b** does not.

(c) b** tests significantly different from zero but b* does not.

13 Suppose the CLR model applies to y = bx + e and we have T
observations. We wish to estimate the value of y at the sample mean of
the x values. Compare the following two estimates: y and bOLSx.

14 As the sample size grows, R2 should fall. True, false, or uncertain?
Explain.



15 Suppose the CNLR model applies and you obtain the OLS result
yhat = 1.2 + 0.73x where the standard error for the slope estimate is
0.2. Because in this case the estimates are unbiased, the sampling
distribution of the slope estimator is distributed around 0.73 with
standard error 0.2. True, false or uncertain? Explain your reasoning.

H OLS: Numerical Examples

1 Suppose the CLR model applies to y = 3x + e where e takes values of
- 1, 0, and + 1 with probabilities 1/4, 1/2, 1/4 respectively. Suppose you
have a data set in which x takes on the values 0, 1, 2, 3, and 4. What are
the mean and variance of the slope estimate from:

(a) Regressing y on a constant and x, and

(b) Regressing y on just x.

2 Suppose the CLR model applies to y = a + bx + e. The sample size is
25, s2 = 9, Sx = 5, and Sx2 = 10. A researcher erroneously assumes that

a is zero, estimating b by Sxy/Sx2.

(a) What is the mean square error of this estimator?

(b) How small would a have to be to allow this researcher to claim
that his estimator beats the usual estimator (i.e., OLS including an
intercept) on the MSE criterion?

3 An article examining the allocation of corporate profits (P) between
dividends (D) and retained earnings (R), where P = R + D by definition,
estimates the equation
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but does not report the results because the coefficient on Pt-1 was
insignificant. The data are re-analyzed, with dividends rather than
retained earnings viewed as a residual, yielding



(a) Fill in four of the five blanks above and explain why you are
unable to fill in the fifth blank.

(b) Provide, with explanation, numbers for the standard errors of
two of the three coefficient estimates in the first equation, and
explain what information is required to calculate the third standard
error.

*4 Suppose the CLR model applies to y = 2 + 3x + e with s2 = 4. A
sample of size 10 yields Sx = 20 and Sx2 = 50. What is the expected
value of (bOLS)'(bOLS)? Hint: Express bOLS as b + (X'X)-1X'e, and
use what you know about the trace.

5 Suppose you have the following data from 100 observations on the
CLR model y = a + bx + e : Sx = 200, Sy = 100, Sxy = 400, Sx2 = 500,

and Sy2 = 10,300. A number z is calculated as 2a + 9b. A number q is
formed by throwing 10 true dice and adding the total number of spots
appearing. A contest is being held to guess W = z + q with contestants
being rewarded (or penalized) according to the formula P = 60 - (W -
W*)2 dollars where W* is the contestant's guess.

(a) What would your guess be if you wanted to make the expected
value of your guess equal to the expected value of W?

(b) What is the expected payoff of this guess?

(c) What is your estimate of this expected payoff? Hint:

I Transforming Variables

1 Use the Ballentine to answer the following two questions.

(a) In time series regression, we obtain the same regression
coefficients when working on data from which linear time trends
have been removed as when we keep the trends and include time, t,
in the set of regressors. True, false, or uncertain? Explain. Note: All
the data are to be detrended.



(b) Suppose we replace the phrase "regression coefficients" above
by "coefficient of determination." Would the new statement be
true, false, or uncertain? Explain. Hint: The time trend is removed
from w when w is replaced with the residuals from a regression of w
on t.

2 Suppose the dependent variable, but not the independent variable, is
expressed as deviations from its mean. What implications does this have
for the bias of the OLS estimates?

3 Suppose you are regressing the logarithm of the current dollar value of
a house (lny) on an intercept and distance from city center (x), using
1981 data. You have a new sample of 1985 data and you wish to
investigate whether the coefficients have changed in value since 1981.
You know that the overall increase in housing prices due to inflation
since 1981 is 20%. If you do not scale the new data to express them in
1981 dollars, what will be the implication for the interpretation of your
estimates?
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4 Suppose your data produce the regression result y = 5 + 2x. Consider
scaling the data to express them in a different base year dollar, by
multiplying observations by 0.8.

(a) If both y and x are scaled, what regression results would you
obtain?

(b) If y is scaled but x is not (because y is measured in dollars and x
is measured in physical units, for example), what regression results
would you obtain?

(c) If x is scaled but y is not, what regression results would you
obtain?

(d) In part (c) suppose you perform a t test to test whether or not
the slope coefficient is zero. Is this t statistic larger, smaller, or the
same as the comparable t statistic calculated on unscaled data?
Explain.



5 Suppose we have the regression results (standard errors in
parentheses):

where wt = (xt/xt-1). Suppose the regression is rerun with w expressed
in percentages, so that now the regressor is w* = 100(xt - xt-1)/xt-1.
What results should be obtained?

6 Suppose you wish to estimate the bs in lnY = b1 + b2lnW + b3Q + e.
The results from regressing ln(Y/W) on lnW and Q are available.

(a) How would you use these results to estimate the bs?

(b) Their standard errors?

7 Suppose the CLR model applies to y = a + bx + e. A prankster
multiplies all your x values by 3. If the old y were regressed on the new
x, what can you say about the expected values of your estimates of a
and b?

8 The classical linear regression model applies to y = a + bx + e where e
is a random error with mean zero and variance 4. A prankster multiplies
all your y values by 3.

(a) Conditional on x, what is the variance of the new y? Explain
your logic.

(b) If the new y were regressed on the old x, what should be the
expected values of your OLS estimates of a and b? Explain your
logic.

J OLS: Estimating Variances

1 If an extra explanatory variable is added to a regression, the estimate
of s2 will remain the same or fall. True, false, or uncertain?

2 The estimator of the variance-covariance matrix of the OLS estimator
becomes smaller when a relevant explanatory variable is omitted. True,
false, or uncertain? Explain.



3 Suppose y is determined by x and w. The coefficient of x is estimated
by b* from a regression of y on x and by b** from a regression of y on x
and w. What, if anything, can you say about the relative magnitudes of
the estimates of the variances of b* and b**?

4 Suppose the CLR model applies to y = a + bx + dw + e and it is
known that a, b and d are all positive. Then the variance of (bOLS +
dOLS) is greater than the variance of (bOLS - dOLS). True, false, or
uncertain? Explain.

5 Suppose the CLR model applies to y = a + bx + e, with s2 = 30. A
sample of size 10 yields Sx = 20 and Sx2 = 50. You must produce an
unbiased estimate q* of q = a + b, for which you will be paid [10 - (q* -
q)2] dollars. What is your expected pay?
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K OLS with Restrictions

1 Imposing a linear constraint on a regression will raise R2 if the

constraint is true and lower R2 if it is false. True, false, or uncertain?
Explain.

2 Suppose y = a + bx + qz + dw + e where the CLR model assumptions
hold. If you know that q + d = 1 and b = 2d, what regression would you
run to produce your parameter estimates?

3 Suppose you have observations 3, 4 and 5 on a dependent variable y
and corresponding observations 6, 7 and 8 on explanatory variable x
and 7, 9, and 11 on explanatory variable w. Suppose you know that the
intercept is zero and the sum of the two slope coefficients is 2. What are
your estimates of the slope coefficients?

4 Suppose bOLS = (2, 1)', the diagonal elements of the estimated
variance-covariance matrix are 3 and 2, respectively, and the
off-diagonal elements are both ones. What is your estimate of b if you
believe that b1 + b2 = 4? Hint: Use the matrix formula for restricted
bOLS.

5 Suppose the CLR model applies to y = a + bx + dw + qz + e.



(a) Explain what regression to run to find the OLS estimates which
incorporate the (true) information that b = 2d.

(b) Will the R2 from this regression be larger than, smaller than or
equal to that of the unconstrained regression?

(c) Will your estimate of q remain unbiased?

(d) Will the variance of the q estimate be larger, smaller or
unchanged as a result of incorporating this constraint? Explain
intuitively.

(e) If in fact b <?> 2d, in what way would your answers to parts
(b), (c), and (d) above be different?

6 Suppose the CLR model is applicable to y = a + bx + dw + e with V(e)
= 5. From the data, Sx2 = 3, Sw2 = 2, and Sxw = -1, where observations
are expressed as deviations about their means. Consider the restriction
that b + d = 1. How much smaller is the variance of the restricted
estimate of b than the variance of the unrestricted estimate of b?
Explain fully how you obtained your answer.

7 Suppose we wish to estimate yt = a + b0xt + b1xt-1 + b2xt-2 + b3xt-3

+ et by assuming a polynomial distributed lag of order 2, so that bi = d0
+ d1i + d2i2 where i is the lag length.

(a) What regression would we run to obtain estimates of the ds?

(b) Suppose our estimates of d0, d1 and d2 are 4, 2, and -1,
respectively. What are the estimates of the bs?

(c) Suppose the estimated variance-covariance matrix for the d
estimates is the 3 × 3 matrix V. How would you estimate the 4 × 4
variance-covariance matrix of the b estimates? Be explicit.

8 Suppose you have the observations 0, 0, 4, 4 and 0, 4, 0, 4 on x and y,
respectively, from the CLR model y = a + bx + e.

(a) Graph these observations and draw in the OLS estimating line.

(b) Draw in the OLS estimating line that incorporates the constraint
that a = 0.



(c) Calculate the R2s associated with both these estimating lines,

using R2 = 1 - SSE/SST.

(d) Calculate these R2s using R2 = SSR/SST.

(e) What is the lesson here?
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L Theoretical Results for Multivariate Regression

1 Estimation of the mean of a univariate population can be viewed as a
special case of classical linear regression. Given a random sample of
size T, namely y1,. . ., yT from a population with Ey = m and V(y) = s2,

we can write yt = m + et or yt = b0 + et where b0 = m. Express each of
the following CLR concepts explicitly (i.e., algebraically) for this
special case: X, X'X, (X'X)-1, X'y, bOLS, bOLS - b = (X'X)-1X'e,
V(bOLS). Which two of these could you have guessed? Why?

*2 Suppose y = Xb + e is broken into y = X1b1 + X2b2 + e. By

minimizing the sum of squared errors with respect to b1 and b2
simultaneously, show that b1OLS = (X'1M2X1)-1X1M2y where M2 = I
- X2(X2X2)-1X2'.

3 Suppose the CLR model applies to y = Xb + e and we estimate b by
minimizing the sum of squared errors subject to the erroneous
restriction that Rb = r.

(a) Find the bias of this estimator.

(b) Show that the variance-covariance matrix of this estimator is
smaller than that of the unrestricted OLS estimator.

4 Suppose the CLR model is applicable to Y = Xb + e and the J linear
constraints Rb = r are known to hold. Find an unbiased estimator for s2
that incorporates the constraints. Hint: Guess and check for
unbiasedness.



*5 Suppose you have data on the CLR model y = Xb + e (which
includes an intercept), and you are asked to forecast y0 given a row
vector x0 of observations on the explanatory variables (with first
element unity).

(a) Explain in words how you would show that x0bOLS is the

BLUE of x0b.

(b) What is your forecast error if y0 is forecast by x0bOLS?

(c) What is the variance of this forecast error?

(d) By minimizing this variance subject to the first element unity
constraint, show that the forecast variance is minimized when x0 is
the average of the x values in the data. Hint: Use matrix
terminology.

6 Suppose the CLR model applies to y = Xb + e and you have decided
to estimate b by a constant q times bOLS. Further, you wish to choose q
so that it minimizes the sum of the MSEs of the elements of qbOLS.

(a) Explain why this value of q is the one that minimizes (q - 1)2b'b
+ q2s2tr(X'X)-1.

(b) Find the optimal value of q.

(c) Why might this estimator be referred to as a "shrinkage"
estimator?

(d) Why is this estimator not used more often?

7 Suppose the CLR assumptions apply to y = Xb + e and that we are
interested in finding the BLUE of q = c'b where c is a vector of known
constants. Call our proposed BLUE q* = a'y where a is to be
determined.

(a) What condition must hold for q* to be unbiased?

(b) What is the variance of q*?

(c) By minimizing the variance of q* subject to the constraint in
(a), show that the BLUE of q is c'bOLS.



(d) How would you use this result to claim that bOLS is the BLUE
of b?

(e) Of what relevance is this result to forecasting?

*8 Suppose y = X1b1 + X2b2 + e and the data are such that X2'y = 0.

Then a regression of y on X1 and X2 will estimate b2 by the zero
vector. T, F or uncertain? Explain.

*9 Consider estimating s2 in the CLNR model by a constant q times
SSE. Find the value
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of q that minimizes the MSE of this estimator. Hint: Recall that SSE is
distributed as s2 times a chi-square with (T - K) degrees of freedom, and
that the mean and variance of a chi-square are equal to its degree of
freedom and twice its degrees of freedom, respectively.

M Pooling Data and Missing Observations

1 Suppose y = Xb + e and you have two data sets, subscripted 1 and 2.

(a) Show that the OLS estimate using all of the data is a "matrix"
weighted average of the OLS estimates that result from using the
data sets separately. Hint: Use a partitioned matrix approach.

(b) Suppose there is only one regressor, and no intercept. What are
the weights from part (a) for this case, and why do they make
sense?

2 Suppose the CLR model applies to Y = Xb + e and data are measured
as deviations about their means.

(a) Suppose X2, the last N observations on X, is missing, and is
replaced by its mean, a zero vector. Does bOLS remain unbiased?

(b) Suppose Y2, a subset of the data on Y, is missing, and is
replaced by its mean, a zero vector. Does bOLS remain unbiased?



3 Researcher A runs an OLS regression on his data to estimate a and b
as 4 and 4, with estimated variances 12 and 9, respectively, estimated
covariance -6, and estimated error variance 3. Researcher B runs an
OLS regression on her data to estimate a and b as 4 and 2, with
estimated variances 6 and 6, respectively, estimated covariance -2, and
estimated error variance 2. What estimates of a and b would have been
obtained if the data had been pooled? Hint: Get the "pooled" formula
first.

*4 Suppose the CLR model applies to Y = Xb + e but that Y2, a subset
of the data on Y, is missing. Consider addressing this "missing data"

problem by obtaining  where bOLS results from regressing
Y1 on the corresponding X observations X1, and then doing a full

regression using  for the missing data. Show that the resulting
estimate of b is identical to bOLS. Hint: Exploit the answer to M(1a).

N Multicollinearity

1 Explain in what sense dropping a variable can be a "solution" for
multicollinearity.

2 Since x2 is an exact function of x, we will be faced with exact
multicollinearity if we attempt to use both x and x2 as regressors. True,
false, or uncertain? Explain.

3 If the regressors are correlated, although OLS estimates remain
unbiased, t statistics tend to be too small. True, false or uncertain?
Explain. Hint: Be sure to specify what is meant by "too" small.

4 In the CLR model, multicollinearity leads to bias, not in the estimation
of the regression coefficients themselves, but rather in the estimation of
their variances. True, false, or uncertain? Explain.

5 The value of R2 in a multiple regression cannot be high if all the
estimates of the regression slopes are shown to be insignificantly
different from zero on the basis of t tests of significance, since in that
case most of the variation in the regressand must be unexplained and
hence the value of R2 must be low. True, false, or uncertain? Explain.

6 Suppose the CLR model applies to y = a + bx + dw + e. Most samples
are such
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that x and w are correlated, but by luck you observe a sample in which
they are uncorrelated. You regress y on x and an intercept, producing
b*.

(a) Is b* unbiased?

(b) Is your estimate of the variance of b* unbiased?

7 Comment on the following proposal for reducing multicollinearity.
"Suppose that y = b0 + b1x1 + b2x2 + e where x1 and x2 are highly

correlated. Regress x2 on x1 obtaining residuals . Then regress y on

x1 and  together. We are guaranteed that x1 is uncorrelated with 
this reduction in multicollinearity should yield estimates of the bi with
smaller variances."

8 In the relationship y = b1 + b2x + b3z + b4w + b5(x - z) + e the
information implicit in the last regressor improves the estimation of the
other bs, in comparison to what would be the case without this
regressor. True, false, or uncertain? Explain.

9 Suppose you have annual data on C (average grams of coffee
consumed per capita), YD (real per capita disposable income), PC (price
index for coffee), PT (price index for tea), and POP (population in
millions). You regress C on lnYD, PC, PT, and POP, obtaining a
reasonable R2 but no significant t statistics. What do you suspect is the
problem here, and how would you remedy it?

10 Suppose that the CLR model is applicable to y = ax + bw + e. Let
aOLS and bOLS denote the OLS estimates from regressing y on x and w
together, and a* the estimate of a from regressing y on x alone. It can be
shown that MSE(a*) < MSE(aOLS) provided b2 < V(bOLS).

(a) Discuss/improve upon the following proposal. Since in the
presence of high multicollinearity it is quite possible that b2 <
V(bOLS), under the MSE criterion we should estimate a with a*

rather than aOLS.



*(b) Derive the condition given above. Hint: Use regular algebra,
not matrix algebra.

*11 Consider the special case y = bx + e, where the variance of e is s2.

(a) What is the formula for the ridge estimator b* = (X'X +
kI)-1X'Y?

(b) The ridge estimator is viewed as "shrinking" the OLS vector
towards the zero vector. For this special case, what is the
"shrinking factor"?

(c) Call the shrinking factor q. By finding the "optimal" value for q,
find the "optimal" value for k for this special case.

(d) What problem do you see in using this optimal value of k in
actual applications?

12 Assume the CLR model Y = Xb + e. Consider b* = (X'X + kI)-1X'Y,

where 0 < k < , the "ridge" estimator proposed for high
multicollinearity.

*(a) Show that V(b*) is "smaller" than V(bOLS). Hint: If A - B is

nnd, then so is B-1 - A-1. Second hint: Multiply out the relevant
B-1 - A-1.

(b) Does this mean that bOLS is not BLUE in cases of high
multicollinearity? Explain.

13 Suppose the CLR model applies to Y = Xb + e but we have perfect
multicollinearity. Suppose, however, that we wish to estimate a'b rather
than b, where a = X'Xl with l a column vector, so that a is a vector
which is a linear combination of the columns of X'X.

(a) Show that although we cannot estimate b, we can estimate a'b.

(b) Show that your estimator is unbiased and find its variance-
covariance matrix.
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O Dummy Variables: Interpretation

1 Suppose we have estimated y = 10 + 2x + 3D where y is earnings, x is
experience and D is zero for females and one for males.

(a) If we were to rerun this regression with the dummy redefined as
one for females and two for males, what results would we get?

(b) If it were defined as minus one for females and plus one for
males, what results would we get?

2 Suppose we have obtained the following regression results:

where sex is one for males and zero for females, region is one for north
and zero otherwise (south) and sexregion is the product of sex and
region. What coefficient estimates would we get if we regressed y on an
intercept, x, NM, NF and SF, where NM is one for northern males, zero
otherwise, NF is one for northern females, zero otherwise, and SF is one
for southern females, zero otherwise?

3 A friend has added regional dummies to a regression, including
dummies for all regions and regressing using a no intercept option. Using
t tests, each dummy coefficient estimate tests significantly different
from zero, so she concludes that region is important.

(a) Why would she have used a no intercept option when
regressing?

(b) Has she used an appropriate means of testing whether region is
important? If not, how would you have tested?

4 Suppose y = a + bx + dD + e where D is a dummy for sex. Suppose
we know that the fraction of males in the sample is twice the fraction of
males in the population. What modification, if any, would you suggest?

5 Suppose you are regressing money on income, the interest rate, and a
set of quarterly dummies, where the first three variables are expressed
in natural logarithms. Because the economy is growing, the seasonal
influence should be growing. What, if anything, should be done to
capture this?



6 Suppose a sample of adults is classified into groups 1, 2 and 3 on the
basis of whether their education stopped in (or at the end of) elementary
school, high school, or university, respectively. The relationship y = b1
+ b2D2 + b3D3 + e is specified, where y is income, Di = 1 for those in
group i and zero for all others.

(a) In terms of the parameters of the model, what is the expected
income of those whose education stopped in university?

(b) In terms of the parameters of the model, what is the null
hypothesis that going on to university after high school makes no
contribution to adult income?

(c) Can the specified model be expressed in a simpler, equivalent
form y = a0 + a1x + e, where x is years of education completed?
Explain.

(d) Suppose that the dummy variables had been defined as D4 = 1
if attended high school, zero otherwise; D5 = 1 if attended
university, zero otherwise and y = a3 + a4D4 + a5D5 + e was
estimated. Answer parts (a) and (b) above for this case.

7 Suppose two researchers, with the same data, have run similar
regressions
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where sexregion is an interaction dummy, the product of the sex and
region dummies. Both researchers have defined sex as one for males
and zero for females, but researcher A has defined region as one for
north and zero for south whereas researcher B has defined it the other
way - zero for north and one for south. Researcher A gets an
insignificant t value on the sex coefficient, but researcher B does not.

(a) In terms of the interpretation of the model, what hypothesis is A
implicitly testing when looking at the significance of his t value?



(b) In terms of the interpretation of the model, what hypothesis is B
implicitly testing when looking at the significance of her t value?

(c) In terms of the parameters of her model, what null hypothesis
would B have to test in order to produce a test of A's hypothesis?

(d) What is the lesson here?

8 Suppose you have specified C = a + bY + dP + qN + hH + e, where C
is number of long-distance calls, Y is per capita income, P is an index of
the price of calling long distance relative to the price of alternative
means of communication. N is number of phones in existence, and H =
1 for statutory holidays, zero otherwise. You have daily data extending
over several years.

(a) Explain how to alter this specification to recognize that most
businesses close on weekends.

(b) If there are more phones, more calls should be made on
holidays. Is this incorporated in your specification? If so, how? If
not, how would you do it?

9 Suppose the CLR model applies to ln y = a + bK + dD + e where D is
a dummy for sex.

(a) Verify that 100b can be interpreted as the %Dy due to DK.

(b) Show that q = 100(ed - 1) is the %Dy due to sex. (The answer
can be found in Halvorsen and Palmquist, 1980, p. 474.)

(c) Explain why putting dOLS into the expression in part (b)
creates a biased estimate of q.

(d) If e is distributed normally, show explicitly how to reduce this
bias. Hint: If e~N(m, s2) then exp(e)~log-normally with mean
exp(m + 0.5s2). (The answer is in Kennedy, 1981a, p. 802.)

(e) If e is not distributed normally, show explicitly how to reduce
this bias. Hint: You need to use a Taylor series expansion.

10 Advise the editor what to do with this dispute.



Comment by B: "In a recent issue of this journal A published a paper in
which he reported a regression y = 4 + 5x + 2D where y is expenditure,
x is income and D is zero for males and one for females. The sample
average x value is reported as higher for females (xf) than for males
(xm) but the sample average y value is reported as higher for males.
This is inconsistent with the results."

Reply by A: "B's logic is incorrect. The average female expenditure is yf
= 6 + 5xf + ef, and the average male expenditure is ym = 4 + 5xm +
em, where ef (em) is the average female (male) residual. Their
difference is 2 + 5(xf - xm) + ef - em. Although OLS causes the average
residual to be zero, so that ef + em = 0, the difference between ef and
em could be sufficiently negative to make yf - ym negative. There is no
inconsistency in the results."
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P Dummy Variables: Estimation

1 Suppose y = b0 + b1D + e where D is a dummy for sex (male = 1).
The average y value for the 20 males is 3, and for the 30 females is 2,
and you know that e is distributed as N(0, 10).

(a) What are the OLS estimates of the bs?

(b) What is the value of the test statistic for testing 3b0 + 2b1 = 3?

(c) How is this statistic distributed?

2 Suppose y = b0 + b1D + e where D = 0 for the first 20 observations,
D = 1 for the 25 remaining observations, and the variance of e is 100.

(a) Interpreting this regression as a way of calculating the means of
the two sets of observations, what are your a priori guesses of the

variance of ; and the variance of 

(b) Verify your answer by using the s2(X'X)-1 formula.

(c) Further verify by using the relevant matrix formula to calculate
the variance of the predicted y when D = 1.



3 Consider the regression results (standard errors in parentheses)

where DM and DF are dummies for males and females, respectively.
The covariance between the estimates of the coefficients on x and DM
is 0.8, on x and DF is 0.6, and on DM and DF is 0.5. What would be the
t statistic on DM if the regression were run including an intercept and
excluding DF?

4 Suppose lny = a + blnx + e.

(a) Show that if the x data are scaled by multiplying each
observation by, say, 100, the same estimate of the coefficient b (the
elasticity) results.

(b) Now suppose there is a slope dummy in this relationship, taking
the value zero for, say, the first half of the observations, and the
value lnx for the remaining observations. Explain why scaling the x
data in this context will change the b estimate, and suggest a means
of avoiding this problem. (The answer is in Giordano and Veall,
1989, p. 95.)

Q Dummy Variables: Hypothesis Testing

1 Suppose that demand for your product is a linear function of income,
relative price, and the quarter of the year. Explain in detail exactly how
you would test the hypothesis that ceteris paribus the demand for your
product is identical in spring, summer and fall.

2 Suppose x and y are iid normal variables except that they may have
different means. We have 6 observations on x and 10 observations on y.
Explain how to use regression results to test the null hypothesis that x
and y have the same mean.

3 You have run the regression Y = Xb + e with the CLR model in effect.
A critic claims that by omitting one observation the coefficient
estimates change dramatically, but you feel that these coefficient
differences are not significant. Explain how to defend your view with a
statistical test.
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4 Suppose the amount per week a student spends on alcohol can be
explained (linearly) by income, age, sex, and whether the student is an
undergraduate, an MA student or a PhD student. You feel certain that
the impact of sex is wholly on the intercept and the impact of level of
studies is wholly on the slope of income. Given a sample of size 75,
explain in detail how you would test whether or not level of studies has
any effect.

5 Suppose S = a + bEd + fIQ + hEx + lSex + dDF + qDE + e where S is
salary, Ed is years of education, IQ is IQ level, Ex is years of on-the-job
experience, Sex is one for males and zero for females, DF is one for
French-only speakers and zero otherwise, DE is one for English-only
speakers and zero otherwise. Given a sample of N individuals who
speak only French, only English or are bilingual:

(a) Explain how you would test for discrimination against females
(in the sense that ceteris paribus females earn less than males).

(b) Explain how you would measure the payoff to someone of
becoming bilingual given that his or her mother tongue is (i)
French, (ii) English.

(c) Explain how you would test the hypothesis that the two payoffs
of the preceding question are equal.

(d) Explain how you would test the hypothesis that a French-only
male earns as much as an English-only female.

(e) Explain how you would test if the influence of on-the-job
experience is greater for males than for females.

6 Suppose you are estimating the demand for new automobiles, with
quarterly data, as a linear function of income, a price index for new
autos (inclusive of tax), and a set of quarterly dummies. Suppose that on
January 1, in the middle of your data set, the government announced
that on April 1 of that year the sales tax on new autos would increase.
You believe that as a result of this many people who would have bought
a new car in the second quarter instead bought it in the first quarter.

(a) Explain how to structure a dummy variable to capture this
''expenditure switching" hypothesis.



(b) Explain how you would test this hypothesis, against the
alternative that although expenditure was higher than normal in the
first quarter, and lower than normal in the second, the changes
were unequal.

7 Suppose household demand for gasoline (G) is thought to be a linear
function of household income (Y) but that the intercept depends on
region, namely Maritime, Quebec, Ontario, and the West. Researcher A
regresses G on an intercept, Y and dummy variables for the Maritimes,
Ontario and the West. Researcher B regresses G on Y and dummies for
all regions.

(a) How would you estimate the difference between the intercepts
for Quebec and Ontario using (i) A's results and (ii) B's results?
Which estimated difference would you expect to be larger (or
would you expect them to be the same) and why?

(b) How would you test the hypothesis that the intercepts for
Quebec and Ontario are the same using (i) A's results and (ii) B's
results? Be explicit.

(c) Suppose that researcher C believes that the intercept for
Quebec is identical to that of Ontario but that the slope for Quebec
differs from the common slope of the other regions. Explain how C
would estimate to incorporate these beliefs.

(d) Suppose that researcher D believes that each region has a
unique slope and a unique intercept. Explain in detail how D would
test the belief of C.

8 Suppose y = a + bx + e and your 47 observations are divided into
three groups: those
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related to the lowest five x values, those related to the highest five x
values, and the remaining 37 observations. The "rainbow" test for
specification uses the middle 37 observations to estimate this
relationship and then tests for whether or not the remaining
observations lie within their forecast confidence intervals. Explain in
detail the easiest way to do this test.



9 You have data on exam score S, an intelligence measure IQ, a dummy
D for gender, study time ST and a categorical variable CAT that takes
the value 1 for "I hate this course," 2 for "I don't like this course," 3 for
"I am indifferent to this course," 4 for "I like this course" and 5 for ''I
love this course." You regress S on IQ, D, ST and CAT. A friend points
out to you that you are imposing a special set of restrictions, namely
that the influence of loving the course is exactly five times the influence
of hating the course, five-thirds the influence of being indifferent to the
course, etc. Explain what regressions to run to get the restricted and
unrestricted sums of squared errors, and find the degrees of freedom for
the appropriate F test.

R Dummy Variables: Modeling Structural Breaks

1 Suppose you believe that the relationship between x and y changes at
the known value x* and can be represented by two linear segments that
intersect at x*, and thus is continuous.

(a) How would you estimate this relationship?

(b) How would you test the hypothesis of continuity?

2 Suppose we have data for 1950-80, and we know that a change took
place in early 1964 that affected the intercept. A dummy variable DD is
structured with zeroes for years prior to 1964, one in 1964, two in 1965,
three in 1966, and four for all remaining years.

(a) Interpret the meaning of this setup as contrasted with a
traditional dummy variable equal to zero prior to 1964 and one
thereafter. Of what is the coefficient of DD a measure?

(b) In the context of this specification, if we want the coefficient of
DD to measure the difference between the intercepts before 1964
and after 1966, how should we define DD?

*3 Suppose the CLR model applies to y = a + bx + e and you have
annual data from 1956 to 1976. In 1965 an institutional change
occurred which changed the intercept, but the intercept changed over a
five-year transition period rather than abruptly.

(a) Explain how to use traditional dummy variables to model this.
How many parameters are you estimating?



(b) Assume that the value of the intercept during the transition
period can be modeled as a cubic function of the time since the
institutional change (i.e., where 1965 = 0). How many parameters
are you estimating now?

(c) Explain how to estimate. Hint: Structure a special explanatory
variable for each of the new parameters.

The answer is in Wilton (1975, p. 423).
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S Maximum Likelihood: General Principles

1 Comment on the following: The method of least squares does not
require an assumption about the distribution of the error, whereas
maximum likelihood does; thus, OLS estimates are preferred to MLEs.

2 Suppose you have annual data from 1950 to 1984 on a CNLR
relationship which sometime during 1964-9 switched from Y = b0 + b1X
to Y = a0 + a1X. You wish to estimate when the switch occurred. An
adviser suggests using a maximum likelihood approach in which you
choose the switching point by finding the maximum of the relevant
maximum likelihoods. Explain how you would do this, and how you
would then estimate the parameters.

3 Suppose that an IQ test score is the sum of a true IQ (distributed
normally in the population with mean 100 and variance 400) and an
independent testing error (distributed normally with mean 0 and
variance 40). What is your best guess of the true IQ of someone who
scores 140 on the test?

4 Heights are normally distributed with means 70 inches (males) and 64
inches (females) and common variance 6 inches. Is it more likely that a
sample has been drawn from the male population if (i) the sample
consists of a single person with height 70 inches, or (ii) the sample
consists of six persons with average height 68 inches? Explain your
reasoning.

5 Suppose that y = a + bx + e where the es are iid with pdf f(e) =

le-(l+1) where l > 2 and 1 < e < .



(a) Are the OLS estimators of a and b BLUE?

(b) Would prior knowledge of l help in estimating a and b? Why or
why not?

(c) Would prior knowledge of l be of help in estimating the
variance of the OLS estimates of a and b? Explain how or why not.

(d) For l unknown, explain what you would do to estimate a, b and
l.

6 Suppose w ~ N(m,s2). Use the change of variable technique to find the
density function of Q = a + bw.

*7 Suppose a K X 1 observation vector x from group i comes from
N(mi,, S), where i = 1, 2. Note that S has no i subscript. It makes sense
to assign an observation to group i if it is "more likely" to have come
from that group.

(a) Assuming equal prior probabilities and equal misclassification
costs, show that when formalized this gives rise to the linear
discriminant rule, namely classify x to group 1 if (m1 - m2)'S-
1x>(1/2)(m1 - m2)'S-1(m1 + m2). Hint: Exploit the formula for the
pdf of a multivariate normal distribution.

(b) How would this have to be modified if the prior probabilities
were unequal and the misclassification costs were unequal?

*8 The information matrix,  can be shown to equal

, a result that is frequently exploited when
calculating the Cramer-Rao lower bound. Verify this result for T
random observations from N(m,1).

9 Suppose you wish to generate observations x from the distribution f(x)
= 3e-3x for 0 < x. Explain how to do so given a computer which can
generate observations w distributed uniformly between zero and one.
Hint: Exploit the change-of-variable theorem.

10 Suppose x is distributed uniformly between zero and one. For q
positive, what is the pdf of y = -(1/q)lnx?
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T Maximum Likelihood: Examples

1 Suppose we have T observations on a random variable x which is
distributed normally with mean m and variance s2.

(a) What is the MLE of m?

(b) Find the variance of this MLE by finding the Cramer-Rao lower
bound.

2 Suppose you wish to estimate the proportion a of defective widgets
coming off a production line and to this end draw a random sample of
size T, observing N defectives.

(a) Find the MLE of a.

(b) Show that the Cramer-Rao lower bound gives the traditional
formula for the variance of this estimator.

3 Suppose x is a random variable with pdf f(x) = k e-kx for x > 0. Given
a sample of size N, find the MLE of k and use the Cramer-Rao lower
bound to find the variance of this estimator.

4 Suppose income y is distributed as a Pareto distribution: f(y) =

ay-(a+1) for 1 < y, with a > 1. Your sample of size N is drawn from the
population of incomes greater than or equal to $9,000.

(a) What is the MLE of a? Hint: The density must be adjusted.

(b) What is the variance of the MLE of a?

(c) Suppose you believe that the mean of the Pareto distribution out
of which you draw an observation is affected linearly by a variable
w. Given the w observation corresponding to each x observation,
explain how you would estimate the parameters of this linear
relationship. Hint: Find the mean of this Pareto distribution.

5 Suppose you have 100 observations drawn from a population of

incomes following the Pareto distribution f(y) = ay-(a+1) for y > 1 and
a > 1 but that your sample was actually drawn so that income was



greater than or equal to $9,000 i.e., you are drawing your observations
out of a truncated distribution. The average of the natural logs of your
income observations is 9.62 and ln 9000 = 9.10.

(a) What is the MLE of a?

(b) Test the hypothesis that a = 2 against the alternative a < 2.

6 Consider the Poisson distribution

where n is the number of oil spills at a well and you have observations
on N wells. Unfortunately, you are missing the data on wells with no oil
spills. What is the likelihood you would maximize to find the MLE of l?

7 Suppose T observations on x are drawn randomly from a Poisson

distribution: f(x) = lxe-l/(x!). The mean and also the variance equal l.

(a) Find the MLE of l.

(b) Find the asymptotic variance of this MLE by finding the
Cramer-Rao lower bound.

8 Suppose that y = a + bx + e where the es are iid with the double

exponential pdf f(e) = [2qe|e/q|]-1. Show that the MLEs of a and b
result from minimizing the sum of the absolute values of the errors
rather than the sum of the squares of the errors.

9 Suppose x is a random variable with pdf f(x) = lxl-1 for 0 < x < 1 and
zero other-
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wise, where l is positive. Suppose we have drawn a sample of size T,
denoted by x1, x2, . . ., xT.

(a) Find the expected value of x, denoted by m, and the variance of
x, V(x).

(b) Find the MLE of l, denoted by lMLE.



(c) Using the fact that the MLE of a nonlinear function is the
nonlinear function of the MLE, find the MLE of m, denoted by
mMLE.

(d) Find the asymptotic variance of lMLE by using the Cramer-Rao
lower bound.

(e) Find the asymptotic variance of mMLE.

(f) Find the expected value and variance of the sample mean.

(g) Which has the smaller asymptotic variance, the sample mean or
mMLE?

(h) Which estimator, the sample mean or mMLE, do you prefer?
Why?

10 Suppose x and y are random variables taking on values of zero or
one, with probability distribution defined by

(a) Given a random sample of size N on (y,x), find the MLE of a
and b.

(b) Suppose that in your sample of the observations with x = 1, half
have y = 1. What is your estimated prob(y = 1|x = 1)?

11 Subjects spin a special roulette wheel out of your sight. If the wheel
stops on blue they are to answer yes or no to the question "Do you
cheat on your taxes?" If it stops on green they are to answer yes, and if
it stops on red they are to answer no.

(a) Explain how you would estimate the probability that an
individual cheats.

(b) Suppose you know the subjects' income levels and believe that
the probability of cheating on taxes is a function of gender and
income level. Explain how you would estimate the parameters of
this relationship.



*12 Suppose we have the N-equation simultaneous equation model YG
+ XB = E where the contemporaneous covariance matrix of the errors
is F. Then for a single time period, period t, we have

where et is the tth row of E expressed as a vector. What is the
log-likelihood for the entire sample, size T, needed to calculate the
FIML estimates? Hint: Express et = G'yt + B'xt where yt and xt are the

tth rows of Y and X expressed as vectors. Don't forget the Jacobian!

13 Suppose you wish to estimate

where e is distributed N(0, s2). What is the log-likelihood function you
would maximize to create your estimates of a, b, d and s2?

*14 (a) Suppose that y = a + bx + e and that et = ret-1 + mt where the

us are iid N(0,s2). Given data on x and y, what is the likelihood
function? Hint: Find the relationship between the ys and the us through
the Prais-Winsten transformation matrix, and then make use of the
(multivariate) change-of-variable theorem. (The answer is in Beach and
MacKinnon, 1978a, p. 52).
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(b) Given data on x and y, find the likelihood function for (yl - 1)/l = a +
bx + e (i.e., a Box-Cox transformation) where the es are iid N(0,s2).

(c) Suppose that (yl - 1)/l = a + bx + e and that et = ret-1 + ut where the
us are iid N(0,s2). Given data on x and y, what is the likelihood
function?

(d) Explain how in this context you would test for linearity assuming (i)
spherical errors, and (ii) autocorrelated errors. (Answer to all parts are
in Savin and White, 1978, p. 1.)



15 Suppose, following Hausman et al. (1984, p. 909), that the Poisson
distribution captures the distribution of patents granted in a year, so that

if P is the number of patents granted then f(P) = qPe-q/(P!).

*(a) Show that EP = q.

(b) Suppose you believe that EP = exp(a + bx), where x is expenditure
on R&D. Given T observations on P and x, find the log-likelihood
function needed to calculate the MLE estimates of a and b.

U Bayesian: General

1 Suppose the mean b* of your posterior distribution is your point
estimate of b. This estimate is calculated by a formula that could
conceptually be recalculated for repeated samples, so that the repeated
sample properties of b* could be examined even though it results from a
Bayesian analysis. For the CNLR model, compare the sampling
distribution properties of b* with those of bOLS, for both large and
small samples, for the case of an informative prior.

2 Suppose your posterior distribution of a parameter b is proportional to
b for 0 < b < 2 and zero otherwise. Given the loss function (b - b*)2,
what number would you choose as your point estimate b*?

3 Your posterior distribution for b is given by 2b, where 0 < b < 1. Let
b* denote an estimate of b. Suppose your loss function is (b - b*) if b* is
less than b, and is 2(b* - b) otherwise. What is the Bayesian point
estimate? Explain your calculation.

4 Consider the CNLR model y = bx + e. With a uniform prior for b the
posterior distribution looks exactly like the likelihood function, so that
the classical and Bayesian point estimate of b are the same (using the
mean of the posterior as the Bayesian point estimate). Now suppose b
satisfies the inequality constraint b > 3.

(a) What is the logical prior to employ now?

(b) What does the posterior look like?

(c) Explain the difference that now arises between the classical and
Bayesian point estimates, with particular reference to cases in
which the peak of the likelihood function corresponds to a b value
less than 3.



(d) How would a Bayesian calculate the probability that the
inequality constraint is true? (The answer is in Geweke, 1986, p.
127.)

5 Suppose the net cost to a firm of undertaking a venture is $1,800 if b
< 1 and its net profit is $Q if b > 1. You have a large data set for which
the CNLR model is applicable and you produce bOLS = 2.28 with

estimate variance V*(bOLS) = 1.0.

(a) Would a classical statistician reject the hypothesis that b = 1
against the alternative b > 1 at the 5% significance level, and
therefore undertake this venture?

(b) Assuming an ignorance prior, describe a Bayesian statistician's
posterior distribution.
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(c) What are the Bayesian's posterior odds in favor of the
hypothesis that b > 1?

(d) How small does Q need to be to induce the Bayesian to make
the same decision as the classical statistician?

6 Suppose the CNLR model applies to y = bx + e where the variance of
e is known to be 13. A Bayesian analysis of your data has produced the
posterior distribution of b as normal with mean 6 and variance 4. You
are interested in predicting y for the value x = 3.

(a) Describe the "predictive density" of this y value.

(b) What is the probability that this y value is greater than 25?

7 Suppose y = a + bx + e and you have data on periods 1 through T.
Assume that yT > yT-1. Given xT+1, explain how a Bayesian would
estimate the probability of a turning point in period T + l, i.e., yr+1 <
yT.

8 Suppose x is distributed as a Poisson, so that f(x) = e-llx(x!)-1 and you
have a random sample of size 7 yielding Sx = 35.



(a) What is lMLE?

(b) What is your estimate of the variance of lMLE?

(c) Suppose you are a Bayesian with gamma prior f(l) ala-1e- l
with a = 4.2 and b = 0.7, so that the prior has mean a/b = 6. What is
your Bayesian point estimate of l, assuming a quadratic loss
function?

9 The beta distribution with parameters a and b,  has
mean a/(a + b) and variance ab(a + b)-2(a + b + 1)-1. It is a conjugate
prior for a binomial likelihood such as is the case for estimation of the
proportion q of defectives coming off a production line. Suppose your
prior is a beta distribution with parameters a = 1.5 and b = 4.5 and you
draw 100 observations, observing 5 defectives. If your loss function is
(q - q*)2 what is your point estimate q*?

V Bayesian: Priors

1 The beta distribution given by , is a popular form for
a prior distribution when 0 < x < 1. It has mean q/(q + f) and variance
qf(q + f)-2(q + f + 1)-1. Consider estimation of the Cobb-Douglas
production function lny = lnA + alnL + blnK + e = lnA + a(lnL - lnK) +
hlnK + e, where h = a + b is the returns to scale parameter. A suggestion
for a prior distribution on (a,h) is p(a,h) = g1(a/h)g2(h), where

(a) What are the mean and variance of g1?

(b) What are the mean and variance of g2?

(c) Explain in words the rationale behind this prior.

Answers are in Zellner and Richard (1973, p. 112).

2 Suppose that before opening your ice cream store you surveyed 45
people and found that 15 preferred soft ice cream products and 30
preferred hard products.



(a) What is the maximum likelihood estimate of q, the probability
that a customer will want a soft product?

(b) Using a uniform prior what is your posterior distribution for q?
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(c) What is the mean of this distribution? Hint: The beta distribution given

by (x) a x0-1(1-x)f-1, has mean q/(q + f).

(d) What prior would be required to make the posterior mean equal to the
maximum likelihood estimate?

(e) What prior results from using Jeffrey's rule? (Prior proportional to the
square root of the determinant of the information matrix.)

(f) Assuming your ignorance prior is the prior of part (d), what is the mean
of your updated posterior distribution if during the first week of business 75
of your 200 customers ordered soft products?

3 Suppose a parameter can take on some but not all real values, but that a
transformation of this parameter exists which can take on all real values. A
uniform prior can be used as an ignorance prior for the transformation, and
change-of-variable theorem can be used to find the corresponding ignorance
prior for the original parameter. Use this approach to find an ignorance prior for

(a) s, where 0 < s, with transformation lns;

(b) q, where 0 < q < 1, with transformation ln[q/(1 - q)];

(c) r, where -1 < r < 1, with transformation ln[r2/(1 - r2)].

4 Suppose x is distributed as a Poisson, so that (x) = e-llx(x!)-1 and you have a
random sample of size 7 yielding Sx = 35.

(a) Find an ignorance prior for l for this case by using Jeffrey's rule (prior
proportional to the square root of the determinant of the information
matrix).

(b) What ignorance prior is required to make the mean of the posterior
distribution equal the MLE? Hint: Read part (c) below.



(c) Suppose the prior for l takes the form of a gamma distribution: f(x) =

e-llx(x!)-1 with a = 4.2 and b = 0.7, so that the prior has mean a/b = 6 and

variance a/b2 = 8.6. What form does the posterior take? What does this
tell you about this prior?

(d) What are the posterior mean and variance? Do they change in the right
direction, as compared to your answer to part (b) above? Explain.

5 Suppose -1 < r < 1 so that 0 < r2 < 1 and thus a possible ignorance prior for 
following question (2e) above, is the beta distribution with parameters one-half
and one-half. What ignorance prior for r does this imply?

W Hypothesis Testing: Monte Carlo

1 Suppose you have programmed a computer to do the following.

i. Draw 20 x values from a distribution uniform between 2 and 8.

ii. Draw 20 z values from a normal distribution with mean 12 and variance 2.

iii. Draw 20 e values from a standard normal distribution.

iv. Create 20 y values using the formula y = 2 + 3x + 4z + 5e.

v. Regress y on x and z, obtaining the estimate bz of the coefficient of z and the
estimate sebz of its standard error.

vi. Subtract 4 from bz, divide this by sebz and call it w1.

vii. Repeat the process described above from step iii until 5,000 w values have
been created, w1 through w5000.

viii.Order the five thousand w values from smallest to largest.

What is your best guess of the 4750th of these values? Explain your
reasoning.
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2 Suppose you have programmed a computer to do the following.



i. Draw 50 x values from a distribution uniform between 2 and 22.

ii. Draw 50 e values from a standard normal distribution.

iii. Create 50 y values using the formula y = 2 + 3x + 4e.

iv. Regress y on x obtaining the sum of squared residuals SSE1.

v. Regress y on x for the first 20 observations, obtaining SSE2.

vi. Regress y on x for the last 30 observations, obtaining SSE3.

vii. Add SSE2 and SSE3 to get SSE4.

viii.Calculate w1 = (SSE1 - SSE4)/SSE4.

ix. Repeat the process described above beginning with step ii until 3,000 w
values have been created, w1 through w3000.

x. Order the three thousand w values from smallest to largest.

What is your best guess of the 2970th of these values? Explain your
reasoning.

3 Suppose you have programmed a computer to do the following.

i. Draw 6 x values from a standard normal distribution.

ii. Square these x values and compute the sum w of the first three squared values
and the sum y of the last three squared values.

iii.Compute rl, the ratio of w to y.

iv.Repeat this process to produce 2000 r values, rl through r2000.

v. Order the 2,000 r values from smallest to largest.

What is your best guess of the 20th of these numbers? Explain your
reasoning.

4 Suppose you have programmed a computer to do the following.



i. Draw 8 x values from a standard normal distribution.

ii. Square these x values and compute their sum wl.

iii. Repeat this process to produce 3,000 w values, w1 through w3000.

iv. Compute the average A and the variance V of these 3,000 values.

v. Order the 3,000 w values from smallest to largest.

vi. Compute AA, the 2,850th value.

What are your best gueses of A, VA and AA?

5 Suppose the classical normal linear regression model applies to the money
demand function m = q + by + dr + e and you have 25 observations on income y
and on the nominal interest rate r which in your data are negatively correlated.
You regress m on y (erroneously omitting r) and use a t test to test the true null 
= 1 against the alternative b > 1 at the a = 5% significance level.

(a) Explain in detail how to conduct a Monte Carlo study to find the type 1 error
of this t test.

(b) What results do you expect to get? Explain.

6 Suppose you have programmed a computer to do the following.

i. Draw 25 x values from a distribution uniform between 4 and 44.

ii. Set ctr = 0

iii. Draw 25 e values from a distribution uniform between 0 and 10.

iv. Compute 25 y values as 3 + 2x + e.

v. Regress y on x, saving the intercept estimate as int, the slope estimate as b, the
standard error of b as se and the residuals as a vector res.

vi. Compute t# = (b - 2)/se and save it.

vii.Compute 25 y values as int + 2x + 1.087be where be is drawn randomly with
replacement from the elements of res.
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viii.Regress y on x and compute bt1 = (b - 2)/se where b is the slope coefficient
estimate and se is its standard error.

ix. Repeat from vii to obtain 1,000 bt values.

x. Order these bt values from smallest to largest.

xi. Add one to ctr if t# is greater than the 950th of the ordered bt values.

xii. Repeat from iii to obtain 3,000 t# values.

xiii.Divide ctr by . . . and compare to . . .

Explain what this program is designed to do, and complete the instructions.

7 Suppose you run a regression using 30 observations and obtain the result y = 2 +
3x + 4z + res. You wish to test the hypothesis that the z slope is 5, but because
you suspect that the error term in this specification is not normally distributed you
decide to undertake the following bootstrapping procedure.

i. Create 30 y values as 2 + 3x + 5z + e where e is drawn with replacement from
the residuals res.

ii. Regress y on x and z and save the z slope estimate.

iii.Repeat from i to produce 1,000 slope estimates.

Explain how to use these results to perform the desired test.

8 Suppose the CNLR model applies to y = a + bx + qz + dp + e where x, z and p
are not orthogonal in the data. Researcher A has unwittingly omitted regressor p
and has done an asymptotic t test to test the null b(1 - q) = 1.

(a) Explain in detail how to conduct a Monte Carlo study to investigate the
type I error of A's test.

(b) What results do you expect to get?



(c) How would you guess these results would differ from the type I error of a
Wald test of this same hypothesis? Explain your reasoning.

9 Consider the t statistic printed out by regression packages for each coefficient
estimate. Explain in detail how you would conduct a Monte Carlo study to verify
that this statistic actually has a t distribution when the null hypothesis is true.

10 The power of a test is one minus the probability of a type II error. The power
curve graphs how this number varies with the extent to which the null hypothesis
is false. Suppose y = a + bx + e and you propose using a traditional t test to test
the null hypothesis that b = 1.0. Explain in detail how to conduct a Monte Carlo
study to produce a rough picture of the power curve for this test statistic. Assume
that neither you nor the computer have access to statistical tables.

11 Suppose you have just completed a Monte Carlo study in which you have
generated data according to the CNLR model y = a + bx + e for sample size 25
and have run 2,000 regressions, creating 2,000 estimates (call them b*s) of 
(which you had set equal to 3.0 for the Monte Carlo study) along with the
corresponding 2,000 estimates (call them V*s) of the variance of these estimates.
Suppose you take each b*, subtract 3 from it, square the result, and then divide
this result by its corresponding V*. Take the resulting 2,000 numbers and get the
computer to order them from smallest to largest. What is your guess of the value
of 1,900th of these numbers? Explain your reasoning.

12 Explain how you would undertake a Monte Carlo study to graph the risk
function of a pre-test estimator when the pre-test is for a coefficient equal to zero

13 Suppose y = a + bx + e where e is distributed uniformly between -1 and 1.

(a) Explain how to undertake a Monte Carlo study to estimate the type I error
of a t-test for b = 1 using the 5% critical value from the t table.
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(b) Explain how you would test (at the 1% significance level) the
hypothesis that the type I error of your test is significantly different
from 5%.

14 Suppose you are examining the relative merit of using the LM or the
W statistic to test in the relationship y = b0 + b1x + b2w + e. Although
both statistics are distributed asymptotically as a chi-square (with one



degree of freedom), in small samples this is only approximately true, so
that in small samples one test could be "better" than the other.

(a) Which test in this example will have the lower computational
cost? Explain why.

(b) One criterion for determining which of these two statistics is
"better" is the extent to which the appropriate critical value (say,
for the 5% level) from the chi-square table is the "correct" critical
value. Explain concisely how you would undertake a Monte Carlo
study to examine this. (You do not need to explain how the test
statistics are calculated.)

(c) How would you estimate the "correct" critical values in part
(b)? (These are called empirically determined critical values.)

(d) Another relevant criterion here is relative power. Explain
concisely how you would undertake a Monte Carlo study to
examine the relative power of these two tests in this context.

(e) Explain how misleading results could arise if you did not
employ empirically determined critical values in part (d).

X Hypothesis Testing: Fundamentals

1 Using a preliminary sample, your hypothesis that the average income
in a city equals $10,000 (with alternative hypothesis that it exceeds
$10,000) is barely rejected at the 5% significance level. Suppose you
take a new sample, of the same size. What is your best guess of the
probability that it will also reject this null hypothesis?

2 For which of the following cases are you more confident about
rejecting your null hypothesis, or are you equally confident?

(a) The null is rejected at the 5% level, sample size 20.

(b) The null is rejected at the 5% level, sample size 100.

3 From sample size 15, A gets a t value of 2.2 (5% critical value is 2.1).
B replicates A's experiment with 15 new subjects, gets a t value of 1.7
(one-tailed 5% critical value is 1.75), and claims that since A's result has
not been replicated, it should not be accepted. Do you agree? Explain.
(The answer is in Busche and Kennedy, 1984).



4 Hypothesis tests of the least squares slope are based on the t
distribution, which requires that the sampling distribution of bOLS be
distributed normally. True, false, or uncertain? Explain.

5 I am running a regression using a cross-section sample of 2,000
families. The F statistic is very significant and the t values are all high,
but R2 is only 0.15. How can that be?

6 A random sample of size 4 is drawn from a normal population of x
values with variance 9 and mean m either 25 or 30. Draw a diagram
showing the sampling distributions of x under the null hypothesis that m
= 25 and under the alternative hypothesis that m = 30.

(a) Consider a testing procedure which accepts H0 if x is less than
27.5. What logic lies behind this methodology?

(b) What are the approximate probabilities of type I and type II
errors for this test?
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(c) Use your diagram to explain what happens to these probabilities
as the sample size increases.

(d) How does your answer to part (c) differ from what would
happen using the traditional testing methodology, as the sample size
increased?

(e) What is the lesson here?

7 As the sample size grows, t statistics should increase. True, false, or
uncertain? Explain.

*8 Suppose you are dealing with a specification y = a + bx + e and a
friend suggests a test statistic based on

where e is the OLS residual.

(a) What would this test be testing?



(b) What generic name would be given to it?

9 Is an F test a one-sided or a two-sided test? Explain.

Y Hypothesis Testing: Power

1 Suppose the CNLR model applies to y = a + bx + e and you are
testing the hypothesis b = 1. If the variance of e becomes larger, then
ceteris paribus the power of your test increases. True, false, or
uncertain? Explain.

2 What happens to the power of a one-sided t test as its size (type I
error) increases from 5% to 10%? Explain. Hint: Use a diagram.

3 Suppose x is distributed uniformly between 5 and q and you wish to
test the hypothesis Ho: q = 10 against Ha: q = 25 by means of a single
observed value of x. What are the size and power of your test if you
choose your rejection region as x > 9.5? Hint: Use a diagram.

4 Suppose the CNLR model applies to x = a + b + e with s2 = 40. A
sample of size 10 yields Sx = 20 and Sx2 = 50. You plan to test the
hypothesis that b = 1, at the 5% significance level, against the
alternative b > 1. If the true value of b is 4.0, what is the probability that
you will correctly reject your null hypothesis?

5 A random sample of size 64 is to be used to test the null hypothesis
that the mean of a normal population (with variance 256) is 40 against
the alternative hypothesis that it is greater than 40. Suppose the null is
to be rejected if and only if the mean of the sample exceeds 43.

(a) Find the probability of a type I error.

(b) Sketch the power curve by finding the power when the true
mean is 41, 43, 45, and 47.

6 Suppose the classical normal linear regression model applies, with
sample size 200, and you have run a regression estimating a slope
coefficient as 0.1 with a t value of 2. If the true value of this slope
coefficient is 0.06, explain how with the help of statistical tables you
would estimate the power of a t test (at 5% significance level) of this
slope equal to zero against the alternative that it is greater than zero.

Z Hypothesis Testing: Examples



1 Evaluate the following proposal for testing the assumption that Ee =
0: ''Since the residuals from the OLS regression are BLUE estimates of
the disturbances, the aver-
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age of the residuals will be a good estimate of the expectation of the
disturbance. Therefore, after fitting the OLS regression, compute the
average residual and reject the null hypothesis (that Ee = 0) if it is
significantly different from zero."

2 Suppose the population regression function is specified to be C = b0 +
b1Y + b2A + b3YA + e where C is consumption, Y income, and A age.
Explain how you would test the hypothesis that the marginal propensity
to consume does not depend on age.

3 Suppose we have run the following two regressions:

where y is loans, x is sales, r is the nominal rate of interest and p is a
measure of the expected rate of inflation. Asterisks denote estimates.
Suppose that you are certain that borrowers respond to the real rate of
interest, rather than responding separately to its components.

(a) Which equation will have the higher R2, or will they be the
same? Explain.

(b) Which estimate of the effect of the real interest rate do you

prefer: ;, ; or - ; or are you indifferent among them?
Explain why.

(c) How would you use the results of these regressions to test the
hypothesis that borrowers look only at the real rate of interest
rather than paying separate attention to its components, using a t
test?

(d) As (c), but using an F test?



4 Suppose you believe that the CNLR model applies to y = b0 + b1x +
e, but you suspect that the impact of x on y depends on the value of
another explanatory variable, w. Explain how you would test for this.

5 Suppose you are estimating the cost function lnC = b0 + b1lnQ +
b2(lnQ)2 + e. Explain how to test the hypothesis that the elasticity of
cost (C) with respect to output (Q) is unity. Be explicit.

6 Consider the "translog" production function given by

(a) Comment on the statement: "Obtaining a negative coefficient
estimate for lnK casts doubt on the applicability of this production
function because it should possess a positive elasticity with respect
to capital."

(b) How would you test for this functional form versus the
Cobb-Douglas?

7 Consider the "transcendental production function" Y = ALaKbe(qL +

dK). How would you test this for this functional form versus the
Cobb-Douglas?

8 Suppose Yt = bEt-1Mt + et where Et-1Mt denotes the rational

expectation of Mt made at time t - 1. Assume that M is determined by

Suppose we are interested in testing whether expectations are rational.
Consider the two equations
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(a) What cross-equations restriction reflects the rational
expectations hypothesis?



(b) Explain in detail how you would use a Wald test to test this
restriction. Be explicit. (The answer is in Hoffman and Schmidt,
1981, p. 265.)

9 Suppose yt = a + b0xt + b1xt-1 + b2xt-2 + b3xt-3 + b4xt-4 + et and
we wish to estimate by assuming a polynomial distributed lag of order 2,
so that bi = d0 + d1i + d2i2, where i is the lag length. Explain how you

would test the hypothesis that the bi lie on a second-order polynomial.
Hint: Structure a standard F test, calculated by running restricted and
unrestricted regressions.

10 Suppose that output is given by the Cobb-Douglas function Y =

AKaLbe where K is capital, L is labor, A, a and b are parameters, and e
is an error distributed log-normally with mean one.

(a) What does e distributed log-normally mean? Why might we
want it distributed log-normally? Why would we specify it to have
mean one?

(b) Show that testing for constant returns to scale implies testing
that a + b = 1. How would you test this hypothesis?

11 Suppose the CNLR model applies to y = a + bx + qw + e but that
your data covers three distinct periods. Explain how to test the
hypothesis that b and q (but not a) were unchanged across the three
periods, against the alternative that all parameters were different in all
three periods.

12 Suppose you have estimated the relationship

(a) How would you test the hypothesis that the long-run (steady
state) elasticity of y with respect to x is unity?

(b) Explain how you would calculate a 90% confidence interval for
this elasticity.

13 Suppose you have observations on average cost C and total output Y
for 45 firms. You run a linear regression of C on Y and it looks pretty
good, but a friend suggests doing a diagnostic check on functional form.
You decide to do a RESET test followed by a rainbow test. Explain how



you would do these two tests.

AA Hypothesis Testing: Numerical Examples

1 A wage/price equation with an intercept and four explanatory
variables was estimated for (a) 39 quarters in which no incomes policy
was in place, (b) 37 quarters in which an incomes policy was in place,
and (c) the combined data. The respective estimates of the variance of
the error term are 0.605, 0.788 and 0.815. Can we conclude that the
parameters are unchanged in the presence of incomes policy?

2 Suppose you have cross-section data on income y and electricity
consumption x for three regions and you have regressed lnx on lny for
each region and for the full sample, obtaining (standard errors in
parentheses):

SSE T

Region A 1.1 (0.05) 45 92

Region B 0.90 (0.1) 32 82

Region C 0.85 (0.08) 11 32

All regions 0.88 (0.05) 100 206

where  is the slope coefficient estimate.
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(a) Test that this equation is the same for all regions.

(b) Assuming that these equations are the same, test that the
common elasticity is unity.

(c) Suppose that in parts (a) and (b) you wished to assume that the
intercepts were definitely different (and so in part (a) were only
testing for all the slopes being the same, and in part (b) were only
assuming that the slope coefficients were the same). Explain what
you would have to do to enable you to answer parts (a) and (b).



3 Suppose you have 24 observations from y = a + bx + e, which satisfies
the CNLR model. You wish to test the hypothesis that there was a
structural break between the 20th and 21st observations. To this end,
you run three regressions, one using all the data (SSE = 130), one using
only the first 20 observations (SSE = 80); and one using only the last
four observations (SSE = 20).

(a) Calculate the F statistic for the traditional Chow test.

(b) Calculate the F statistic for the Chow test usually employed
only when the number of observations in the second period is "too
small."

(c) Explain how to do a Monte Carlo study to examine the question
of which F test is more powerful.

4 Suppose you draw the observations 1, 2, 3, 4, 5 from a normal
distribution with unknown mean m and unknown variance v.

(a) Test the null m = 4 against the alternative m > 4 at the 5%
significance level.

(b) Suppose you are told that v = 0.36. Would your testing
procedure differ? If so, how? If not, why not?

5 Suppose the classical normal linear regression model applies and we
regress log output on an intercept, log labor and log capital to get
estimates of 6.0, 0.75 and 0.40 for the intercept, slope of log labor and
slope of log capital, respectively. The estimated variance-covariance
matrix has 0.015 in each diagonal position, 0.005 beside the diagonal
and zeroes elsewhere. Test the hypothesis that there is constant returns
to scale, i.e., that the two slopes sum to unity. Explain how you
performed this test.

6 Suppose the CLR model applies to y = a + bx + e and your regression
yields estimates of a and b of 1 and 2, with estimated variances 3 and 2,
respectively, estimated covariance -1, and estimated error variance 4. A
new observation, y = 17 and x = 3, appears. Calculate the F statistic for
testing if this new observation is consistent with the earlier data. Hint:
Do not try to calculate the sum of squared errors.

7 Suppose y = b0 + b1x + b2w + e and you have obtained the regression

results  = 4.0,  = 0.2, with estimated variances 2.0 and 0.06, and



estimated covariance 0.05. You wish to test the hypothesis that b1 is the
inverse of b2. Calculate the relevant test statistic, explaining your
calculations.

8 Suppose y = q + b(x + a)-1 + e and you have the observations 1, 1/2,
1/3, and 1/4 on x, and the corresponding observations 1, 5, 7, and 7 on
y. What is the LM test statistic for testing a = 0? (The answer is in
Breusch and Pagan, 1980, p. 243.) Hint: Use a computer package for
the final step.

9 Suppose y = a + bx + e and et = ret-1 + ut. In the Durbin two-stage
estimation procedure, the first stage estimates the equation

which can be rewritten as
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(a) What restriction, in terms of the qs, should be imposed when
running this regression?

(b) Suppose you run the unrestricted regression, obtaining estimates
8, 3, 0.5, and -2 of q0, q1, q2, and q3, respectively, and estimated
variance-covariance matrix V*. What formula, in terms of V*,
would you use to calculate the Wald statistic to test this restriction?

BB Test Statistics

1 If the CNLR model applies to y = Xb + e with T observations and K
explanatory variables, it can be shown that SSE/s2, the sum of squared
OLS residuals divided by the variance of the error term, is distributed as
a chi-square with T - K degrees of freedom. It is well known that the
mean and variance of a chi-square distribution are equal to its degrees
of freedom and twice its degrees of freedom, respectively. Use these
facts to find the expected value and variance of s2 = SSE/(T - K).



2 A normally distributed variable has skewness zero and kurtosis three.
One way of testing for normality is to refer the statistic Nskew2/6 +
N(kurt - 3)2/24 to a chi-square distribution with 2 degrees of freedom,
where N is the sample size, skew is a measure of skewness, and kurt is a
measure of kurtosis. Explain what must be the logic of this and thereby
deduce where the 6 and 24 must have come from.

3 Suppose the CNLR model applies to y = Xb + e. Consider the statistic

where T is the sample size, et are the recursive residuals, k is the
number of explanatory variables in the regression, and the summation is
from t = k + 1 to T. Harvey (1981, p. 156) notes that when the model is
correctly specified, q has a t distribution with T - k - 1 degrees of
freedom, a result which follows immediately from the properties of the
recursive residuals.

(a) Explain the logic of why this statistic has a t distribution.

(b) What are the key properties of the recursive residuals that are
relevant here?

(c) Will this test work with OLS residuals in place of recursive
residuals? Why, or why not?

4 Suppose the CNLR model is applicable to Y = Xb + e and we wish to
test the J stochastic restrictions that Er = Rb or r = Rb + u, where u is
distributed normally with mean zero and variance-covariance matrix Q.
The statistic

is suggested in this context. Explain the intuitive sense of this statistic.
Hint: This is called Theil's "compatibility" statistic.

5 Suppose you wish to use a Chow test to test for whether the entire
parameter vector is unchanged in going from period one to period two,
but as part of both the null and the alternative hypotheses you wish to
allow the variances of the error terms in the two periods to differ. The
statistic



is suggested in this context. Explain the intuitive sense of this statistic.
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6 Suppose yt = g(xt,b) + et where g is a nonlinear function and et is
distributed normally. Then it can be shown that the LM statistic for
testing a restriction can be written as LM = e'Z(Z'Z)-1Z'e/(s2) where e is
the residual vector that results from restricted nonlinear least squares, Z
is a matrix, each column of which contains T observations on the partial
of g with respect to an element of b, and s2 is the usual MLE estimate

of s2, namely SSE divided by the sample size T. Suppose g includes an
intercept.

(a) Show that LM = TR2 where R2 is the coefficient of
determination from regressing e on Z.

(b) Why was it necessary to specify that g included an intercept?

7 (a) The NR2 for an LM test of the hypothesis that q = d = 0 when y =
a + bx + qw + dz + e comes from running what regression?

(b) How would you adjust the NR2 figure if you wanted to use an
F-table rather than a chi-square table to implement the test?
Explain your logic.

8 Suppose y = a + bx + e where et = ret-1 + ut.

(a) What regression would you run to get the NR2 for an LM test
of the hypothesis that r = 0? Hint: Ignore the first y observation,
write the relationship in terms of the error u, and note that one of
the derivative terms turns out to be the estimated et-1.

(b) Explain the logic behind the following statement. The LM test
for a first-order autocorrelated error boils down to testing the usual
against zero.



9 Suppose the CNLR model applies to y = a + bx + dw + e. Explain how
to test b = d2 using:

(a) an "asymptotic" t test.

(b) a W test.

10 Suppose we have T observations from the Poisson f(x) = lxe-l/x!
What are the LR, LM and W statistics for testing the null that l = l0?
Hint: Ex = l.

11 Suppose we have T observations from the exponential f(x) = qe-qx.

Show that the W and LM tests for the hypothesis q = q0 are identical.

12 Suppose y = a + bx + dw + e and you wish to test b = 0.

(a) Show that LR is the sample size times the log of the ratio of the
restricted SSE to the unrestricted SSE.

(b) What is the relationship between the W and t test statistics?

(c) What regression would you run to get NR2 to calculate LM?

CC Hypothesis Testing: Theoretical Derivations

1 Suppose x is distributed normally with mean m and known variance
s2. Given T randomly drawn observations on x, the usual way of testing
the null hypothesis that m = m0 is to divide (x - m0) by its standard
deviation, creating a standard normal.

(a) Show that this formula results from applying the LR test.

(b) Show that this same formula can be interpreted as a Wald test.

(c) By finding the partial of the log-likelihood with respect to m,
show that the LM testing procedure also gives rise to this formula.

*2 Suppose the CNLR model is applicable to Y = Xb + e and we wish to
test the set of J restrictions R b = r. Suppose further that s2 is known.
Show that the W, LM and LR statistics are identical by using the
following hints:
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i. Derive the LR test in terms of SSER and SSEU, then use the textbook formula
SSER - SSEU = e'X(X'X)-1[R(X'X)-1R']-1(X'X)-1X'e/s2.

ii. Calculate W by using z'V-1z, where z is N(0,V), and write it in terms of 

iii.Calculate LM by applying this formula to test the Lagrange multiplier 
(get the expression for l from the constrained maximization that yielded
SSER). Alternatively, apply the LM formula directly (more difficult).

*3 Suppose that x1 and x2 are bivariate normally distributed with expectations
zero, variances unity, and covariance zero. Let w1 = x1 - x2 and w2 = x1

let  and  and let u = y1/y2. Use a matrix formulation to show
that the pdf of u is F(1,1).

4 Suppose that Y = Xb + e and the CNLR model assumptions are satisfied with
s2 unknown, and that you are interested in testing J linear restrictions. Show that
the likelihood ratio l is a monotonic function of the F statistic. Hint: Use 

and SSEU notation instead of algebraic formulas.

*5 Show that if the adjusted R2 increases when a set of J explanatory variables
is deleted from a regression, then the F statistic for testing the significance of
these J variables is less than one. Hint: Define adjusted R2 as 1 - (SSE/df)/
where v is the variance of the dependent variable, and work exclusively with
these terms. (The answer is in Edwards, 1969, p. 28.)

*6 Explain how the "rainbow test" of Utts (1982, p. 1801) is just a variant of the
Chow test.

DD Pre-test Estimators

1 Explain in detail how to conduct a Monte Carlo study to graph the risk
function of a pre-test estimator.

*2 Suppose y is distributed uniformly between zero and b for 0 < b < 4, so that
f(y) = 1/b on the relevant interval. We suspect that b = 4 and decide to estimate
b as 4 if our single observation y > 2. Otherwise we estimate b as 2y. Hint:
distributed U(a,b) then V(x) = (b - a)2/12.



(a) What is the MSE of the restricted estimator b* = 4?

(b) What is the MSE of the unrestricted estimator b** = 2y?

(c) What is the MSE of the pre-test estimator for b < 2?

(d) What is the mean of the pre-test estimator for b > 2?

(e) What is the variance of the pre-test estimator for b > 2?

3 Evaluate the following suggestion for dealing with pretest bias: Break the
sample into two parts, use the first part to perform the pretest and the second
part to estimate.

EE Non-nested Hypothesis Tests

1 The degree to which an initial stock offering is underpriced is thought by one
strand of the literature to be a linear function of risk, the degree of asymmetry of
information between the underwriters and the issuers, and the underwriter's
reputation. A second strand of the literature suggests that it is a linear function o
risk, the degree of asymmetry of information between issuers and investors, and
the proportion of the offering
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retained by the issuers. Assuming you have appropriate data, explain in
detail how you would assess the truth of these two theories.

2 Suppose researcher A believes y = bx + e and researcher B believes y
= qw + v where in both cases the CNLR model applies. You have four
observations on (y, x, w), namely (4, 1, 2), (3, 2, 1), (-6, -3, -2) and (-1,
0, -1).

(a) Perform a non-nested F test or a J test, whichever is easier.

(b) Explain how the other test would be performed.

3 A colleague feels that for current firm sizes in a certain industry
marginal product mp decreases with firm size N according to



but you believe that it varies according to

You have 34 observations on several comparisons that have been made
between pairs of firms. Each observation reports the small firm size
(Ns), the large firm size (Nl) and the difference (diff) between their
marginal products. Explain how to use these data to address this dispute
between you and your colleague.

FF Nonspherical Errors: Monte Carlo

1 Explain in detail how to conduct a Monte Carlo study to show that
inference is "biased" when using OLS when the data has been generated
by a GLR model.

2 Explain in detail how to undertake a Monte Carlo study to examine
the relative merits of OLS and EGLS when yt = b0 + b1xt + et and the

variance of et is known to take the multiplicative form . Note:
comparing EGLS, not GLS.

3 Explain in detail how to conduct a Monte Carlo study to examine the
relative merits of the OLS and EGLS estimates of b when Y = a + bX +
u and the CNLR assumptions hold except that the variance of u jumps
to a higher level halfway through the data set.

4 Explain very briefly how to conduct a Monte Carlo study to
investigate the relative power of the Goldfeld-Quandt and the
Breusch-Pagan tests for a specific case of heteroskedasticity.

5 Explain how you would generate 25 observations on an AR(1) error
for use in a Monte Carlo study.

6 Explain briefly but clearly how to do a Monte Carlo study to examine
the difference between the risk functions of the OLS estimator, a
relevant EGLS estimator, and a relevant pre-test estimator for a case in
which the CLR model holds except that we may have a first-order
autocorrelated error.

7 You believe the CLR model assumptions apply to y = a + bx + e
except that you fear that the error variance is larger for the last half of
the data than for the first half. You also fear that the error is not
distributed normally, so that the Goldfeld-Quandt test will not have an F



distribution. Explain how to bootstrap the Goldfeld-Quandt statistic to
test the null that the error variances are the same.

8 Suppose you have estimated cost share equations assuming a translog
production function homogeneous of degree one, using a SURE
estimation procedure imposing sym-
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metry constraints. You estimate substitution and price elasticities using
formidable-looking formulas and wish to produce confidence intervals
for these elasticity estimates. Explain in detail how to bootstrap to
produce the confidence intervals.

GG Nonspherical Errors: General

1 Because it provides a better fit to the sample data, the GLS estimator
is considered more desirable than the OLS estimator in the GLR model.
True, false, or uncertain? Explain.

2 In the absence of lagged dependent variables serving as regressors, the
problems caused by autocorrelated errors concern efficiency, not
consistency. True, false, or uncertain? Explain.

3 Suppose it is suspected that the error term in a CLR model has as
variance-covariance matrix a known matrix W. It is suggested that this
could be tested by setting up a test statistic based on the difference
between the GLS and the OLS estimators of the coefficient vector.
Comment on this proposal.

4 Suppose we have data from a GLR model and run OLS. Then we
learn the true error variance-covariance matrix and so run GLS. We
note from the computer output that for some of the coefficients the
standard errors in the second regression are larger than in the first
regression. Is this possible? Explain why or why not.

5 Negative autocorrelation in the disturbances can reduce the variance
of the OLS estimator below what it would be in the absence of
autocorrelation. Is it possible that it could make the variance less than
that of the GLS estimator? Explain intuitively why or why not.



6 If the presence of nonspherical errors causes our variance estimates of
the OLS coefficients to be overestimated, then the probability of
making a type I error increases. True, false, or uncertain? Explain.

HH Heteroskedasticity: General

1 Suppose the CLR model applies to y = a + bx + qw + e. A researcher
mistakenly believes that the error variance is proportional to the square
of x and so divides all the data through by x before running OLS. If x
and w are positively correlated in the data, what can you say about the
bias of the resulting estimate of q? Explain.

2 If the variance of the disturbance is proportional to x, we should run a
regression with all data divided by x. True, false, or uncertain? Explain.

3 The "solution" to heteroskedasticity involves multiplying through the
estimating equation by a "correcting factor." Doing so will build
spurious correlation into our estimating equation, rendering our ultimate
regression results unmeaningful. True, false, or uncertain? Explain.
Hint: Spurious correlation causes the R2 to be higher than otherwise.

4 Suppose y = bx + e where the CLR assumptions hold except that the
variance of the error term e is a constant K times x2. Then the BLUE is
the average of the y values divided by the average of the x values. True,
false, or uncertain? Explain.

5 Suppose the CLR model assumptions hold for both of the
relationships y = bx + e and w = ax + u, where e and u are error terms
with different variances. Your data
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produce the two estimates bOLS and aOLS. Then although regressing (y
+ w) on x produces an unbiased estimate of (b + a), it is not as efficient
as (bOLS + aOLS), because it does not allow for heteroskedasticity.
True, false, or uncertain? Explain.

6 Suppose income is the dependent variable in a regression and contains
errors of measurement (a) caused by people rounding their income to
the nearest $100, or (b) caused by people not knowing their exact
income but always guessing within 5% of the true value. How do these



alternative specifications affect the properties of the OLS estimator?

7 Suppose that all individuals have exactly the same consumption
function Ci = b0 + b1Yi + ei and suppose that the CLR model applies

with the variance of e denoted by s2. Now suppose that we have time
series observations on aggregate data with varying numbers Nt of
individuals. Assuming that b0, b1, and s2 are constant from time period
to time period, and that the errors are time-independent, how would you
estimate b0 and b1? Hint: Figure out how the aggregate data have been
generated.

8 Suppose y = (a + bx)e where the multiplicative error term e is
spherical with E(e) = 1.

(a) How would you estimate a and b? Hint: Express e as one plus a
new error.

(b) How would you estimate a and b if in addition you knew that e
was distributed normally? Be explicit.

9 Suppose we have two equations, each satisfying the CLR model:

Suppose you know that a1 + b1 = 1, a2 = b3 and V(e) = 2V(j). Explain
how you would estimate.

10 Suppose you have N observations on a variable with constant mean
m but a heteroskedastic disturbance. What is the heteroskedasticity-
consistent estimate of the variance of the sample mean? How does it
compare to the usual estimate of this variance that ignores the
heteroskedasticity?

11 Comment on the following statement: "If the errors are characterized
by an ARCH process OLS is BLUE and therefore should be the
estimator of choice."

12 Suppose that we have the model w = a + bx + e and the CLR model
applies except that w is a Box-Cox transformation of y and the variance

of the error term is dxq.



(a) Write out the log-likelihood for N observations on y and x.

(b) Explain how you would test jointly for a linear functional form
and homoskedasticity.

(c) Suppose the test in (b) is rejected. Explain how you would test
for linear functional form assuming heteroskedasticity. (The answer
is in Lahiri and Egy, 1981.)

13 A friend is investigating the determinants of per capita demand for
lamb in the 50 U.S. states. She shows you the following preliminary
report. "Data were available for 1991 in current dollars. I regressed per
capita lamb expenditure on state GDP, the state's 1991 average price of
lamb, and state advertising on lamb during 1991. A Breusch-Pagan test
suggests there is heteroskedasticity associated with GDP, so I divided
all the data through by GDP and reran the regression. The coefficient on
advertising is significantly positive suggesting that advertising should be
increased." What advice would you offer your friend?
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II Autocorrelated Errors: General

1 The CLR model is applicable to the weekly relationship yt = a + bxt +
et.

(a) If you have aggregate data on (non-overlapping) two-week
periods, how would you estimate?

(b) If you have weekly moving-average data, with each observation
being one-third of the sum of the actual data for the previous,
current and following weeks, how would you estimate?

Hint: Exploit the weekly relationship given above to determine the
relationship relevant for your data. Example: For part (a), add the
relationships for weeks 1 and 2 to get the relationship relevant for
the first observation on the aggregate data.

2 While neither autocorrelated errors nor the presence of a lagged value
of the regressand among the regressors introduces bias into OLS
estimation, the combination of the two does. True, false, or uncertain?



Explain.

3 Suppose yt = a1 + a2yt-1 + a3xt + a4xt-1 + et and that a2a3 + a4 = 0.

(a) Explain how you would test this restriction.

(b) How would you estimate, assuming the restriction is true?

(c) Assuming the restriction is true, what kind of error would be
associated with a regression on y on x? Hint: Use a lag operator.

(d) What is the lesson here?

4 It is sometimes suggested that the DW statistic be used to test for
nonlinearity. Provide an intuitive rationale for this.

5 Suppose in the report given in question HH13 your friend had stated
that the DW statistic was close to two and concluded that
autocorrelated errors was not a problem. What comment would you
have made on this?

JJ Heteroskedasticity: Testing

1 Suppose y = a + bx + gD + e where D is a dummy for sex. Explain
how you would test that the variance of e is the same for males as for
females.

2 Suppose casual examination of residuals from a regression run on
quarterly data suggests that the variance of the error term for the fourth
quarter may be bigger than for the other quarters. Explain how you
would test this.

3 The regression y = a + bx + dw produced SSE = 14 using annual data
for 196170, and SSE = 45 using data for 197188. Use these results to
calculate a Goldfeld-Quandt test for a change in error variance starting
in 1971.

*4 Suppose the CLR model applies to y = bx + e except that
heteroskedasticity is suspected. You have the observations 1, 2, -3, 0 on
x, and corresponding observations 4, 3, -6 and -1 on y.

(a) What is the usual estimate of the variance of the OLS
ESTIMATOR?



(b) What is White's heteroskedasticity-consistent estimate of the
variance of the OLS estimator?

(c) What is the value of White's test statistic for heteroskedasticity?

(d) Suppose you suspected that there was heteroskedasticity of the
form s2 = g(a + dx2) where g is some unknown function. What is
the value of the studentized Breusch-Pagan statistic?
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5 From a sample of 25 observations, each representing a group of
households (taken from a prominent family expenditure survey), the
result

was obtained, where y is expenditure on food and x is total expenditure.
The c2 refers to the Breusch-Pagan test of homogeneity versus s2 =
exp(a1 + a2lnx + a3lnz) where z is the reciprocal of the number of
households in each group. What suggestions would you offer?

KK Heteroskedasticity: Numerical Examples

1 Suppose we have observations y1 = 1, y2 = 3 and y3 = 5 from the
GLR model y = b + e (i.e., only an intercept) with V(e) diagonal with
diagonal elements 1.0, 0.5 and 0.2. Calculate:

(a) bOLS and bGLS;

(b) V(bOLS) and V(bGLS);

(c) the traditional estimate of V(bOLS), namely s2(X'X)-1;

(d) the estimate of V(bGLS), assuming you only know that V(e) is
proportional to the variance-covariance matrix specified above.

2 Suppose x, y and w are, respectively, 1, 6 and 12, and that you know
that x = q + e1, y = 2q + e2 and w = 3q + e3 where the ei are
independent with zero expectations and variances 1, 4, and 9,



respectively. What is your estimate of q?

3 Suppose the CLR model holds for y = bx + e except that  is
proportional to x. You have observations 3, 10, and 15 on y, and
corresponding observations 1, 4, and 9 on x.

(a) Find the GLS estimate of b, and its estimated variance, using
the GLS formula.

(b) Find the GLS estimate of b, and its estimated variance, by
applying OLS to transformed data.

(c) How much more efficient is this estimate than OLS?

4 Suppose the CLR model holds for y = a + bx + e except that you
suspect that the variance of the error term for the first 22 observations
is not the same as for the other 32 observations. For the first 22
observations the data (expressed as deviations about their means) yield
Sxy = 100, Sx2 = 10, and Sy2 = 1,040. For the remaining observations
the data yield Sxy = 216, Sx2 = 16, and Sy2 = 3,156.

(a) Perform a Goldfeld-Quandt test at the 5% significance level to
test whether the error variances are the same in both periods.

(b) Assuming that the error variances differ between the two
periods, what is bEGLS?

(c) What estimate of the variance of bOLS would you use if you
believed that the error variances differ between the two periods?
Hint: Recall that SSR = bOLS'X'y.

LL Autocorrelated Errors: Numerical Examples

1 Suppose we have four observations on y produced as follows: yt = K +
et t = 1,2,3,4 where K is a constant. Suppose further that et = ut + ut-1

+ ut-2 where the ut are iid with mean zero and variance 1/3. Let K* be
the sample mean of the ys and let K** be the average of the first and
last observations on y. Which of these two estimators do you prefer?
Why?
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2 Suppose yt = K + et where et = ut + ut-1 with the ut independent

N(0,s2) variables. If you have three observations y1 = 4, y2 = 5, and y3
= 3, what is your estimate of K?

3 Suppose the CLR model applies to y = bx + e except that e is
first-order auto-correlated with autocorrelation coefficient r = 0.5 and
variance 9. You have two observations on x and y; the first observations
are x = 1 and y = 4, and the second observations are x = 2 and y = 10.

(a) What is the OLS estimate of b?

(b) What is the GLS estimate of b?

(c) What are the variances of these two estimates?

4 Suppose the CLR model applies to y = bx + e where there are only
two observations, with x1 = 1 and y2 = 2, except that the error vector
has the distribution p(1,1) = 0.1, p(1,-1) = 0.4, p(-1,1) = 0.4, and
p(-1,-1) = 0.1.

(a) What is the bias of bOLS?

(b) What is its variance?

(c) What is the variance of the BLUE?

MM SURE: Numerical Examples

1 Suppose y1 = b + e1 and y2 = e2 where the ei have variance 2 and
covariance 1. What formula would you use to estimate b given T
corresponding observations on the ys?

2 Suppose y1 = m1 + e1 and y2 = m2 + e2 where the es have variances
2 and 3, respectively, and covariance 1.

(a) Given 20 observations with Sy1 = 60 and Sy2 = 100 what are
your estimates of the ms?

(b) If in addition you knew that m2 = 2m1, what are your estimates
of the ms?



3 Suppose y = ax + u and q = bw + v where u and v are serially
independent errors with zero means, V(u) = 2, V(v) = 3, and E(utvr) = 1
for t = r and zero otherwise. Data are expressed as deviations from
means. Using the sample moment matrix

y q x w

x 3 6 4 2

w 1 1 2 1

(a) Find the BLUEs of a and b.

(b) Test b = 2a.

(c) Suppose you had not been told the values for V(u) = 2, V(v) = 3,
and E(ut, vr). If the sample size is 11, Sy2 = 25, Sq2 = 33, and Syq
= 15, what estimates would you use in their stead?

NN Stochastic Extraneous Information

1 In the CLR model y = a + bx + dw + e, if an extraneous unbiased
estimator of b, say b*, is available, then regressing y - b*x on w will
provide a better estimate of d than is obtainable from the regression of y
on x and w. True, false, or uncertain? Explain intuitively.

*2 Suppose the CLR model applies to Y = X1b1 + X2b2 + e so that 

is given by (X2'M1X2)-1X2'M1Y. Suppose  is an unbiased estimate of

b2 from a previous study, with variance-covariance matrix .
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(a) What are the variance-covariance matrices of  and ?
Call them V1 and V2.

(b) Show that regressing  on X1 produces an unbiased

estimate  of b1.



(c) What is the variance-covariance matrix of ? Call in W.

(d) Show that W is smaller than V1 if  is nnd.

(e) What is the common sense of this result?

Hint: For part (d) use the result (from partitioned matrix inversion)
that (X1'M2X1)-1 = (X1'X1)-1 + (X1'X1)-1X1'X2'(X2'M1X2)'-

1X2'X1'(X1'X-1)-1. (The answer is Goldberger, 1964, pp. 258-9.)

3 Suppose y = bx + e and the CLR model assumptions hold with the
variance of e known to be 16. Suppose you have data on y and on x,
with Sxy = 186 and Sx2 = 26. Suppose that b was estimated unbiasedly
in a previous study to be 6, with a variance of 4.

(a) What is your estimate of b? Explain your reasoning, as well as
producing an actual number for your estimate.

(b) What is the variance of your estimate? How much lower is it
than the variance of the estimate that does not incorporate the
information from the previous study?

4 Suppose b in y = bx + e was estimated unbiasedly in a previous study
to be 3, with an estimated variance of 4. Suppose you have 21
observations, for which the CLR model holds, with Sxy = 20, Sy2 = 360

and Sx2 = 10.

(a) What is your estimate of b? Hint: Use SSE = SST - SSR = Sy2 -
(bOLS)2Sx2

(b) What is the approximate efficiency gain over bOLS = 2?

5 Suppose you have 22 annual observations on output Y, capital K and
labor L and you plan to estimate a Cobb-Douglas production function.
You suspect that there is approximately constant returns to scale and so
wish to build this information into your estimation procedure. Your
uncertainty is captured by a variance of 0.01 attached to your
''guestimate" of constant returns to scale. Explain how you would
estimate.



6 You have 75 observations on a dependent variable y and two
independent variables x and w, for which the CLR model assumptions
hold. You give your data to your research assistant, foolishly not
keeping a copy, and instruct him to run the appropriate OLS regression.
Unfortunately he is shortly thereafter killed in a tragic accident. You
hire a replacement. She cannot find either the data or the regression
results in her predecessor's files, but she is very industrious and finds a
new, comparable sample with 95 observations. She reports to you the
regression results using these new data.

(a) Suppose she finds the missing regression results. What
instructions would you give her? Be explicit.

(b) Suppose she finds the lost data. Would you change your
instructions of part (a)? If yes, what are your new instructions?

OO Nonspherical Errors: Theoretical Results

1 Suppose the GLR model holds. Derive the formula for the GLS
estimator incorporating extraneous information in the form of a set of J
linear restraints Rb = r.

*2 Suppose Y = Xb + e and the GLR model holds with var(e) = W.
Suppose further that W = I + XVX' with V any symmetric positive
definite matrix.

(a) By repeated application of the theorem

show that the OLS and GLS estimators are identical in this special
case.
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(b) What implication does this result have for Monte Carlo studies
relating to nonspherical errors? Hints: Three applications of the
theorem are necessary. Interpret a negative sign on the LHS as a
negative sign on C.

*3 Show that the seemingly unrelated estimator



yields the same result as OLS applied to the individual equations for the
cases in which

(a) the S matrix is diagonal; or

(b) the X matrix is the same in all equations. Hint: Make use of

 and then .

PP Heteroskedasticity: Theoretical Results

*1 The Breusch-Pagan statistic can be written as w'Z(Z'Z)-1Z'w/2s*4,

where wt is  and s*2 is the average of the , the squared OLS
residuals. Here Z is a matrix of observations on variables thought to
affect the variance of the error term, with the first column a column of
ones. It is claimed that this is equivalent to one-half the regression sum

of squares from a regression of  on Z. Explain why this is so.

*2 Suppose the CNLR model applies to y = bx + e except that the
variance of et is exp(awt). Find the Cramer-Rao lower bound for the
variance of the estimate of a.

3 A popular general form of heteroskedasticity is  where a
is a vector of parameters, and xt is a vector of observations on variables
influencing the variance. The first element of xt is set equal to unity.

(a) Why is the first element of xt set equal to one?

(b) What is the null hypothesis of homoskedasticity in terms of the
parameters?

(c) Show how the form s2 = kwq, where k and q are parameters,
and w an exogenous variable, is a special case of this general form.

*4 Suppose the CLR model holds for y = Xb + e except that 
Show that the LR test statistic for testing a = 0 is LR = Tln(s2)* - Sln

 where T is the sample size, (s2)* is the restricted



 is the unrestricted MLE of ; (The answer is in
Harvey, 1981, p. 164.)

*5 Suppose y = Xb + e and you wish to calculate the heteroskedasticity-
consistent estimate of the variance of the OLS estimator. Define a
transformation matrix P with the inverses of the OLS residuals on the
diagonal and zeros elsewhere. Transform y and X to obtain y* = Py and
X* = PX, and create W = P-1X.

(a) Show that the IV estimator of y* regressed on X*, using W as a
set of instruments for X*, is just bOLS.

(b) Use the formula for the variance of the IV estimator assuming a
spherical error to find the estimated variance-covariance matrix of
this estimator.

(c) Explain what relationship this bears to White's
heteroskedasticity consistent estimate of the variance of the OLS
estimator. (The answer is in Messer and White, 1984, pp. 182-3.)

6 Suppose the probability P of owning a VCR is given by the logit
formulation P = (1 + exp-(a + bx))-1 where x is income implying that Q
= ln[P/(1 - P)] = a + bx. You group the data (on the basis of x) to
calculate for each group Q* = ln(P*/1 - P*) where P* is the proportion
of households in that group owning
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a VCR. Consider now Q* = a + bx + e where e arises entirely from the
fact that Q* is estimated. Estimation of this equation incorporates a
correction for heteroskedasticity based on the variance of ei being given
by [NiPi(1 - Pi)]-1, where Ni is the number of households in the ith
group. Show how this variance is derived. Hint: Q* is a (nonlinear)
function of P* and the variance of P* you know.

QQ Autocorrelated Errors: Theoretical Results

1 Suppose you are regressing using observations on N households for
two consecutive time periods. Assume the errors are cross-sectionally
uncorrelated, but timewise autocorrelated with common r.



(a) What does the variance-covariance matrix of the errors look
like?

(b) Devise a transformation matrix that enables you to use OLS for
estimation purposes. Hint: Work it out for N = 2.

*2 For what values of the first-order autocorrelation coefficient will first
differencing reduce the degree of first-order autocorrelation? Hint: Let
et = ret-1 + ut so that first differencing creates an error vt = et - et-1.
Find the values of r for which the absolute value of the autocorrelation
between vt and vt-1 is less than |r|.

*3 Suppose yt = byt-1 + et and that et = ut + ut-1 where the us are iid

with zero mean and variance s2. Derive an expression for the
asymptotic bias of bOLS in terms of b and s2.

*4 Suppose the CLR model applies to y = Xb + e except that et = ret-2
+ ut, as might be the case, for example, for semi-annual data. Suppose
you have five observations, the variance of u is s2, and r is known.

(a) What is the appropriate transformation to use to compute the
GLS estimator? Hint: Make a guess, based on what you know
about first-order autocorrelated errors.

(b) Confirm your answer by showing explicitly that the 5 × 5
transformation matrix P that it implies is such that P'P = W-1,
where W is the variance-covariance matrix of e, to a factor of
proportionality.

RR Dynamics

1 Suppose a firm selects the value of yt to minimize the cost function

 consisting of a weighted sum of "disequilibrium"
and "adjustment" costs (y* is the desired level of y). Show that this
leads to a traditional partial adjustment estimation model.

2 Consider the "adaptive expectations" model



where one of these two equations must have an error term added to it to
provide a stochastic element. Regardless of which equation has the
error term, the resulting estimating equation will have a nonspherical
error. True, false, or uncertain? Explain.

3 Consider the consumption function  where
Lt-1 is
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liquid assets at the beginning of the current period and ; is the
desired level of such assets during the current period, given as a
proportion q of permanent income YP. Permanent income is determined
by an adaptive expectations process YPt = YPt-1 + l(Yt - YPt-1).

(a) Show that the relevant estimating equation has Ct-1, Lt-1, Lt-2
and Yt as explanatory variables.

(b) Comment on the estimation problems of this estimating
equation.

4 Consider the "partial adjustment" model

and the "adaptive expectations" model

(a) How would you discriminate between these two models?

(b) How would your answer to (a) be affected if b2 = 0?

5 Consider an accelerator model in which the actual capital stock K
moves towards the desired K* according to a partial adjustment process

. Assume a constant capital/output ratio to justify



K* as a fraction q of output Y, and assume a depreciation rate d so that
gross investment I is It = Kt - Kt-1 + dKt-1.

(a) Derive an estimating relationship in which It is regressed on Yt
and Kt-1 and discuss its identification properties.

(b) Suppose you do not have data on K. Eliminate K and then
discuss the identification properties of the resulting estimating
equation. Hint: Solve for K using the lag operator.

(c) What is the long-run impact of a sustained unit change in Y?
Does your answer make economic sense? Explain.

6 Suppose p is determined linearly by pe and two other explanatory
variables x and w, with pe determined adaptively as

.

(a) Derive the estimating equation and discuss its estimating
problems.

(b) Consider the following two ways of estimating this equation,
both of which assume a spherical error term: (i) OLS; and (ii) OLS
in conjunction with a "search" over l. Will these estimates be
essentially the same? If not, which would you prefer, and why?

(c) How is your answer to (b) affected if the coefficient on w is
known to be zero?

7 Consider the dynamic model (1): yt = h + ayt-1 + b0xt + b1xt-1 + et.
The long-run equilibrium is y = qx where q, the long-run multiplier is
(b0 + b1)/(1 - a), which can be estimated by running OLS on equation
(1) and plugging the OLS estimates into the formula for q. The variance
of this estimate can be estimated by using the formula for the variance
of a nonlinear function of a vector.

(a) Show how equation (1) can be rewritten to allow direct
estimation of q and its variance by regressing y on x, Dy and Dx.
Hint: Begin by subtracting ayt from both sides.

(b) Most dynamic models can be rewritten as "error-correction
models," expressing this period's change in y as a linear function of
(among other things) the extent to
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which the system was in disequilibrium in the previous period.
What is the "error-correction" form for equation (1)? Hint: Start by
subtracting yt-1 from both sides.

(c) In some empirical work the y and the x in the preceding are
variables expressed in logarithms, and the error-correction term
(i.e., the extent to which the system was in disequilibrium) is
expressed as (lnyt-1 - lnxt-1). What, in words, does this imply about
the nature of the equilibrium relationship assumed between y and
x?

8 Suppose Ey is influenced by both x and z, each having its impact
distributed according to a Koyck distributed lag, but with different
parameters, so that

where L is the lag operator.

(a) Find the relevant estimating equation and explain why it is
overidentified. How many overidentifying restrictions are there?

(b) Assuming a random error added onto the estimating equation,
explain how you would test each of the overidentifying restrictions
separately using a t test. Does the error need to be distributed
normally? Why or why not?

(c) Explain how you would test these restrictions jointly.

SS Stochastic Regressors: Monte Carlo

1 Explain how to undertake a Monte Carlo study to examine the
relative merits of OLS and 2SLS in the simultaneous equation system

2 Explain how to conduct a Monte Carlo study to compare OLS and IV
estimators in the context of measurement errors.



TT Measurement Error

1 In the "permanent income" model c* = by*, in which the asterisked
variables are observed with error, the sample mean ratio (the mean of c
divided by the mean of y) is a more desirable estimator of b than is
bOLS. True, false, or uncertain? Explain in one sentence.

2 Measurement errors in a dependent variable create bias in OLS
estimates and increase their variance. True, false, or uncertain? Explain.

3 The argument that inflation stimulates growth has been discredited by
regressing (across countries in a given year) y, the rate of growth in real
income, on x, the rate of inflation. However, inflation and real income
measures are notoriously subject to error. Suppose that there is in reality
an exact linear relation between y*, the true rate of growth in real
income, and x*, the true rate of inflation. Their sum, w* = x* + y*, the
true rate of growth in money income, is correctly measured, but x* is
erroneously measured as x = x* + e where e is an independent random
error, and y* is measured as y = w* - x.
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(a) Derive a useful expression for the asymptotic bias of the OLS
estimator.

(b) What implication can be drawn regarding the discreditation
mentioned above?

4 Consider y = bx + e where x is measured with error. (Note no
intercept.) Show explicitly that the two-group method produces the
same estimate as using an instrumental variable with -1 and +1 values.

5 Suppose the CLR model applies to y = a0 + a1x + a2w + e except that
estimated values of w have been employed, and w has been
overestimated in your sample.

(a) If the measured w is the true w plus 2, what are the implications
for your estimates of the ai?

(b) If the measured w is 1.15 times the true w?



(c) If the measured w is the true w plus a random error distributed
uniformly between zero and four?

*6 For the special case of y = bx + e, where x is measured with error,
show that the OLS and reverse regression estimates of b can be
interpreted as providing bounds on b.

UU Instrumental Variables

1 Suppose y = Xb + e and a set of instrumental variables Z is available
for X.

(a) Show that bIV can be obtained by regressing y on W, the
predicted values of X resulting from a regression of X on Z.

(b) Use the result of (a) to suggest a formula for the variance-
covariance matrix of the instrumental variable estimator.

2 Suppose yt = at + bxt + gzt + qyt-1 + et + fet-1 so that the regressor

yt-1 and the error are contemporaneously correlated. What would you
choose as an instrumental variable to produce the IV estimator? Be
explicit.

3 Suppose the CLR model applies to y = bx + e but you choose to
estimate b by using the instrumental variable estimator that results from
using the fixed regressor w as an instrument for x. You have three
observations on the triple (y,x,w): (-21, -1, 1), (14, 1,2), and (21,2,3).

(a) What is the ratio of the MSE of bOLS to the MSE of bIV?

(b) What t statistic value would you use to test b = 12, assuming
estimation using bIV?

4 Suppose the CLR model applies to y = Xb + e except that V(e) = s2W
and X is contemporaneously correlated with e. Assume that a set of
instrumental variables W is available for X and you know the
transformation matrix P such that P'P = W-1. Using intuition, formulate
an IV estimator that has been "modified" to correct for nonspherical
errors and suggest how you would estimate its variance-covariance
matrix. Explain the logic of your intuition.



5 Consider m = bi + e where m is the money supply and i is the interest
rate, and for simplicity we have ignored the usual income variable and
omitted the intercept. Suppose that the money supply is determined
exogenously by the monetary authorities, so that e relates to i, not m.

(a) Show explicitly that using m as an instrument for i produces the
same estimate as inverse least squares.

(b) Suppose you know that for certain observations m was
determined exogenously by the monetary authorities and for the
other observations i was determined exoge-
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nously. How would you estimate? Hint: Use the result in (a). (The
answer is in Kohli, 1989, p. 283.)

6 Suppose y = bx + e where there is no intercept and one explanatory
variable.

(a) Show that using the moment condition Sxe = 0 results in OLS.

(b) Show that using the moment condition Sze = 0 results in IV.

(c) Spell out what you would do to produce the GMM estimate
here. Be explicit.

7 You have observations on y, i, and h. You wish to estimate y = a + bi
+ qh + e but suspect that h is measured with error. Suppose also that
you have in your data file two legitimate instruments for h, namely w
and z.

(a) Explain how you would test for this measurement error.

(b) Assuming measurement error, explain how you would estimate.

VV Simultaneous Equations

1 The main reason that we seldom use OLS to estimate the coefficients
of a structural equation in a simultaneous equation model is that other
methods of estimation are available which yield better-fitting equations.
True, false, or uncertain? Explain.



2 If the equation is not identified, the OLS estimator cannot be
calculated. True, false, or uncertain? Explain.

3 Suppose you wish to estimate the equation y = a0 + a1x + a2w + e and
there is another equation x = d0 + d1y + v. You want to ignore this
other equation and use OLS, but a colleague advises you instead to
regress x on w, get predicted values x* and then regress y on x* and w.

(a) What is the rationale behind this advice?

(b) Is it good advice?

4 Suppose y1 = a0 + a1y2 + a2x + e1 and y2 = b0 + b1y1 + e2, and the

reduced form estimates are y1 = 2 + 4x and y2 = 1 + 8x.

(a) Estimate the identified structural coefficients.

(b) Assume that a1 = 0 and estimate the identified structural
coefficients.

(c) Assume that a0 = 0 and estimate the identified structural
coefficients.

5 Consider the simultaneous equation model Q = aP + dx + e and Q =
bP + u where x is exogenous. Your data yield SQ2 = 110, SP2 = 50, Sx2
= 80, SPQ = 100, SQx = 90, and SPx = 30.

(a) What is the OLS estimate of b? The 2SLS estimate? The
indirect least squares estimate?

(b) Which estimation method would you choose to estimate a and
d?

6 Consider the simultaneous equation model



What are the 2SLS estimates of the identified parameter(s)?
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7 Consider the following simultaneous equation model, where the errors
are not independent: y1 = bx + u1 and y2 = ay1 + u2.

(a) How would you estimate b?

(b) Show that the ILS and 2SLS estimators of a are identical. Call it
a*.

(c) What is it about this example that makes them identical?

(d) Evaluate the use of a* as opposed to aOLS.

(e) On the basis of this example, what general conclusion would
you draw about estimation in the context of recursive simultaneous
equations?

8 When estimating the reduced form of a system of simultaneous
equations, we do not incorporate the fact that the reduced form
disturbances are correlated across equations. Should we, to obtain more
efficient estimates? Why or why not?

9 Consider a cobweb model in which demand is Qt = a0 + a1Pt and
supply is Qt = b0 + b1w where w is (a) Pt-1, (b) an adaptive expectation

of Pt using the adaptive expectations mechanism ,
or (c) the rational expectation of Pt. Given time series data on P and Q,
explain how you would choose among these three specifications.

*10 Suppose S: q = ap + u and D: q = bp + v are two relations operating
simultaneously, where the errors u and v have zero covariance and q
and p are quantity and price measured in logs.

(a) Show that the plim of the least squares regression coefficient of
q on p is equal to a weighted average of a and b, the weights being
the variances of u and v, respectively.

(b) Show why this estimate could be interpreted as a lower limit on
the absolute values of the supply and demand elasticities.



(c) If  where k is a known constant, show how a and b can
be estimated. Hint: Two regressions are needed.

(d) What does this question illustrate about identification?

WW Hausman Tests

1 Comment on the following test for contemporaneous correlation
between X and e. Run OLS on the original equation, then regress the
estimated errors on X and test the resulting coefficient vector against
zero, using an F test.

2 Suppose the CLR model applies to y = a0 + a1x + a2w + e except that
you suspect that w contains measurement error. Fortunately an
instrument is available for w and you are able to conduct a Hausman
test. Because only the w variable is suspect, the degrees of freedom for
the Hausman chi-square test statistic is one. True, false, or uncertain?
Explain.

3 Suppose y = Xb + e and on the null hypothesis satisfies the CNLR
model assumptions. Let Z be an instrumental variable for X (where Z
also is fixed in repeated samples). Consider q = bOLS - bIV.

(a) What is the expected value of q?

(b) Find the covariance between bOLS and q by calculating E
(bOLS - EbOLS)(q - Eq)'.

(c) Use the result of (b) to find V(q) in terms of V(bOLS) and

V(bIV).

(d) What test statistic could be employed to test the vector q = 0?

(e) Explain in words what conclusion it would be reasonable to
draw if q tested significantly different from zero (i.e., what are the
null and alternative hypotheses of this test?). (The answer is in
Hausman, 1978, p. 1253.)
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4 Suppose y = Xb + e and on the null hypothesis satisfies the CLR
model assumptions. Let Z be an instrumental variable for X (where Z
also is fixed in repeated samples).

(a) By inserting y = XbOLS + eOLS into the formula for the IV
estimator, express bIV - bOLS as a function of eOLS.

(b) Use this result to calculate the formula for the variance-
covariance matrix of bIV - bOLS in terms of V(bOLS).

5 Suppose y = bx + e, where you know that V(e) = 100, and you have
observations 20, 30, -50, 60, -60 on y, corresponding observations 3, 7,
-4, 5, -11 on x and corresponding observations 1, 2, -2, 4, -5 on z, an
instrument for x.

(a) Perform a Hausman test directly by calculating the OLS and IV
estimators and taking their difference, etc.

(b) What is the OV version of this Hausman test? Calculate the
square of the relevant statistic.

(c) An alternative way of conducting the OV version is as follows.
Calculate the predicted x values, w, from a regression of x on z. Regress
y on x and w and perform a Hausman test indirectly by testing the
coefficient on w against zero. Show that this produces the same test
statistic as in (b).

6 Suppose it is believed that y = a + bx + e. Student A has run OLS to
obtain aOLS = 12 and bOLS = 21 with V(aOLS), V(bOLS) and
C(aOLS, bOLS) estimated as 2, 4 and -1, respectively. Student B
believes that this equation is part of a simultaneous equation system and
has run 2SLS to obtain a2SLS = 14 and b2SLS = 20 with V(a2SLS),

V(b2SLS) and C(a2SLS, b2SLS) estimated as 3, 6 and -2, respectively.
Use these results to test student B's belief that x is an endogenous
variable.

7 Suppose we have a single equation from a system of simultaneous
equations, namely Q = a0 + a1P + a2Y + a3A + e where Q and P are
thought to be endogenous, A is thought to be exogenous, and there is
some dispute over whether Y is endogenous or exogenous. Researcher
A has applied 2SLS assuming that Y is endogenous, producing estimates



a* with estimated covariance matrix V(a*). Researcher B has applied
2SLS assuming that Y is exogenous, producing estimates a** with
estimated covariance matrix V(a**). Explain how you would use these
results to test whether or not Y is endogenous. (The answer is in Spencer
and Berk, 1981, p. 1079.)

XX Qualitative and Limited Dependent Variables: Monte Carlo

1 Suppose observations on a dichotomous dependent variable have been
generated by a logit model with a single explanatory variable x. The
OLS estimator of the slope of x from a linear probability model could be
used to estimate the effect of a change in x on the probability of the
dependent variable equaling one. Explain how to conduct a Monte
Carlo study to examine the bias of this estimator when x takes on its
mean value.

2 Explain how to conduct a Monte Carlo study to compare the bias of
the OLS estimator to that of the Tobit estimator, in the context of a
censored sample.

3 Suppose you are estimating the fraction f of income spent on
transportation as a function of several characteristics. You have data on
f and several characteristics of 900 individuals. You estimate using the
traditional y = Xb + e but a friend suggests using a logistic functional
form instead.

(a) Explain the easiest way to do this.
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(b) Explain in detail how you would conduct a Monte Carlo study
to investigate the relative merits of your and your friend's
estimation of the influence of an explanatory variable on f,
assuming that your friend's specification is correct.

(c) Explain how to bootstrap to find the variance of your friend's
influence estimates.

4 You wish to estimate a salary equation lny = a + bx + e. You have
observations on y, x and w for several individuals, but for those
individuals for whom d + qw + u is less than zero the observation on y is
coded zero (u is an unobserved error). Explain how to conduct a Monte



Carlo study to investigate the relative merits of OLS and the Heckman
two-stage estimator.

YY Qualitative Dependent Variables

1 Suppose the probability of getting a student loan is determined by a
student's grade point average (GPA), age, sex, and level of study -
undergraduate, MA, or PhD student.

(a) Explain how to use the logit model to represent this.

(b) Given data on 45 students, 25 of whom were offered a loan,
explain how to estimate the parameters of your model.

(c) How would you estimate the probability that a 23-year-old,
male, undergraduate student, with a GPA of 3.2, will obtain a loan?
Be explicit.

(d) Suppose you wish to test b = 0. Is an LM, LR or W test easiest?
Explain why.

(e) Explain in detail how to use the test of part (d) to test for
whether or not level of study has any influence on the probability
of getting a loan.

2 Suppose the probability that a person is a smoker is given by the logit

model, namely ea+bx(1 + ea-bx)-1 where x is a dummy variable taking
the value one for males and zero for females. We have 100
observations, of which 10 are smoking males, 15 are smoking females,
and 35 are nonsmoking males.

(a) What is the MLE of the probability that a person is a smoker,
under the null that b = 0?

(b) What are the MLEs of a and b?

(c) What is the MLE of the probability that a male is a smoker, and
of the probability that a female is a smoker? Compare these
answers to those obtained by estimating the probability by the
fraction of smokers in the data in the relevant category.

(d) Explain what calculations are needed to test the hypothesis that
b = 0 using an LR test.



3 Unemployment insurance tax rates paid by firms vary, but there is an
upper limit. Suppose you believe that the probability of being at this
limit is affected by firm size, but that this influence of firm size varies
across three identifiable industry types.

(a) How would you estimate?

(b) How would you test the hypothesis that this influence does not
vary across industry type? Be explicit.

4 For a large sample of full-time salaried workers you have data on
years of education, years of work experience, gender, race,
occupational category and annual salary. Unfortunately, for reasons to
do with the way the data were collected you only know the salary
range, namely less than 20 thousand, between 20 and 30 thousand,
between 30 and 40 thousand, etc., up to above 80 thousand. You wish
to test jointly if (a) gender affects annual salary through the intercept,
and (b) if gender affects the influence of experience on annual salary.
Explain how you would perform the test.
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5 Suppose you are surveying people to see how much they are willing to
pay to create a park. You follow the advice of the contingency
valuation literature and ask people a yes or no question - are you willing
to pay $w?, where w is an amount that you vary from person to person.
You specify that individuals value the park according to v = Xb + e
where X is a matrix of observations on individuals' characteristics, so
that if vi > wi individual i is willing to pay $wi. Explain in detail how
you would estimate b. The answer is in Cameron (1988).

6 The outcome of a new policy applied in all 50 US states was viewed
as very successful, moderately successful or unsuccessful. Suppose the
ith state's unobserved index of success is y*i = a + bxi + ei and we wish
to use an ordered logit model to estimate. What is the likelihood
function?

ZZ Limited Dependent Variables

1 The average length of life for 900 US male professors was 73 years,
compared to the US male life expectancy of 70 years. Can we conclude
that professors live longer?



2 Suppose you wish to estimate the demand curve for tickets to hockey
games. You believe that demand is determined linearly by a variety of
variables, such as ticket prices, the relative standings of the home and
visiting teams, home city income and population, etc. You have data for
ten years, during which time some rinks were on several occasions sold
out. What do you recommend doing with the data for the soldout
games?

3 We wish to estimate the hedonic prices of various characteristics of
rental units by regressing rent on these characteristics. Some of our data
are on rental units to which rent controls apply, so that the rent for these
units (which can be identified) is below the free market price. Explain
how to estimate.

4 Suppose the price of a stock is determined by p = a + bx + e where e
is distributed normally with mean zero and variance s2. On some days
the stock does not trade, so the bid and ask prices (Pb and Pa,
respectively) are reported instead of the actual price (which if it were to
have been determined, would lie between the bid and ask prices). Given
a year's worth of daily data, including days on which the stock did not
trade, explain how you would estimate.

*5 Suppose you are estimating the determinants of income assuming a
CNLR model. To protect privacy all individuals with income greater
than $100,000 were assigned the income value $100,000. Further, all
those with income less than $5,000 were deleted from the sample.
Explain how you would estimate.

6 Due to transactions costs, small changes in an independent variable
will have no effect on the decision variable. Suppose the desired change
in asset holdings, y*, is determined by the change in yield, x, but that
actual asset holdings, y, do not change for small changes in y*. Suppose
this is formalized through the following ''friction" model:
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(a) Draw a graph of this in Dy*, Dy space.

(b) What is the likelihood function for this model?

AB Duration Models

1 Suppose you have a random sample of workers, from several
localities, who have recently suffered, or are suffering, unemployment.
For those currently employed, the unemployment duration is recorded
as xi. For those still unemployed, the duration is recorded as yi, the
duration to date. Assume that unemployment duration w is distributed

exponentially with pdle-lw for 0 < w < .

(a) Find the MLE of l. Hint: Find the cumulative distribution of w.

(b) How would you estimate the variance of this estimator?

(c) Suppose the average duration of unemployment depends on
local conditions. How would you model this and estimate the
parameters? Hint: Calculate the average duration of unemployment
in terms of l.

*2 Suppose you have data from an insurance company on auto accident
claims. You can deduce the market value of all the autos in the data set,
but unfortunately the cost-of-repair figure is not available for "write-
offs." Suppose that auto value p and cost-of-repair x are distributed

independently exponentially as ae-ap and be-bx, respectively, and that
an auto is "written off" if its cost-of-repair exceeds its value.

(a) Find the MLEs of a and b. Hint: Find the cumulative
distribution of the exponential.

(b) Suppose you learn from the Motor Vehicle Department that of
all autos the fraction scrapped annually because of accidents is 2%.
How would you use this information, in conjunction with your
estimates from part (a) above, to estimate the probability of having
an accident? Hint: Use the expression for the probability of being
scrapped.
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Appendix E:
Answers to Evennumbered Questions

A2 (a) Numbers are being drawn from a normal distribution with mean 1 and variance 25.
The average of 100 such numbers has a sampling distribution that is normal with mean
1 and variance 25/100 = 0.25 (standard deviation 0.5). The 1900th ordered value
should cut off 5% of the tail of this distribution. From the normal tables a value 1.
standard deviations above the mean should do this, so a good guess is 1 + 1.645 × 0.5
= 1.82.

(b) To be negative an average would have to be more than two standard deviations
below the mean. From the normal tables the probability of this happening is 0.0228%,
so we would expect 0.0228 × 2000 = 45 or 46 of these values to be negative.

A4 (a) This procedure examines the sampling distribution of the number of successes
occurring in 60 draws where the probability of success is 20%.

(b) In each draw of 60 numbers we expect 20 percent to be successes, so gav should be
approximately 12.

(c) From introductory statistics, the variance of this sampling distribution is Npq w
N is the number of draws, p is the probability of success and q is 1 - p. So gvar sho
be close to 60(0.2)(0.8) = 9.6.

A6 (a) (i) Choose m and s2 equal to 2 and 4, say. (ii) Draw 20 x observations from N(2,4).
(iii) Calculate the sample variance s2 = S(x - xbar)2/19. (iv) Repeat from (ii) to get 500

estimates of s2. (v) Average the 500 s2 estimates and see if it is close to 4.

(b) Calculate the variance of the 500 s2 estimates (as S(s2 - s2bar)2/499) and see if it is
close to 32/19 = 1.68.

A8 (a) (i) Choose values for N, m and s2. (ii) Get the computer to produce 
random variable with mean m and variance s2 (say from a normal distribution). (iii)
Calculate x, the average of these N values, and save it. (iv) Repeat from (ii), say 2,000
times, yielding 2,000 x values. (v) Compute the sample variance of these 2,000 values
and compare to s2/N.

(b) s2/N where s2 = S(x - x)2/(N - 1).



(c) At stage (iii) above, also calculate s2/N and save it. Then at stage (v) also calculate

the mean of these 2,000 s2/N values and compare to s2/N.

A10(i) Get the computer to choose a value from a uniform distribution, say between 0 and
1. (ii) If this value is less than 0.95, get the computer to select a value of 
N(50,4), otherwise from N(50,100). (iii) Repeat from (i) 25 times. (iv) Calculate the
mean and the median of the 25 x values, call them x and xmed, and
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save them. (v) Repeat from (i), say 2,000 times. (vi) Calculate the sample mean and
the sample variance of the 2,000 x and of the 2,000 xmed. Compare these two sample
means to 50, and the two sample variances to each other.

A12A is an estimate of the mean of the sampling distribution of (6 + 2x)2
standard normal. This is 36 plus 4 times the expected value of the square of a standa
normal. The square of a standard normal is distributed as a chi-square with one degre
of freedom. The expected value of a chi-square is equal to its degrees of freedom, so
is an estimate of 40.

A14(a) (i) Choose q = 0.1 so that v = .09/60 = 0.0015. (ii) Draw 60 observations from a
distribution uniform between zero and one, and count the number k of these
observations less than 0.1. (iii) Calculate q* = k/60 and v* = q* (1 - 
from (ii) above to obtain 2,000 v* values. (v) Find the mean mv* of the v* values and
compare to 0.0015.

(b) Calculate the variance of the 2,000 v* values as vv* = S(v* - mv*)
sev*, the estimated standard error of mv*, can be estimated by the square root of
vv*/2000. The test statistic (mv* - 0.0015)/sev* is distributed as a standard normal.

B2 There are four possible outcomes, x = 0, 1, 2, and 3, yielding four possible net payoffs,
-2, -2, 0, and 4, respectively. The probabilities of these events are 1/8, 3/8, 3/8, 
1/8, respectively, allowing calculation of the expected net payoff as a loss of 50 ce

B4 (x) = 1/(b - a) for x between a and b, zero otherwise. Ex = integral from 
a) = (a + b)/2. V(x) = E(x - Ex)2. The easiest way to calculate is as Ex
producing (b - a)2/12.



B6 x/y is a nonlinear function, so (E(x/y) <?> Ex/Ey. Since both Ex and 
= 1. Possible values of x/y are 2/3, 1, and 3/2, with probabilities 1/4, 1/2, and 1/4,
respectively. E(x/y) can therefore be calculated as 25/24.

B8 (a) The plim of the sample mean is m, and because the plim of a nonlinear function is
the nonlinear function of the plim, it follows that the plim of the inverse of the sa
mean is 1/m.

(b) The asymptotic variance of a nonlinear function of an estimator is the square of 
first derivative times the variance of the estimator. The square of the first derivat
x-1 with respect to x is x-4, estimated by 1/16. The variance of x is 50/25 = 2, so the
variance of x-1 = 1/8.

B10The expected value of x is l/(l + 1); setting this equal to the mean of the observations 
we get lmm = x/(1 - x).

B12This correction makes the formula an unbiased estimator of the true variance.

C2 (a) The expected value of b* is b, and the variance is 2s2/T(xa - xb)2
sample size is T, with T/2 observations in each group.

(b) Allocate observations to make xa - xb as large as possible - this makes the variance
of b* as small as possible.

C4 Your estimator is the difference between the sample means, which is unbiased with
variance 4/T + 16/(30 - T) where T is the number of observations drawn on 
T = 10 to minimize this variance.

C6 This estimator is unbiased, so in that sense it is good. But it is not efficient - th
other estimators, such as OLS, that are unbiased but have a smaller variance.

D2 (a) Em* = 4, so bias = 0. V(m*) = 3, so MSE = 3. Em** = 3, so bias = 1. 
27/16, so MSE = 2.7.
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(b) It is tempting to conclude that m** is better than m* on the MSE criterion, but this
is not true for all values of (the usually unknown) m.



D4 (b) Smaller. The BLUE is Sx/T which is larger because the denominator of 
bigger.

(c) In this case w = s2/m2, so that m* = Sx/(T + 1) = [T/(T + 1)]BLUE.

E2 Prob(P) is proportional to 

Maximizing ln of this with respect to P yields 

F2 (a) This procedure is comparing the sampling distribution of the OLS slope estimator 
using a correct specification to the sampling distribution of the OLS estimator bb wh
results from adding an irrelevant explanatory variable w. Since adding an irrelevant
regressor does not create bias, B and BB should be roughly equally close to 3.

(b) Since by construction the irrelevant explanatory variable w is correlated with th
relevant explanatory variable x, including w will increase the variance of the slope
coefficient estimator of x, so VB should be smaller than VBB.

F4 The OLS estimate of b is 4, yielding two estimated errors, 2 and -1. For bootstrapping
purposes these errors must be multiplied by 1.414, the square root of 2, for the smal
sample adjustment. The usual estimate of the variance of the OLS estimator is s
1.0. In the bootstrap Monte Carlo study, there are four possible b estimates occurring
with equal probability, namely 4.0, 5.7, 3.2 and 4.85, corresponding to the four
different error vector drawings. The variance of these estimates is 0.8.

G2 The result that the OLS estimator is BLUE in the CLR model does not require that the
errors are distributed normally.

G4 The slope estimate from regressing y on x is Sxy/Sx2, whereas the inverse of the

reverse regression is Sy2/Sxy. They are not the same.

G6 (a) Write age as an approximate linear function of experience, with slope coefficient
Substituting out age yields a slope coefficient on experience of b + lq
both likely to be positive in this context, the resulting estimate of b should have
positive bias.

(b) Since sex should not be correlated with age, the coefficient comparable to 
(a) is likely to be zero, so there should be no bias.

G8 Such an intercept would arise from a time trend, interpreted in this context as
representing technological change.

G10



Pick a reasonable value for d and use it to calculate T values of w = (
T observations on x. Now regress y on an intercept and w, noting the sum of squared
errors that results. Now choose a slightly different value for d and repeat. Continue in
this way until the smallest value of the sum of squared errors is found.

G12(a) x and w are orthogonal.

(b) x and w are highly collinear.

(c) A lot of the variation in y is uniquely due to w, so that including w
upward bias in the estimator of the variance of the error term (and thus also in the
estimator of the variance of b*).

G14True because R2 has no correction for degrees of freedom. A regression with 
explanatory variables fits perfectly a sample with N observations. As 
deteriorates because the perfect fit to the first N observations has a smaller and smaller
influence on the overall fit.
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H2(a) Eb* = b + aSx/Sx2, so bias is a/2; V(b*) = s2/Sx2 = 9/10. Thus MSE is 

(b) The MSE of the usual estimator is V(bOLS) = s2/S(x - x)2 = s2/[Sx
MSE(b*) < MSE(bOLS) if a2 < 0.4.

H4E(bOLS)'(bOLS) = b'b + Ee'X(X'X)-1(X'X)-1 X'e and since this is a scalar it is equal to
its trace, so that it can be written as b'b + tr[Ee'X(X'X)-1(X'X)-1X'e] = 
tr[EXee'X(X'X)-1(X'X)-1] = b'b + tr[s2(X'X)-1] = 15.4

I2 Subtract the mean of y, say q, from both sides to get y - q = a - q + bx
unbiased estimate of b but biased estimate of a.

I4 (a) 0.8y = 4 + 2(0.8x).

(b) 0.8y = 4 + 1.6x.

(c) y = 5 + 2.5(0.8x).



(d) The t statistic is unchanged. The new slope coefficient estimate is the old divided by
0.8, and its variance is the original variance divided by the square of 0.8, so when
constructing the new t statistic the 0.8s cancel out, leaving the original 

I6 (a) ln(Y/W) = a1 + a2lnW + a3Q implies that lnY - lnW = a1 + a2lnW + 

= a1 + (a2 + 1)lnW + a3Q. Thus a1, (a2 + 1), and a3 are estimates of 
respectively.

(b) The standard errors are those of a1, a2 and a3.

I8 (a) The relationship in the new data is 3y = 3a + (3b)x + 3e, so the variance of the new
error term is 36, 9 times the variance of e.

(b) The a and b estimators are now unbiased estimators of 3a and 3b, respectively.

J2 The variance-covariance matrix becomes smaller, but its estimate is an overestimate,
because s2 is overestimated; the net effect is uncertain.

J4 Uncertain, because we cannot deduce the sign of the covariance between 

dOLS.

K2Regress y - z on an intercept and (2x - z + w) to get slope estimate d* and then use 
get b* = 2d* and q* = 1 - d*.

K4Restricted OLS = bOLS + (X'X)-1R'[R(X'X)-1R']-1(r - RbOLS) where the restriction is

written as Rb = r. For this example R = (1,1) and r = 4. Note that although (
known, it is known up to a factor of proportionality which cancels out. Substitution 
numerical values yields restricted OLS = (18/7, 10/7)'.

K6Since the observations are in deviation form, a can be considered zero. The variance of
the unrestricted estimate of b is found from the upper left element of s
2. The restricted estimate is calculated by regressing (y - w) on (x - w),
s2/S(x - w)2 = 5/7.

K8(a) The OLS estimating line is horizontal at y = 2.

(b) The line must pass through the origin, implying that the residuals of the first t
observations must be 0 and 4. The sum of squared errors is minimized by equating the
other two residuals, passing the OLS line through the point (4,2), creating residuals
and 2 for the last two observations. The estimating line is thus y = 0.5
calculated using the formula Sxy/Sx2 for the slope estimate.

(c) R2 for the unrestricted line is zero. For the restricted line it is
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1 - 24/16 = -0.5.

(d) R2 for the unrestricted line is zero. For the restricted line it is -8/16 or +4/16, the
former resulting if the average of the estimated ys is calculated as equal to the mean of
the ys.

(e) R2 can be misleading when a regression is restricted.

L2 Set the partial derivative of the sum of squared errors with respect to 
repeat for b2, and then solve these two equations.

L4 Find the expected value of the sum of squared errors associated with the restricted
OLS estimator; this will reveal the required adjustment for degrees of freedom.

L6 (a) The expected value of qbOLS is qb, so its bias is (q - 1)b. the sum of the squared

biases of the elements of qbOLS is thus (q - 1)2b'b. The variance-covariance matrix of
qbOLS is q2s2(X'X)-1, so the sum of the variances of the elements of 
q2s2tr(X'X)-1.

(b) b'b/[b'b + s2tr(X'X)-1].

(c) The OLS estimator is multiplied by a value q that is less than unity, shrinking it
towards zero.

(d) The optimal q depends on the unknown parameter b.

L8 False. OLS estimate of b2 is (X2'M1X2)-1X2'M1y

=(X2'M1X2)-1X2'(I - X1(X1'X1)-1X1')y

=(X2'M1X2)-1X2'X1(X1'X1)-1)X1')y

which is not necessarily zero. This is an example of a situation in which the Ballent
lets us down. Although y and X2 are orthogonal, y and X2-residualized-for-X
be orthogonal.



M2 (a) Yes. The OLS formula ignores the observations corresponding to the zero 
because they offer no information regarding how y varies as x varies. This can be seen
formally by noting that the pooled formula collapses to the OLS estimate on the first
subset of data, an unbiased estimate.

(b) No. It is biased towards the zero vector because the OLS formula incorporates the
information that for these observations when x varies there is no corresponding
variation in y. This can be seen formally from the pooled formula.

M4 The pooling formula from question M1(a) is [X1'X1 + X2'X2]-1 [X1'X
X2'X2b2OLS] where the subscripts refer to the first and second subsets of the data.
Substituting X2b1OLS for Y2 we get [X1'X1 + X2'X2]-1[X1'X1b1OLS

X2'X2(X2'X2)-1X2'X2b1OLS] = b1OLS.

N2 False. x2 is not a linear function of x.

N4 False. The variances become bigger, but so also do their estimates.

N6 (a) Yes, because x and w are uncorrelated.

(b) No, because the estimate of s2 is biased upward owing to omitted 

N8 False. Inclusion of this regressor creates perfect multicollinearity.

N10(a) There is no way of knowing a priori whether or not this condition is satisfied. A
more reasonable suggestion might be to test for whether this condition is met and
choose one's estimator accordingly.

(b) The variance, and thus the MSE, of aOLS is s2Sw2/[Sx2Sw2 - (Sxw)
a* is bSxw/Sx2 and its variance is s2/Sx2 so its MSE is b2(Sxw)2/(Sx

condition for the latter to be smaller than the former is that b2 < s2S
(Sxw)2] = V(bOLS).
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N12(a) V(bOLS) = s2(X'X)-1 and V(b*) = s2(X'X + kI)-1X'X(X'X + kI)-1
show that (X'X)-1 - (X'X + kI)-1X'X(X'X + kI)-1 is nnd, or, alternatively, that (
kI)(X'X)-1(X'X + kI) - X'X is nnd. Multiplying this out requires that 2



nnd, true for k > 0.

(b) No, because b* is biased.

O2 y = 14 + 5x + 5NM - NF - 4SF, obtained by working out the intercept for each of the
four categories.

O4 None. This information has no implication for the parameter values.

O6 (a) b1 + b3.

(b) b2 = b3.

(c) No, because the original specification does not specify that income increases as 
number of years completed within a category increases.

(d) The part (a) answer becomes a3 + a4 + a5. The part (b) answer becomes 

O8 (a) Add a dummy for weekends.

(b) Add an interaction dummy, the product of N and H.

O10B is correct. The dummy variable coefficient estimate of 2 results from normal
equations forcing ef and em to be zero, in the same way that the intercept estimate
causes the sum of the residuals to equal zero.

P2 (a) b0OLS should be the mean of the first 20 observations, so its variance should be

100/20 = 5. (b0OLS + b1OLS) should be the mean of the second 25 observations, so

its variance should be 100/25 = 4.

(b) The s2(X'X)-1 formula yields variances 5 and 9 for the OLS estimates of 
respectively, and -5 as their covariance. This implies that the variance of (

b1OLS) is 5 + 9 - 10 = 4.

(c) The relevant formula is s2(1,1)(X'X)-1(1,1)', which yields 4.

P4 (a) lny = a + bln(100x/100) + e = a - bln(100) + bln(100x) + e, so regressing ln
intercept and ln(100x) should produce the same estimate of b but a different (biased)
estimate of a.

(b) lny = a + bln(100x/100) + dDln(100x/100) + e

= a - bln(100) - dDln(100) + bln(100x) + dDln(100x) + e,



implying that an intercept dummy is required to capture this specification - its omis
will affect the b estimate. Including an intercept dummy will avoid this problem.

Q2 Arrange all the observations into a single vector w, say. Regress w on an intercept and
a dummy taking value 1 for observations on y and 0 for observations on 
traditional t statistic to test the hypothesis that the coefficient of this dummy is zero.

Q4 Alcohol = a + bincome + dage + lsex + qMAincome + hPhDincome, where sex is a
zero/one dummy for sex, MAincome takes the value income for MA students and zero
otherwise, and PhDincome takes the value income for PhD students and zero
otherwise. Use an F test to test the hypothesis that q = h = 0. SSE unrestricted is
obtained by running the regression above; SSE restricted is obtained by running this
regression without the regressors MAincome and PhDincome. The numerator degrees
of freedom is 2; the denominator degrees of freedom is 69.

Q6 (a) The variable takes value one in the quarter in which the sales tax was announced,
minus one in the following quarter, and zero otherwise.
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(b) An F test with restricted SSE from regression of part (a), unrestricted regression
replacing the dummy of part (a) with two observation-specific dummies, one for each
of the two periods in question. There is one restriction, that the coefficients of th
two observation-specific dummies are the negative of each other.

Q8 Set up observation-specific dummies for all ten of the lowest and highest observation
Use an F test to test if their coefficients are all zero.

R2 (a) This setup allows the intercept to move gradually over four years to its new leve
instead of taking a sudden jump in 1964. The coefficient of DD is a measure of
one-quarter of the eventual change in the intercept. It is the change that occurs in 
of the four transition years.

(b) Define DD as 0.25 in 1964, 0.5 in 1965, 0.75 in 1966 and one for all remaining
years.

S2 Assume the change occurred in 1964 and calculate the maximum likelihood estimates,
noting the value of the likelihood. Repeat for the other years through to 1969. Choos
the switching point on the basis of which year assumed for the switch gave rise to th
highest maximized likelihood; the MLE estimates from estimation based on this



switching year are the required parameter estimates.

S4 Evaluate for height 5'10" the formula for the normal distribution using the male
parameters. Repeat using the female parameters, and take the ratio of the former to t
latter. This yields e3. Perform the same calculation for height 5'8" but with variance 6/6

= 1. This yields e6, a considerably higher relative odds.

S6 (w) = (2ps2)-1/2exp[-(w - m)2/2s2]

(Q) = (w)|dw/dQ|

where w = (Q - a)/b and |dw/dQ| = 1/b for b positive

= (2ps2)-1/2exp[-((Q - a)/b - m)2/2s2](1/b)

= (2pb2s2)-1/2exp[-(Q - (a + bm))2/2b2s2]

so Q ~ N(a + bm, b2s2).

S8 Log-likelihood = -(T/2)ln2p - (1/2)S(x - m)2. First partial = S(x - m) and second partial
= -T. Minus expected value of second partial = T. Expected value of first partial
squared = E[S(x - m)]2 = TV(x) = T.

S10f(y) = f(x)|dx/dy| where x = e-qy

so f(y) = qeqy

T2 (a) The likelihood is proportional to aN(1 - a)T-N, the log-likelihood of which is 
(T - N)ln(1 - a). The first partial is N/a - (T - N)/(1 - a) which is zero when 
the MLE of a is N/T.

(b) The second partial of the log-likelihood is -N/a2 - (T - N)/(1 - a)2, the expected
value of which is -T/a - T(1 - a). Minus the inverse of this is a(1 - a)/T,
formula.

T4 (a) Adjust the original distribution by dividing it by the area to the right of 9000,

yielding (y) = a9000ay-(a+1) for y > 9000. The log-likelihood is Tlna
1)Slny. The first partial is T/a + Tln9000 - Slny so that aMLE is T(Sln

(b) The second partial is -T/a2 so that the Cramer-Rao lower bound is 
the variance by substituting aMLE for a in this expression.



(c) The mean of this distribution is 9000a/(a - 1). Setting this equal to 
that a = (q + bw)/(q + bw - 9000). Substituting this into the likelihood allows estimation
of q and b by MLE.
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T6 The Poisson density must be adjusted to represent the density conditional on n being
greater than zero. This is done by dividing f(n) by the probability that n > 0, given

- f(0) = 1 - e-l. The likelihood then is proportional to (1 - e-l)-Ne-NllS

T8 The likelihood is (2q)-Texp[ -S|(y - a - bx)/q|] so the log-likelihood is -
bx)/q]. For any given value of q, maximization of this requires minimization of 
bx|, the sum of the absolute errors.

T10(a) prob(1,1) = aeb/(1 + eb); prob(0,1) = a/(1 + eb); prob(1,0) = (1 - 

= (1 - a)/2. The likelihood is aNx(1 - a)N-Nx(1/2)N-Nx ebNxy(1 + eb
the number of observations with x = 1 and Nxy is the number of observations with both
x = 1 and y = 1. The first partial of the log-likelihood with respect to 
Nx)/(1 - a), which yields the MLE of a as Nx/N. The first partial of the log-likelihood

with respect to b is Nxy - Nx(1 + eb)-1eb which yields the MLE of b as ln[
Nxy)].

(b) If of the observations with x = 1, half have y = 1, the MLE of b = 0 so that the
estimated prob (y = 1|x = 1) = 1/2.

T12f(yt) = f(et)|det/dyt|

f(yt) = (2p)-N/2(detF)-1/2exp(-(G'yt + B'xt)'F-1(G'yt + B'xt)/2)detG

likelihood = (2p)-NT/2(detF)-T/2(detG)T

exp(-S(G'yt + B'xt)'F-1(G'yt + B'xt)/2)

T14(a) The density of u is the usual one, but we need the density of the observed 
Jacobian of the transformation from e to y is unity, so we need the Jacobian of
transformation from u to e, which is (1 - r2)1/2.



(b) The density for e is the usual one, but we need the density of the observed 

Jacobian of the transformation from e to (yl - 1)/l is unity, so we need the Jacobian of

the transformation from (yl - 1)/l to the observed y, which is the product of the 

(c) We need both Jacobians.

(d) (i) Use an LR test in which the restricted likelihood is calculated restricting 
and r = 0 and the unrestricted likelihood is calculated restricting r = 0.

(ii) Use an LR test in which the restricted likelihood is calculated restricting 
the unrestricted likelihood is calculated with no restrictions.

U2 Find the expected loss, the integral from zero to two of the loss function times the
posterior, then minimize it with respect to b*. The answer is 4/3. Alternatively, because
the loss function is quadratic, just find the mean of the posterior distribution.

U4 (a) Use the same uniform prior but with height reduced to zero for all 

(b) Like a truncated normal distribution, with value zero for b < 3.

(c) The classical point estimate is the peak of the likelihood function (identical to
untruncated posterior distribution) or 3, whichever is larger. The Bayesian point
estimate is the mean of the posterior distribution. When the peak of the likelihood
function corresponds to a b value less than 3 the classical estimate is always 3, but the
Bayesian estimate is larger than 3, getting closer and closer to 3 as the peak of the
likelihood function moves further and further from 3.

(d) By calculating the area under the "untruncated" posterior lying to the right of 

U6 (a) The predictive density is the density of y = 3b + e where 3b and e
independently as N(18,36) and N(0,13), respectively. This is N(18,49).
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(b) prob(y > 25) = prob(z > 1) where z ~ N(0,1).

U8 (a) Likelihood a e-7ll35 e-7ll35, which is maximized at l = 5. Cramer-Rao lower bound

is l/7 (see answer to V4(a)), estimated as 5/7, posterior ae-7ll35l3.2e-0.7
the mean of which is 39.2/7.7 = 5.1.



V2 (a) The likelihood is proportional to q15(1 - q)30 which yields the MLE of 

(b) The posterior is proportional to q15(1 - q)30.

(c) The posterior mean is 16/47.

(d) The prior required is q-1(1 - q)-1.

(e) The second partial of the log-likelihood is -N/q2 - (T - N)/(1 - q)2 where 
size and N is number of successes. The expected value of this is -T/q - 
information matrix is the scalar T/q(1 - q) and the prior is proportional to 

q)-1/2.

(f) The posterior is q14(1 - q)29; the updated posterior is q89(1 - q)154
90/245.

V4 (a) The likelihood for a sample size T is proportional to e-lTlSx. The second partial of
the log-likelihood is -Sx/l2, the expected value of which is -T/l (which follows from
calculating Ex = l), so the information matrix is the scalar T/l. Thus the ignorance prior
is proportional to l-1/2.

(b) If the prior is l-1 the posterior is proportional to e-7ll34 with mean 35/7 = 5, equal to
the MLE.

(c) The posterior takes the form of a gamma distribution, implying that this prior is
conjugate prior.

(d) The posterior is proportional to e-7.7ll38.2 with mean 39.2/7.7 = 5.1, which has
moved slightly towards the prior, as it should, and variance 5.1/7.7 = 0.66, which is
smaller than the variance of 5/7 = 0.71 characterizing the case of an ignorance prior
it should be.

W2This Monte Carlo procedure creates 3,000 values which except for a degrees of
freedom correction (dividing the numerator by 2 and the denominator by 46) are 
statistics for testing the true null that the y = 2 + 3x relationship is the same for
20 observations as for the last 30 observations. If it had the degrees of freedom
correction, the 2970th value would cut off the top one percent of values from an 
distribution with 2 and 46 degrees of freedom, which from an F table is 5.1. So 46/2 =
23 times this 2970th value should be close to 5.1. The 2970th value therefore should 
close to 5.1/23 = 0.22.



W4This Monte Carlo procedure computes 3,000 chi-square values with degrees of freedom
8. Since the mean of a chi-square is equal to its degrees of freedom, and its varianc
twice its degrees of freedom, then A should be about 8 and VA about 16. The 2850th
value cuts off the top 5 percent of these values. From the chi-square tables this val
about 15.5.

W6This Monte Carlo study is checking to see if a bootstrap testing procedure when error
are distributed uniformly has an appropriate type I error. The instructions are compl
with ''Divide ctr by 3,000 and compare to 0.05."

W8(a) (i) Select parameter values, say a = 1, b = 2, q = 0.5, d = 4, s2 = 5, ensuring that 
- q) = 1, and choose sample size 50, say. (ii) Find or create 50 x, z and p values that 
not orthogonal. (iii) Set ctr = 0. (iv) Draw 50 e values from N(0,5). (v) Create 50 y
values as 1 + 2x + 0.5z + 4p + e. (vi) Regress y on x and z to obtain estimates 
q*, estimated variances Vb* and Vq*

 
page_392

and estimated covariance C*. (vii) Calculate the asymptotic t statistic numerator n =
b*(1 - q*) - 1 and denominator d the square root of (1 - q*)2Vb* - 2
b*2V(q*). (viii) Calculate n/d and add one to ctr if it exceeds the 5% critical value
from the t table. (ix) Repeat from step (iv) to obtain 5,000 t values. (x) Compare
ctr/5,000 to .05.

(b) Because of the omitted explanatory variable we expect the coefficient estimates t
be biased and so the type I error will be far from 5%.

(c) The Wald test statistic is the same as the asymptotic t statistic and so the results
should be identical.

W10(i) Select values for a, the variance of e, and the sample size T. Set b
than one. (ii) Select T values for x. (iii) Have the computer obtain T errors and use to
calculate T y values. (iv) Run the regression, calculate the t statistic, and accept or
reject the null hypothesis using the appropriate critical value for, say, 
whether accepted or rejected. (v) Repeat from (iii) 1,000 times, say, to obtain 1,000
decisions on whether to accept or reject. (vi) Estimate the power as the number of
rejects as a percentage of 1,000. (vii) Repeat from (iii) for a selected number of
slightly larger b values. (viii) Plot the estimated power against the selected 



W12The following is for graphing the risk of q*, the estimated coefficient of 
equation y = 5 + 3x + bw + e where e ~ N(0,4), say, and a sample size of 30, say.
Select 30 values of x and w so they are modestly collinear. Begin with 
the computer obtain 30 errors and use to calculate 30 y values. (ii) Regress 
intercept, x and w and test for b = 0 using a standard t test. (iii) If the null is rejected
save the estimated coefficient of x and go to (iv) below; if the null is accepted, regress
y on the intercept and x, save the estimated coefficient of x and go to (iv) below. (iv)
Repeat from (i) 1,000 times, say. (v) Use the resulting 1,000 estimates of the 
coefficient to estimate MSE in the usual way and graph against the b
Repeat from (i) for a selected number of larger b values.

W14(a) The W statistic because the LM test requires estimation incorporating the
nonlinear restriction whereas the W statistic requires only unrestricted estimation.

(b) (i) Choose values for s2 and the bi, ensuring that b1 = b2-1. (ii) Set sample size =

25, say, and select 25 values for x and w. (iii) Get computer to generate 25 errors f

N(0, s2) and calculate the corresponding 25 y values. (iv) Calculate the W and the LM
test statistics and save them. (v) Repeat from (iii) until you have, say 5,000 sets o

and LM statistics. (vi) Order the W statistics from smallest to largest, and do the s
for the LM statistics. (vii) Find the number of W values that exceed the 5% critical
value 3.84 and express it as a percentage of 5,000. Do the same for LM. (viii) The

statistic whose % is closer to 5% is better.

(c) For W use value 4,750 in the list of 5,000 W values. For LM use value 4,750 in th
list of LM values.

(d) Answer same as part (b) above, with following changes. In part (i), choose the 
values such that b1 does not equal b2-1. Call the extent to which this equality is
violated d. In part (vii) use the relevant empirically-determined critical values (fr
part (b)) in place of 3.84. In part (viii) the statistic with the higher percentage i

since this percentage measures power. The study should be
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repeated for different values of d to investigate how relative power varies with the
extent to which the null is false.



(e) If 3.84 were used instead of the relevant empirically determined critical value, 
the statistic with the higher type I error probability will have an advantage. For
infinitesimal value of d the power is equal to the probability of a type one error, g
larger as d grows.

X2In theory one should be equally confident, since both tests were conducted at the sam
significance level. In practice, however, the phenomenon of the too-large-sample-size
may play a role here. Since all point null hypotheses are likely to be false, all nul
be rejected if the sample size is allowed to become large enough. Viewed in this ligh
one may wish to place more confidence in the rejection of part (a).

X4True. The t statistic is a ratio in the numerator of which is a normally distributed
variable.

X6The diagram will have two normal curves, both with variance 9/4, one centered at 25
and the other centered at 30, intersecting at 27.5.

(a) If x is less than 27.5, the height of the sampling distribution under the hypothesis 
25 is higher than that of the alternative hypothesis, so the probability is greater t
data came from the sampling distribution associated with the former hypothesis. It is
"more likely" that the former hypothesis is true.

(b) prob(type I error) = prob(x >27.5| null true) = prob(z>2.5/1.5) = approximately 5%.
prob(type II error) = prob(x <27.5| alternative true) = prob(z < -2.5/1.5) = same as
probability of type I error. These probabilities are given as the area under the null
sampling distribution to the right of 27.5, for the former, and the area under the
alternative sampling distribution to the left of 27.5 for the latter.

(c) As the sample size increases the two sampling distributions grow taller and narro
causing the two areas described above to shrink toward zero; both type I and type II
errors fall towards zero.

(d) Using the traditional testing methodology, the type I error would be held constan
some arbitrary level, such as 5%, so as the sample size grew the critical value would
shrink towards 25, keeping the type I error constant as the type II error falls towar
zero.

(e) The traditional testing methodology has some peculiar characteristics.

X8(a) Testing r against zero would be testing if x and the square of the residual are
correlated, so it is a test for heteroskedasticity.

(b) A conditional moment test.



Y2The power increases. This is easiest to explain by using a diagram with a point null 
point alternative; moving the critical value to create a 10% size will increase the p

Y4Using s2(X'X)-1 the variance of bOLS is found to be 4. The test statistic used will be
(bOLS - 1)/2 with critical value 1.645, which implies that the null hypothesis will be

rejected if bOLS >4.290. prob(bOLS>4.290|b = 4) = prob[z>0.145] = 0.442.

Y6The standard error of the slope coefficient estimator is estimated to be 0.1/2 = 0.05
critical value for the test is 1.645, but because the true value of the slope is 0.06
is 1.2 standard errors), this critical value represents only
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0.445 standard errors. From the normal tables, the power can be estimated as the
probability of getting a z value 0.445 standard errors or greater above the mean, abo
33%.

Z2 MPC = b1 + b3A, so test b3 = 0 using a traditional t test.

Z4 Define a new variable xw as the product of x and w. Include this variable as a regressor
and test its coefficient against zero using a traditional t test.

Z6 (a) The partial of lny with respect to lnK is b2 + 2b4lnK + b5lnL, which should be
positive for a positive elasticity, not b2 by itself.

(b) Do an F test for b3 = b4 = b5 = 0.

Z8 (a) q1/l1 = q2/l2 or q1l2 = q2l1.

(b) Run both equations unrestricted to obtain estimates of the four parameters.
Estimate (q1l2 - q2l1) by plugging in these estimates and use the square of this as the
numerator for the eventual chi-square (with one degree of freedom) test statistic. Th
denominator is the estimated variance of this numerator, say d'Vd. Here 
variance-covariance matrix of the unrestricted estimates of the parameters, obtained
using the two 2 × 2 variance-covariance matrix estimates from the two unrestricted
regressions. d is the 4 × 1 vector of first derivatives of (q1l2 - q2l1) evaluated at the
unrestricted estimates.



Z10 (a) e distributed log-normally means that lne is distributed normally. If estimation is
undertaken by regressing logs on logs, the relevant error term is lne, which if it is
distributed normally implies that the OLS estimator is the MLE (with attendant
desirable properties) and facilitates inference. If it is specified to have mean one,

AKaLb is the expected value of Y given K and L, the usual meaning attached to the
functional specification.

(b) Multiply both inputs by a constant w and note that output is multiplied by 
that constant returns will obtain if a + b = 1. The easiest test is an F test, regressing
logs on logs restricted and unrestricted. For restricted regress (lnY - ln
and (lnK - lnL).

Z12 (a) By setting yt equal to yt-1 and xt equal to xt-1 and solving for yt
elasticity can be estimated as (b2 + b3)/(1 - b1). To test this equal to one we can test

b1 + b2 + b3 = 1 which can easily be done with an F test.

(b) The confidence interval is more difficult to estimate because it requires finding
standard error of (b2* + b3*)/(1 - b1*), a non-linear function of the vector of
parameter estimates. This can be estimated as the square root of d'Vd where V is the
estimated variance-covariance matrix of the vector (b1*, b2*, b3*)' and d is the
estimate of the first derivative of the long-run elasticity, namely [(b2

b1*)-2, (1 - b1*)-1, (1 - b1*)-1]'.

AA2(a) SSE restricted is 100, SSE unrestricted is 88, and there are 4 restrictions, so the
numerator of the F test is 3. Degrees of freedom for the denominator are 200, so the
denominator is 1/2. The F statistic is thus 6, which exceeds the (a = 0.05) critical value
of 2.37 for the F with 4 and 200 degrees of freedom, so the null hypothesis is rejected.

(b) Do a t test to see if 0.88 differs significantly from unity. The test statistic is
0.12/0.05 = 2.4, which exceeds the (a = 0.05) critical value of 1.96 for the 
degrees of freedom, so the null is rejected.

(c) For part (a) one would have to obtain the SSE restricted by including two dummies,
one for each of two regions. There would only be 2 rather than 4 restrictions, changi
the degrees of freedom for the numerator. For part (b) the

 
page_395



coefficient estimate to be tested against one must come from the new restricted
regression; the degrees of freedom for the t test are now 202.

AA4 (a) m is estimated by the mean of the data, 3, and v is estimated by the sample
variance, 2.5. The estimated variance of the sample mean is thus 2.5/5 = 0.5, the
square root of which is about 0.7. The t statistic to test m = 4 is 1/0.7 = 1.43 which
must be compared to the critical value 2.015.

(b) A z statistic, calculated as 1/0.6 = 1.667 must be compared to the critical value
1.645.

AA6 The prediction error is 10. The required F statistic is the square of the 
to test if this number is significantly different from zero. The variance of the
prediction error, calculated using s2[1 + x'(X'X)-1x], is 64. The required 
thus 100/64.

AA8 Under the null hypothesis, the OLS estimate of b is 2, producing errors -1, 1, 1 and -1.
The partials of y with respect to the parameters, evaluated at the restricted estimates,
are proportional to x-1 and x-2. The LM statistic can be calculated as the sample size

times the R2 from regressing the errors above on a constant and these partials.

BB2 On the null hypothesis skew and (kurt - 3) must be independently and normally
distributed with mean zero, so that when adjusted to have unit variance the sum of
their squares is distributed as a chi-square. Thus the variance of skew and kurt must
be 6/N and 24/N, respectively.

BB4 This is an F statistic, with J and T - K degrees of freedom, calculated as the ratio of
two independent chi-squares, each divided by their degrees of freedom. Visualize the
numerator as (r - R bOLS)'V-1(r - RbOLS)/J and the denominator as 
(SSE/s2)/(T - K) where V is the variance-covariance matrix of (r - R

[s2R(X'X)-1R' + Q]. The unknown s2 in this last expression is pulled out to cancel the
s2 in the denominator, leaving an element Q/s2 which is estimated by 

BB6
(a) 

(b) If g did not include an intercept, the means of the es and the ês would not be zero,
so the formula for R2 would have the square of these means subtracted from both
numerator and denominator, upsetting the result given above.

BB8 (a) Following the hint we get y, a linear function of lagged y, x, and lagged 
three derivatives, the partial with respect to r evaluated at the restricted estimator is
the lagged OLS residual from regressing y on x. To get NR2 regress the OLS residual



on an intercept, x, and the lagged OLS residual.

(b) x by itself has no explanatory power regarding the OLS residual, because 
this residual are uncorrelated. Consequently, a large R2 results only if the lagged OLS
residual has some explanatory power, implying that its slope coefficient when
regressed on the OLS residual (the usual p is significantly different from zero.

BB10The log-likelihood is (lnl)Sx - Tl - Slnx!, the first partial is Sx/l - T, and the second
partial is -(Sx)/l2 so that lMLE = x and the Cramer-Rao lower bound is 

hint that Ex = l). LR is 2[(lnx)Sx - Sx - (lnl0)Sx + Tl0]. LM is (Sx/l
(x - l0)2(T/x).

BB12(a) The restricted log-likelihood is -(T/2)ln2p - (T/2)ln(SSER/T) - T
unrestricted log-likelihood is -(T/2)ln2p - (T/2)ln(SSEU/T) - T/2, so LR is

-2[(T/2)ln(SSEU/T) - (T/2)ln(SSER/T)], equal to Tln(SSER/SSEU).
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(b) W is the square of the t statistic for testing b = 0.

(c) Regress the residuals from the restricted regression on 1, x and w.

CC2By calculating -2lnl, where l is the ratio of the restricted maximized likelihood to the
unrestricted maximized likelihood, LR can be shown to be (SSER - SSE
e'X(X'X)-1[R(X'X)-1R']-1(X'X)-1X'e/s2. The W test statistic is (R bOLS

- r)]-1(RbOLS - r), which reduces to the same thing. For the LM statistic, 
estimated by l* = [R(X'X)-1R']-1(RbOLS - r) and LM = l*'[V(l*)]-1
same formula.

CC4The likelihood ratio becomes (2pSSER/T)-T/2/(2pSSEU/T)-T/2 = (SSE
[JF/(T - K) - 1]-T/2.

CC6The Chow test, applied to the case in which there are not enough observations in one
subset to run a regression, tests for whether or not these observations lie inside a
forecast confidence region. It can be formulated in terms of observation-specific
dummies. This formula is identical to the formula for the rainbow test, which tests
whether several observations, at the beginning and at the end of the data set, lie wi
a forecast confidence region.



DD2(a) (4 - b)2.

(b) 4b2/12.

(c) When b < 2 the pre-test eliminator is identical to the unrestricted estimator, so its
MSE is 4b2/12.

(d) (2/b) × 2 + [(b - 2)/b] × 4 = 4(b - 1)/b.

(e) It is easiest to use the formula that variance equals the expected value of the
square minus the square of the expected value. This gives (2/b) times the integral from
zero to 2 of y2, plus [(b - 2)/b] × 16, minus the square of the mean above.

EE2 (a) Regressing y on x and w yields coefficient estimates 1.0 and 0.9, with 
estimated variances 0.36 and 0.51. The non-nested F test treating A's model as the null
is the square of the t statistic on the estimated coefficient 0.9. This is 2.48. For B's
model as the null it is the square of the t statistic on the estimated coefficient 1.0. This
is 1.96. Both are less than the 5% critical value of 18.5, so both nulls are accepted

(b) Regressing y on x yields estimate b* = 2 and residuals 2, -1, 0, and -1. To test B's
model as the null using the J test, regress y on w and these residuals and do a 
the residuals' coefficient. Regressing y on x yields estimate q* = 2.4 and residuals 1.6,
- 1.8, 1.2, and -1. To test A's model as the null regress y on x and these residuals and
do a t test on the residuals' coefficient.

FF2 (i) Choose values for the four parameters, select a sample size, say 25, and get 25 
values. (ii) Have the computer produce 25 errors from a normal distribution with mean
zero and variance one. Transform all errors by multiplying the tth error by the square

root of . (iii) Calculate the corresponding 25 y values. (iv) Regress 
intercept and x to get the OLS estimate. Save it. (v) Regress the logarithm of the
squared OLS residuals on an intercept and lnx to get slope coefficient estimate 

Divide y, x and 1 (the intercept term) by the square root of  (vi) Regress the
transformed y on the transformed x and the transformed intercept term to get the
EGLS estimate. Save it. (vii) Repeat from (ii) to obtain, say, 2,000 sets of estimate
(viii) Use the 2,000 OLS estimates to estimate the mean of the OLS estimator (and
thus its bias), its variance and its MSE. Do the same for EGLS, using the 2,000 EGLS
estimates, and compare.

FF4 Select form of heteroskedasticity, parameter values, sample size, and 
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Draw N(0,1) errors and transform to create heteroskedasticity. Calculate 
Run OLS regression. Perform Goldfeld-Quandt test and note if heteroskedasticity
detected; repeat for Breusch-Pagan test. Draw new errors and repeat above 1,000
times, say. Power is compared by comparing number of times each test detected
heteroskedasticity. For a more effective comparison run a Monte Carlo study to
determine for each test what critical values create the proper type I error, and then
use these critical values in the Monte Carlo power study.

FF6 Select parameter values, sample size, and x values. Draw N(0, s2) errors and
transform to create autocorrelation. Calculate y values. Run OLS regression and save
OLS estimate. Calculate EGLS estimate and save it. Perform test of auto-correlated
errors. If null of zero autocorrelation is accepted, set pre-test (PT) estimate equal
OLS estimate, otherwise set PT estimate equal to EGLS estimate. Save this PT
estimate. Draw new errors and repeat the above to obtain, say, 2,000 OLS, EGLS
and PT estimates. For each estimate MSE. Repeat the above for several different
values of the autocorrelation coefficient r and graph the estimated MSE of each of
the three estimators against r.

FF8 Suppose there are N cost share equations and T observations on each. Estimate using
SURE but do not impose the constraints. Save the T resulting sets of N errors, call
them EN. Use the resulting parameter estimates as the "true" parameter values to
produce new dependent variable values along with T drawings with replacement
from the set of EN error vectors. Estimate with SURE, imposing the restrictions, and
calculate the elasticity estimates. Repeat to obtain 2,000 such estimates. By finding
the distance from the mean of these estimates to the values that cut off the
appropriate tail percentages, compute the required confidence intervals as your
original elasticity estimates minus and plus these distances.

GG2 False. Although efficiency is a problem, and consistency is not, it must be noted tha
there are problems with inference.

GG4 It is possible because the computer output contains estimates of the variances, not
the actual variances.

GG6 False. If variance is overestimated, then the t statistic will be too small, implying that
the null will be accepted too often, implying that type I errors occur less frequentl

HH2 False. All data should be divided by the square root of x.

HH4 False. Divide through data by x and then regress y/x on a constant, producing the
GLS estimator as S(y/x), which is not Sy/Sx.



HH6 In (b) the error is heteroskedastic since the error variance is larger when income is
larger, so OLS is inefficient and its estimated variance is biased. In (a) there is n
heteroskedasticity, so the properties of OLS are unaffected.

HH8 (a) The relationship can be rewritten as y = a + bx + u where u is an error with mean
zero and variance s2(a + bx)2. Estimate using an iterative procedure, beginning by
using the OLS estimates of a and b to estimate the transformation for
heteroskedasticity. Find the EGLS estimates, then use these EGLS estimates to
re-estimate the transformation for heteroskedasticity, etc.

(b) Use MLE. The log-likelihood is -(T/2)ln2p - (T/2)lns2 - Sln(a + 
a - bx)2/(a + bx)2].

HH10The heteroskedasticity-consistent variance-covariance matrix estimate is given by the
formula (X'X)-1X'WX(X'X)-1 where W is a diagonal matrix consisting of the squared
residuals and in this application X is a column of ones. This produces
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SSE/T2. The usual estimator is s2/T = SSE/[T(T - 1)].

HH12(a) lnL = - (N/2)ln2p - (N/2)lnd - (q/2)Slnx - (1/2d)S[y - a - bx)2/x

(b) Do an LR test of the joint hypothesis that l = 1 and q = 0.

(c) Do an LR test of the hypothesis that l = 1 allowing q to take on any value.

II2 False. A lagged value of the regressand appearing as a regressor introduces bias
(which disappears asymptotically).

II4 A straight line fitted to a nonlinear functional form will tend to produce strings of
positive errors and strings of negative errors, exactly what an autocorrelated error
structure would tend to produce.

JJ2 Use a Goldfeld-Quandt test. Regress using only the fourth quarter data and estimate
the variance of the error term. Regress using all the other data and estimate the
variance of the error term. The ratio of these two estimates is distributed as an 
dfs the two divisors of the SSEs.



JJ4 (a) bOLS = 2, producing OLS residuals 2, -1, 0 and -1, s2 = 2, so estimated 
is 1/7.

(b) The heteroskedasticity-consistent variance-covariance matrix estimate is given by
the formula (X'X)-1X'WX(X'X)-1 where W is a diagonal matrix consisting of the

squared OLS residuals. This produces 8/142 = 2/49.

(c) White's test statistic is calculated as 4 times the R2 from regressing the squared
OLS residuals on an intercept and x2.

(d) The studentized Breusch-Pagan test statistic is calculated as 4 times the R
regressing the squared OLS residuals on an intercept and x2.

KK2 Estimate by GLS of observations (2, 6, 12) on observations (1, 2, 3). Transforming to
eliminate heteroskedasticity implies regressing observations (2, 3, 4) on observation
(1, 1, 1), yielding GLS estimate 3.

KK4 (a) For the first 22 observations SSR = 1,000, so that s2 = 2. For the next 32
observations SSR = 2,916, so that s2 = 8. Their ratio is distributed as an 
and 20. Since the ratio 4 exceeds the critical value of 2.04 the null of equal varian
is rejected.

(b) An appropriate transformation for the heteroskedasticity is to multiply the first
period's data by 2, changing its Sxy to 400 and Sx2 to 40. The EGLS estimator is
616/56 = 11.

(c) Estimate OLS variance by (X'X)-1X'WX(X'X)-1 where W is a diagonal matrix with
22 twos followed by 32 eights. This yields (1/26)2(2 × 10 + 8 × 16) = 0.22.

LL2 The variance-covariance matrix of e is s2V where V has twos down the diagonal,

ones beside the diagonal, and zero elsewhere. V-1 is one-quarter times a matrix 
with 3, 4, 3 down the diagonal, -2 beside the diagonal and 1 elsewhere. The GLS
estimate of K is (X'QX)-1X'Qy where in this case X is a column of ones. This yields
7/2.

LL4 (a) Unbiased because Ee = 0.

(b) V(bOLS) = (X'X)-1X'WX(X'X)-1 where W is the variance-covariance matrix of
the error vector, in this case ones on the diagonal and -0.6 on the off-diagonal. Thi
yields 0.1.



(c) V(bGLS) = (X'W-1X)-1 = 0.09.

MM2 (a) Writing these two equations as a single equation we get a y vector consisting of 

followed by y2 and an X matrix consisting of a column of 20 ones fol-
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lowed by 20 zeros and a column of 20 zeros followed by 20 ones. The error vector has
a variance-covariance matrix consisting of four blocks. The upper left block is two
times a 20 × 20 identify matrix, the lower right block is three times a 20 × 20 ident
matrix, and the remaining blocks are identities. Estimating with GLS yields 3 and 5.

(b) The X matrix becomes a column of 20 ones followed by 20 twos and the parameter
vector now contains only m1. Estimation yields 18/7 for m1 and thus 36/7 for 

NN2(a) V1 = s2(X1'M2X1)-1 and V2 = s2(X2'M1X2)-1.

(b) 

(c)  assuming  This yields

(d) Using the hint we get

 which is nnd if

 is nnd.

(e) If the unbiased estimate of b2 from the previous study is better than the estimate of
b2 from the data at hand, in the sense that it has a smaller variance, one is better of
using the previous study's estimate and ignoring the estimate obtainable from the dat
rather than doing the opposite.

NN4(a) We need to add an artificial observation y = 3, x = 1 plus an error with mean zer
and variance 4. Using the hint the variance of e is estimated to be (360 - 40)/20 = 16.
To make the errors homoskedastic we must multiply through the artificial observation
by 2 creating the extra observation y = 6 and x = 2. This causes Sxy to increase to 32



and Sx2 to increase to 14, creating b* = 32/14 = 2.3.

(b) In both cases the variance of the error is the same, so the relative variances ar
captured by the Sx2 terms. The ratio of the new variance to the old is 10/14, a
reduction of 29%.

NN6(a) Instruct her to perform mixed estimation by appending to the 75 × 1 vector of
observations on the dependent variable the 3 × 1 vector of coefficient estimates from
the original regression and appending below the 75 × 3 X matrix a 3 × 3 identity
matrix. GLS would have to be performed because the variance-covariance matrix of
the errors would become a 78 × 78 matrix with the 3 × 3 variance-covariance matrix
from the original regression in the bottom right hand corner.

(b) Yes. Tell her to pool the data and run a new regression, checking for whether the
variance of the error term is the same in the two samples.

OO2(a) [X'(I + XVX')-1X]-1X'(I + XVX')-1y

= {X'[I - X(X'X + V-1)-1X']X}-1X'[I - X(X'X + V-1)-1X']y

= {X'X - X'XQ-1X'X}-1{I - X'XQ-1}X'y

where Q = (X'X + V-1)

= {(X'X)-1 - (X'X)-1X'X[(X'X)(X'X)-1(X'X)

- Q]-1(X'X)(X'X)-1}{I - X'XQ-1}X'y

= {(X'X)-1 - [(X'X) - Q]-1}{I - X'XQ-1}X'y

= {(X'X)-1 - (X'X)-1 + (X'X)-1[(X'X)-1 - Q-1]-1(X'X)-1}{{I - X'XQ

= (X'X)-1X'y
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(b) The extent to which GLS deviates from OLS depends on the design matrix 
conclusions from Monte Carlo studies cannot be generalized.



PP2 The log-likelihood is -(T/2)ln2p - (a/2)Swt - (1/2)S[(yt - bxt)2exp(-aw
cross partial is -Sxw(y - bx)exp(-aw), the expected value of which is zero, so we need
not worry about the second partial with respect to b. The second partial with respect to
a is -(1/2)S(y - bx)2w2exp(-aw), the expected value of which is -(T/2)
required Cramer-Rao lower bound is 2/TSw2.

PP4
The max log-likelihood restricted is  and the max

log-likelihood unrestricted is , so 

PP6
V(P*) = [P

P)/N = [NP(1 - P)]-1.

QQ2E(et - et-1)(et-1 - et-2) = 2Eetet-1 - Ve - Eetet-2 = (2r - 1 - r2)Ve and 
2Ve - 2rVe = 2(1 - r)Ve so that the condition is|2r - 1 - r2|/2(1 - r) < 
> 1/3.

QQ4(a) Transform xt to xt - rxt-2, and transform the first two observations by multiplying

them by the square root of 1 - r2.

RR2False. Adding an error to the second equation gives rise to an estimating equation in
which y is regressed on lagged y and x, with a spherical error.

RR4(a) The first model gives rise to an estimating equation in which y is regressed on
lagged y, x and w. The second model gives rise to an estimating equation in which 
regressed on lagged y, x, w, and lagged w. This suggests discriminating between the
models by running this second regression and testing if the coefficient on lagged 
significantly different from zero.

(b) Both estimating equations involve regressing y on lagged y and x.
equation has a moving average error, whereas the error in the first equation is
spherical, so a test for this difference could serve as a way of discriminating betwe
the models.

RR6(a) Estimating equation involves regressing p on lagged p, x, lagged 
Assuming a spherical error attached to the original equation this estimating equation
has a moving average error. Furthermore, it is over-identified: the estimated
coefficient on x can be used in conjunction with the estimated coefficient on lagged 
to estimate l, but also the estimated coefficient on w can be used in conjunction with
the estimated coefficient on lagged w to produce another estimate of 



(b) These estimates will be different. The search over l builds in the over-identifying
restriction and thus is preferred.

(c) If the coefficient on w is zero the equation is not over-identified; the two estimating
methods should produce the same estimates.

RR8(a) Multiplying through this equation by (1 - lL)(1 - dL) and rearranging we get y
- d - l + dl)a + (d + 1)yt-1 - dlyt-2 + bxt - bdxt-1 + qzt - qlzt-1 which can be written
generically as yt = q0 + q1yt-1 + q2yt-2 + q3xt + q4xt-1 + q5zt + q6
overidentified because there are seven coefficient estimates but only five parameters
to be estimated; there are consequently two over-identifying restrictions which can b
written as q1 = -q4/q3 - q6/q5 and q2 = -q4q6/q3q5 or as q1q3q5 + 
and q2q3q5 + q4q6 = 0.

(b) The numerators of the asymptotic t statistics would each be estimated by plugging
in unrestricted estimates of the qs into the last forms of the restrictions
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given in (a). The denominator of the t statistic is the square root of the estimated
variance of the numerator, calculated by using the formula for the variance of a
nonlinear function. Because of the nonlinearities, all results are asymptotic and so 
not rely on normally-distributed errors.

(c) Joint testing of these restrictions requires a Wald test, using the formula for t
variance-covariance matrix of a vector of nonlinear functions of a vector.

SS2 (i) Select parameter values (including an error variance for the regression error, 

an error variance for the measurement error, , sample size, say 30, 30 
30 IV values (correlated with x). (ii) Get the computer to produce 30 errors with mean
zero and variance s2. Use these errors and the true x values to calculate 30 

(iii) Get the computer to draw 30 errors with mean zero and variance 
to calculate the measured x values. (iv) Use the y values and the measured 
calculate the OLS estimate and an IV estimate. Save them. (v) Repeat from (ii) to
produce, say, 800 sets of estimates. (vi) Use the 800 OLS estimates to estimate bias,
variance and MSE. Use the 800 IV estimates to estimate the same. Compare.



TT2 False. The consequences stated refer to measurement errors in the independent
variable, not the dependent variable.

TT4 The two-group estimator is (y2 - y1)/(x2 - x1) where x2 is the average of the high half
of the x observations, etc. The IV estimator is (W'X)-1W'y where X is a column of
ordered (from smallest to largest) observations on x, y is the corresponding column of
observations on y, and W is a column the first half of which consists of minus ones and
the second half of which consists of ones. This produces the same formula as that of
the two-group estimator, if the T/2 divisors for the averaging are canceled.

TT6 The plim of OLS is  plim(x2/T), so if b is positive it is biased

downwards. The plim of inverse OLS is /bplim(x2/T),
upwards.

UU2Use the predicted values of lagged y from a regression of y on an intercept, 
This is the ''best" linear combination of the possible instruments x and 

UU4The relationship Py = PXb + Pe has a spherical error. Use PW as an instrument for 
producing bIV = (W'P'PX)-1W'P'Py = (W'V-1x)-1W'V-1y whose variance-covariance

matrix is (W'V-1X)-1W'V-1W(X'V-1W)-1.

UU6(a) Sxe = Sx(y - bx) = Sxy - bSx2 which set to zero yields b* = Sxy/

(b) Sze = Sz(y - bx) = Szy - bSxz which set equal to zero yields b** = 

(c) GMM requires minimization of a weighted sum of Sxe and Sze, namely d'V
where d' = (Sxe, Sze) and V is the variance-covariance matrix of d, with 
sSz2 in the two diagonal positions and s2Sxz in the off-diagonal position, where 
the variance of the error term and is irrelevant for maximization purposes.

VV2False. It can be calculated, but one does not know of what the result is an estimate.

VV4(a) ; 

(b) b estimates unchanged; ; 

(c) b estimates unchanged ; 

VV6The only identified parameter is a1, the 2SLS estimate of which is obtained either
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by an IV regression of y1 on y2 using the reduced form prediction of 

an instrument for y2, or by regressing y1 on . Thus 

)2, where . Both formulas yield 18/25.

VV8 Each reduced form equation has the same set of exogenous variables, so there is no
gain from using a SURE technique.

VV10(a) Reduced forms are p = (v - u)/(a - b) and q = (av - bu)/(a - b). plim 

plim[S(v - u)(av - bu)/T]/plim[S(v - u)2/T] = [aV(v) + bV(u)]/[V(v)

(b) Follows from it being a weighted average of a positive and a negative number.

(c) Regress p on q. The plim of the estimate is [aV(v) + bV(u)]/[a2
Substituting V(V) = kV(u) into both plims we get the plim of the first estimate equals
(ak + b)/(k + 1) and the plim of the second estimate equals (ak + b)/(
gives two equations which can be solved to produce estimates of a
k and the two regression estimates.

(d) Knowledge about the relative magnitudes of the error variances can aid in
identification.

WW2Uncertain. Because of the measurement error, all coefficient estimates are biased,
which suggests that the degrees of freedom should be equal to the number of
parameters being estimated, as the original Hausman article stated. But there is some
controversy on this - recent thinking is that the variance-covariance matrix of the
difference between the OLS and IV estimates is singular and that only a relevant
subset of this matrix (and of the parameter vector) can be used in constructing the
test, reducing the degrees of freedom to one in this case.

WW4(a) bIV = (Z'X)-1Z'(XbOLS + eOLS) so bIV - bOLS = (Z'X)-1Z'eOLS

(b) V(bIV - bOLS) = E[(Z'X)-1Z'eOLSeOLS'Z(X'Z)-1]

= E[(Z'X)-1Z'Mee'MZ(X'Z)-1]

= s2(Z'X)-1Z'MZ(X'Z)-1



= s2(Z'X)-1Z'[I - X(X'X)-1X']Z(X'Z)-1

= s2(Z'X)-1Z'Z(X'Z)-1 - s2(X'X)-1

= V(bIV) - V(bOLS).

WW6(IV - OLS) = (2, -1)' with estimated variance-covariance matrix V with 1 and 2 on the
diagonal and -1 in the off-diagonal. The Hausman test statistic is (2, -1)
5, which is less than 5.99, the 5% critical value for 2 d.f., so the null of 
exogenous is accepted.

XX2 (i) Specify y = a + bx + e, select values for a, b and s2, choose the sample size (say
35), obtain 35 x values, and determine a limit value k above which, say, 
unobserved (and is set equal to k). Choose k so that about 10 observations, say, are
expected to fall into this category in a typical sample. (ii) Have the computer
generate 35 errors, calculate the 35 y values, and set any y greater than 
(iii) Use the y and x data to obtain OLS and Tobit estimates. Save them. (iv) Repeat
from (ii) to obtain, say, 600 sets of estimates. (v) Use the 600 OLS estimates to
estimate the bias of OLS, and use the 600 Tobit estimates to estimate the bias of the
Tobit estimator.

XX4 (i) Select a sample size, say 90, choose a, b, d and q values, variances of the two
error terms and a nonzero covariance between these two errors. In practice you can
create one error as a random error and then the other as a constant times this error
plus another random error. The d and q values must be chosen so as to
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ensure that a reasonable number of the d + qw observations are negative, and the
variance of the u error must be such as to allow the u term to cause a reasonable
number of the d + qw observations to change sign when u is added. (ii) Draw 90 
u values and use them to create 90 y values with the y value being set to zero if 
+ u is negative. (iii) Calculate bOLS and b* the Heckman two-stage estimator. (iv)

Repeat from (ii) to calculate 3,000 bOLS and b* estimates. (v) Calculate the bias and
variance of these estimators.

YY2(a) The likelihood is [ea/(1 + ea)]25(1 + ea)]-75. Maximizing the log-likelihood with

respect to a yields the MLE of ea/(1 + ea), the probability of being a smoker, as



25/100 = 1/4. Note the MLE of ea = 1/3.

(b) The likelihood is [ea/(1 + ea)]15(1 + ea)-40[ea+b/(1 + ea+b)]10

log-likelihood is 25a + 10b - 55ln(1 + ea) - 45ln(1 + ea + b). Maximizing with respect
to a and b yields aMLE = 1n(3/8) and bMLE = 1n(16/21).

(c) 2/9 and 3/11, equal to the fraction of male smokers in the male data and the
fraction of female smokers in the female data, respectively.

(d) Evaluate the likelihood of part (b) for ea = 3/8 and eb = 16/21 to get the

maximized unrestricted likelihood. Evaluate the likelihood of part (a) above for e
1/3 to get the maximized restricted likelihood. Minus twice the logarithm of the rati
of the latter to the former produces the LR test statistic.

YY4An ordered logit or ordered probit estimation procedure would be appropriate. Among
the explanatory variables will be a dummy for gender and an interactive dummy of
gender times experience. An LR test can be used to test if the coefficients on these
two explanatory variables are zero.

YY6prob(unsuccessful) = prob(a + bx + e < d1)

= prob(e <d1 - a - bx) = exp(d1 - a - bx)/[1 + exp(d1 - a - bx)] prob(moderate) =
prob(d1 < a + bx + e<d2)

= prob(d1 - a - bx < e < d2 - a - bx)]

= exp(d2 - a - bx)/[1 + exp(d2 - a - bx)] - exp(d1 - a - bx)/[1 + exp(

prob(successful) = prob(a + bx + e > d2)

= prob(e > d2 - a - bx) = [1 + exp(d2 - a - bx)]-1

By tradition d1 is set to zero for normalization. For sample size N the likelihood is the
product of N of these probability expressions, each unsuccessful outcome contributing
an expression given by prob (unsuccessful) above, each moderate outcome
contributing an expression given by prob (moderate) above, and each successful
observation contributing an expression given by prob (successful) above.

ZZ2 A sold-out rink reflects a game for which the demand exceeded the capacity of the
rink. Treat these observations as limit observations in a Tobit model.

ZZ4 Estimate by using a double-limit Tobit estimation procedure, in which the likelihood
term for a stock that does not trade is the integral from Pb - a - bx to 



ZZ6 (a) The graph follows the 45 degree line up from the SW quadrant until 
a2, at which point it jumps up to the horizontal axis and along it until 
at which point it jumps up and becomes the 45 degree line again.

(b) The likelihood is the product of two types of terms. For an observation with 
nonzero, its likelihood term is the formula for N(0, s2) evaluated at
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Dy - bDx. For an observation with zero Dy, its likelihood term is the integral of this
normal formula from a1 - Dy - bDx to a2 - Dy - bDx.

AB2(a) The integral of be-bx from x equals zero to p is 1 - e-bp so the probability that a

cost-of-repair exceeds a given p value is e-bp. Using this, the likelihood can be written
as aNexp(-aSp)bN1exp(-bS1x)exp(-bS2p) where N is the total number of observations.
N1 is the number of observations for which a cost-of-repair figure is available, the o
subscript denotes summation over these N1 observations, and the two subscript
denotes summation over the write-offs. Maximizing the log-likelihood produces 
= N/Sp and bMLE = N1/(S1x + S2p).

(b) Prob(scrapped) = prob(accident)prob(x > p), so prob(accident) = 0.02/prob(

For a given p value, the prob(x > p) = e-bp, so the unconditional prob(

over all p values of e-bpae-ap = a/(a + b) which can be evaluated using the MLEs.
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Glossary

This glossary contains common econometric terms that are not
explained in the body of this book. Terms not included here appear in
the index.



A

a.c.f. - autocorrelation function, used in the identification stage of time
series (Box-Jenkins) analysis.

a priori information - extraneous information.

admissible - see inadmissible.

aggregation (grouping) - the use of group sums or group means for
regression purposes instead of individual observations. Although
theoretically this leads to a loss in efficiency because of the loss in
information arising from the data aggregation, in applications this is not
necessarily so, since aggregation can to a certain extent cancel out
errors in measurement or misspecifications of micro-relationships. See
Grunfeld and Griliches (1960). R2s are higher with grouped data
because errors tend to cancel one another when summed. Care must be
taken in determining the basis on which grouping is undertaken since
different results are usually obtained with different grouping rules. See
Maddala (1977, pp. 66-9). Note that heteroskedasticity results if each
group does not contain the same number of observations. Johnston
(1972, pp. 228-38) has a general discussion of grouping.

ANOVA - analysis of variance.

B

BAN - best asymptotically normal; a BAN estimator is consistent,
distributed asymptotically normally and is asymptotically efficient.

beta coefficient - the coefficient estimate from a regression in which the
variables have been standardized. It can be calculated by multiplying
the usual coefficient estimate by the standard error of its regressor and
dividing by the standard error of the regressand, and can be interpreted
as the number of standard error changes in the dependent variable
resulting from a standard error change in the independent variable. It is
sometimes used as a measure of the relative strength of regressors in
affecting the dependent variable.

bounds test - a test for which the critical value is known only to fall
within known bounds, as is the case, for example, for the DW test.

bunch map analysis - a method developed by Frisch for analyzing
multicollinearity. See Malinvaud (1966, pp. 32-6).



C

C(a) test - test akin to the LM test except that it is evaluated at an
arbitrary root-n consistent estimate that satisfies the null hypothesis,
rather than at the restricted maximum likelihood estimate. When
evaluated at the restricted maximum likelihood estimate
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one of its two terms disappears, and the other becomes the LM test
statistic.

canonical correlation - an analysis whereby linear combinations of two
sets of variables are found such that the correlation between the two
linear combinations is maximized. These linear combinations can be
interpreted as indices representing their respective sets of variables. For
example, an economist may be seeking an index to represent meat
consumption, where there is a variety of differently priced meats, along
with a corresponding price index.

Cholesky decomposition - a positive definite matrix such as a variance-
covariance matrix S can be decomposed by the Cholesky decomposition
into S = PP' where P is a lower triangular matrix. It is in effect an easily
computable "square root" of S, allowing a drawing e from N(0, I) to be
transformed into a drawing from N(0, S) by calculating Pe.

classical - an adjective used to describe statisticians who are not
Bayesians.

cointegrating vector - if a linear combination of nonstationary variables
is stationary, the coefficients of this linear combination are called the
cointegrating vector.

collinearity - multicollinearity.

concentrated log-likelihood - a log-likelihood in which irrelevant terms
have been omitted and some parameters have been replaced by their
solution values in terms of the remaining parameters.

confluence analysis - see bunch map analysis.



consistent test - a test whose power increases to one as the sample size
increases, holding size constant.

contemporaneous - an adjective used to indicate "in the same time
period."

correlation coefficient - a measure of the linear association between
two variables, calculated as the square root of the R2 obtained by
regressing one variable on the other (and signed to indicate whether the
relationship is positive or negative). See also partial correlation
coefficient, multiple correlation coefficient, and Fisher's z.

correlation matrix - a matrix displaying the correlation coefficients
between different elements of a vector (the ijth element contains the
correlation coefficient between the ith and the jth elements of the
vector; all the diagonal elements are ones, since a variable is perfectly
correlated with itself). Most computer regression packages produce this
matrix for the vector of regressors since it is useful in analyzing
multicollinearity.

covariance matrix - variance-covariance matrix.

D

degenerate distribution - a distribution concentrated entirely at one
point.

degrees of freedom - the number of free or linearly independent sample
observations used in the calculation of a statistic.

dominant variables - independent variables that account for so much of
the variation in a dependent variable that the influence of other
variables cannot be estimated. For an example in the context of material
inputs dominating capital and labor in determining output, see Rao and
Miller (1971, pp. 40-3).

double k-class estimator - a generalized version of the k-class estimator.

dummy variable trap - forgetting to omit the dummy variable for one
category when an intercept is included, since if a dummy is included for
all categories an exact linear relationship will exist between the
dummies and the intercept.



E

ecological inference - use of aggregate data to study the behavior of
individuals, usually in the context of examining transitions such as
people changing their vote from one election to another. Because
statistical results using aggregated data in this context do not necessarily
reflect the underlying individual behavioral relationships, one must be
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very careful when specifying the "ecologial" regression run using
aggregate data. See Aachen and Shively (1995) and King (1997).

ergodic - a time series is ergodic if it is stationary and in addition
observations far apart in time can be considered uncorrelated.

exponential smoothing - a forecasting method in which the forecast is a
weighted average of past values with weights declining geometrically.

F

Fisher's z - hypotheses concerning the population correlation
coefficient r can be tested by using the fact that z = ½ln[(r + 1)/(r - 1)],
where r is the sample correlation coefficient, is approximately normally
distributed (around the value of z calculated with r = r) with standard

error 

FIVE - full information instrumental variables efficient estimator, used
when 3SLS is infeasible due to a large number of exogenous variables.

G

Gibbs sampler - a method of drawing random observations (x, y) from
the joint distribution of x and y. It can be used when it is difficult to
draw observations from the joint distribution of x and y, say, but easy to
draw observations from the distribution of y conditional on x and from
the distribution of x conditional on y. It works by drawing y0 from the
distribution of y conditional on an arbitrarily-determined x0, then
drawing an observation x1 from the distribution of x conditional on y0,

then drawing an observation y1 from the distribution of y conditional on



x1, and so on. After only a few iterations a pair of x, y observations can
be viewed as a random drawing from the joint distribution of x and y.
See Casella and George (1992).

Granger representation theorem - if two I(1) variables are
cointegrated, then their dynamic specification can be written as an error
correction model (ECM), and vice versa, if the dynamic relationship
between two I(1) variables can be written as an ECM, they are
cointegrated.

grouping - see aggregation.

H

hat matrix - the matrix H = X(X'X)-1X' whose diagonal elements are
prominent in finding influential observations through measures such as
DFFITS. Note that esimated y = Hy. Also called a projection matrix
when used for other purposes.

Holt-Winters - a generalization of exponential smoothing to incorporate
trend and seasonal variation.

I

inadmissible - an estimator of a parameter is inadmissible with respect
to a particular definition of risk if there exists another estimator whose
risk is less than or equal to that estimator's risk, for all values of the
parameter.

J

jack-knife - a means of estimating an estimator's variance by computing
the variance of the estimates produced by that estimator omitting each
of the observations in turn.

Janus coefficient - a measure of forecast accuracy, calculated as the
ratio of the average of the squared forecast errors for extra-sample data
to the comparable average for in-sample data.

Jensen's inequality - the expected value of a concave function of x is
less than the function evaluated at the expected value of x. (This can be
deduced from the material in the technical notes to section 2.8.)



L

LIVE - limited information instrumental variables efficient estimator,
used when there is a large number of exogenous variables, making 2SLS
infeasible.

M

martingale - a data-generating mechanism that can for most purposes
be considered a generalization of a random walk, permitting
heteroskedasticity.

minimax - an estimator of a parameter is minimax with respect to a
particular definition of risk if over all values of that parameter its
maximum risk is less than or equal to the
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maximum risk of all other estimators.

minimum variance bound - Cramer-Rao bound.

multiple correlation coefficient - the square root of the coefficient of
determination, R2, from a multiple regression.

P

p value - the probability, under the null hypothesis, of obtaining a test
statistic value bigger than its observed value. Alternatively, the smallest
level of significance (type I error) for which the observed test statistic
value results in a rejection of the null hypothesis.

p.a.c.f. - partial autocorrelation function, used in the identification stage
of time series (Box-Jenkins) analysis.

partial correlation coefficient - a measure of the linear association
between two variables when specified other variables are held constant.
It is calculated as the correlation coefficient between the residuals
obtained when the two variables in question are regressed on the
variables to be held constant. See Goldberger (1968b, chapter 4).



partial regression coefficient - a regression coefficient whose
calculation accounts for the influence of other regressors. "Gross" or
"simple" regression coefficients, calculated ignoring the influence of
other regressors, are seldom encountered. See Goldberger (1968b,
chapter 3).

pivotal statistic - a statistic which is independent of the model
parameters.

point optimal test - a test whose power is higher than that of all other
tests with the same size, for a specific degree of falseness of the null
hypothesis. It is particularly useful for situations in which theoretical
considerations suggest a part of the parameter space in which we want
our test to have good relative power. Contrast with UMP test.

precision - the accuracy of an estimator as measured by the inverse of
its variance.

predetermined variable - exogenous or lagged endogenous variable.

prior information - extraneous information.

projection matrix - the matrix P = X(X'X)-1X' which "projects" the
vector y into the column space of X, in the sense that estimated y = Py.
Also called the hat matrix when used to examine influential
observations.

R

risk function - the expected value of a loss function in Bayesian
estimation; in classical analyses, usually interpreted as the sum of the
MSEs of the parameter estimates.

S

sampling error - the error in estimating a parameter caused by the fact
that in the sample at hand all the disturbances are not zero.

score statistic - the vector of first derivatives of the log-likelihood with
respect to the parameter vector.

score test - another name for the LM test, since the LM test is in effect
testing for the score statistic equal to the zero vector.



scoring, method of - an iterative method of maximizing a log-likelihood
function which involves the use of the score vector.

serial correlation - autocorrelation.

size of a test - the probability of a type one error.

stationarity, strong vs weak - strong stationarity means that the
moments of the variable in question are all independent of time,
whereas for weak stationarity this is so only for the first two moments;
the two concepts coincide in the case of normality.

stock-adjustment model - partial-adjustment model.

sufficient statistic - an estimator that uses all the information contained
in the sample in the sense that we would make the same parameter
estimate whether we were told the whole set of observations or only the
value of the sufficient statistic.
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T

threshold loss function - a loss function taking the value 0 if the error is
less than some critical or threshold level, and a constant value if the
error is greater than or equal to this critical level. It captures losses of a
dichotomous nature, such as death resulting from an overdose.

truncated squared error loss - a loss function equal to the squared
error, but with a maximum loss for any observation. It is used as a
means of handling outliers.

U

unbiased test - test with power greater than or equal to size for all
parameter values.

UMP - see uniformly most powerful test.

uniformly most powerful test - a test whose power is higher than that of
all other tests with the same size, for all degrees of falseness of the null



hypothesis. Contrast with point optimal test.
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error correction models, 273

and estimators, 15, 20, 31-2

exercises, 328, 330-2, 335-7, 355-8, 366-7, 376, 380-1

fixed and random effects models, 231

Heckman two-stage estimator, 256

heteroskedasticity, 128, 129

LM tests, 68

multicollinear data, 193

nonspherical disturbances, 118, 126, 127, 128, 129, 131, 136

pre-test estimators, 202

ridge estimator, 192

sampling distributions, 22-4, 31-2, 316

Schwarz criterion, 103

simultaneous equations, 163, 165, 171, 173

specification, 89

unit root testing, 284

see also bootstrapping

moving average (MA) error, 129, 130, 264, 278

MSE see mean square error

multicollinearity, 18, 183-4

in CLR model, 44, 46, 49-50



cointegration, 275

consequences of, 184-6, 189-90

detection of, 186-7, 190

dummy variables, 222-3

exercises, 343-4

forecasting, 294

interval estimation, 60

mean square error (MSE), 188, 189, 191, 192

what to do, 187-9

multinomial logit model, 235, 240, 241-3, 244, 245

multinomial probit model, 235-6, 240, 241

multiple correlation coefficient, 409

multiple hypotheses method, 64

multivariate density function, 39-40, 312

multivariate regressions, 342-3

N

National Longitudinal Surveys of Labor Market Experience (NLS), 231

nearness, probability of, 32

neural nets, 302-3, 306, 307-9

Newton-Raphson method, 109-10

non-negative definite matrix, 35

non-nested tests, 79, 80-1, 89, 90, 93

exercises, 365-6



nonlinearity, 99

non-parametric estimators, 302, 306, 307-12

nonlinear two-stage least squares, 152

nonlinearity, 43, 46, 96-9, 104-7, 108-11

asymptotic distribution, 35-6, 323, 326

Chow test, 106, 107

constraint testing, 65

DW test, 107

extraneous information, 195

logarithmic transformation, 115

maximum likelihood, 30, 98

nonspherical disturbances, 79, 80, 107, 116-36

autocorrelated errors, 117, 121-6, 127, 129-31, 135-6

estimated generalized least squares (EGLS), 118, 127

exercises, 366-7, 372-3

generalized least squares (GLS), 117, 120, 121, 123, 126-7, 133

heteroskedasticity, 79, 116, 117, 119-21, 127-9, 133, 134-5
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maximum likelihood, 118-19, 126, 128, 129, 131

misspecification, 122, 129

Monte Carlo studies, 118, 126, 127, 128, 129, 131, 136



R2, 126, 129, 131

normal distribution, 30, 63

normality tests, 78

normalization problem, 172

O

observation-specific dummy variables, 226, 230-1, 304-5

observations, influential, 299-300, 304-5

OLS (ordinary least squares) estimator see least squares estimator

omitted variable (OV) tests, 78, 80, 88

Hausman test, 151, 175

Heckman two-stage estimator, 256

nonlinearity, 107

see also RESET test

OPG test see outer product of gradient (OPG) test

order condition, 161-2, 170-1, 175-7

ordered logit model, 236, 242, 247

ordered probit model, 236, 242, 247

ordinal dummies, 28

orthogonal innovations, 168

orthogonal least squares, 26, 142, 148

orthogonal regressors, 49

outer product of gradient (OPG) test, 71, 90, 93, 110, 321

outliers, 78-9, 80, 88, 226, 299-300, 304-5



OV tests see omitted variable (OV) tests

overfitting, 279, 307

overtesting, 77, 106

P

P test, 93

p value, 409

p.a.c.f. see partial autocorrelation function

panel data, 231-2

Panel Study of Income Dynamics (PSID), 231

parameter vector, interval estimation for, 57-60, 67

parameters, 3-4, 8

changing values of, 43, 46, 98, 99-101, 107-8, 111-12

constancy tests, 78, 85, 100-1

reduced-form, 158, 159-60, 164, 165-6, 167, 173, 179

structural, 158, 159-62, 164, 165-6, 167, 179

Park test, 128, 134-5

partial-adjustment model, 144, 150, 156

partial autocorrelation function, 278-9, 409

partial correlation coefficient, 409

partial likelihood function, 260, 262

partial regression coefficient, 409

Pascal lag, 199

PC-GIVE, 26, 85, 274



Pearson distribution, 255

period-specific dummies, 226

periodogram, 281

permutation tests, 69

piecewise linear model, 230

pivotal statistic, 409

plim see probability limit (plim)

point optimal test, 409

Poisson model, 236-7, 240, 242, 247-8

polychotomous dependent variables, 235-6, 240-2, 244-6

polynomial functional form, 108

polynomial inverse lag, 199

pooling data, 343

Portmanteau tests, 279

post-sample prediction tests, 78, 104, 226, 273, 293

posterior distribution, 206-7, 208-9, 211-12, 213, 216, 217

posterior odds ratio, 218

pre-test bias, 64, 196-7, 201

pre-test estimators, 193, 195-7, 198, 201-2, 204, 365

precision, 213, 409

predetermined variables, 169, 409

predictive density, 219

predictive distributions, 211, 216



predictive failure tests, 78, 101, 108

predictive validity, 85

principal component, 172, 189, 191

prior distribution, 206, 208, 209, 213, 217

choice of, 210-11

coherence, 216

exercises, 354-5
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ignorance, 210, 212, 214, 220

informative, 214

natural conjugate, 216

non-informative, 214, 219-20

prior information, 209, 215-16, 217, 409

probability

Bayesian v. classical notions of, 205, 206, 209, 213

convergence in, 322-4, 326

probability of concentration, 32

probability density function, 21, 37-8, 253

probability limit (plim), 18-19, 20, 29, 36, 322-4, 325, 326-7

probability of nearness, 32

probit model, 234, 237-9, 240, 241, 247, 259

projection matrix, 408, 409



proportional hazards model, 254, 259-60

proxy variable, 148-9

Q

quadratic estimators, 28

qualitative dependent variables, 221, 223-4, 233-48

dichotomous, 233-5, 237-40, 243-4

exercises, 380-2

maximum likelihood, 234, 235, 237, 243, 245-6, 247

polychotomous, 235-6, 240-2, 244-6

quantitative variables, 225-6, 229-30

quasi-maximum likelihood estimators, 30-1

R

R2

adjusted, 79, 82, 86, 90-1, 96, 103

aggregation, 406

autocorrelated disturbances, 131

dummy variables, 228

and estimators, 13, 26-8

forecasting accuracy, 291

functional form, 105

heteroskedasticity, 129

hypothesis testing, 66



multicollinearity, 184, 187

nonspherical disturbances, 126, 129, 131

OLS estimator, 45, 50, 52

partial, 52

pseudo, 239, 255

qualitative dependent variables, 233, 238

specification, 79, 81-3, 86, 90-1, 96, 103, 104

time series, 268, 283

zero intercept, 27

rain dance theory, 295-6

rainbow test, 78, 101, 106, 226

random coefficients, 8, 100-1

random effects model, 108, 226-8, 231-2

random error, 289-90, 293

random utility model, 235, 238, 240-1, 244-5

random walks, 268, 269, 274, 294

randomization tests, 69

rank condition, 90, 161-2, 171, 176-7

rational lag, 199

RATS, 26, 174, 274

recursive residuals, 78, 98, 101, 105-6, 108

recursive system, 169

reduced-form equations, 158, 164, 165-6, 167, 173, 177-8, 180



regime switching, 99, 107

regression

CLR model, 50-1

correlation with disturbance, 137-9, 157-8, 169, 174, 227, 324

fixed, 137

multivariate, 342-3

OLS estimator, 47, 48-9, 51-2

orthogonal, 49

stepwise, 52

weighted, 141-2

wrong regressions, 43, 46, 94-6, 101-4

regression coefficient, 312

partial, 409

regression proportion, 297

regression quantiles, 301, 305

regression specification error test see RESET test

reliability analysis, 257

RESET test autocorrelated disturbances, 129

nonlinearity, 98, 107

specification, 78, 79, 80

wrong regressors, 96, 104

residuals, 11-12, 26
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check for heteroskedasticity, 120

GLS estimator, 117, 123

recursive, 78, 98, 101, 105-6, 108

studentized, 305

response surface, 31

restrictions exact, 194-5, 200

identification, 159-62, 170-1, 175-7

inequality, 200

linear, 200

nonlinear, 200

stochastic, 195, 200-1, 203-4

zero, 159, 161, 165, 170, 179

ridge estimator, 189, 192, 193

rigidity model, 144

risk function, 34-5, 192, 197-8, 204, 409

RMSE, 291

robust estimators, 28, 32, 88, 298-312

limited dependent variables, 255

single equation methods, 171

root mean square error (RMSE), 291

S

sample selection, 251-2, 256-7, 258-9



bias, 6, 79, 251-2, 255

sample size problem, too large, 64, 103

samples

censored, 249-51, 253, 255, 257-8, 259, 306

truncated, 250, 251, 255, 257, 258-9

samples, repeated, 13-14, 24, 42, 43, 314

Bayesian approach, 213, 214

independent variables, 137

interval estimation, 58

sampling distribution, 313-16

asymptotic properties, 18-20, 35-7

Bayesian v. classical approach, 205-6

bootstrapping, 72

efficiency, 15-16

mean square error, 16-18

Monte Carlo studies, 22-4, 31-2, 316

unbiasedness, 13-15, 33, 314

sampling error, 289-90, 293, 409

SAS, 26

Schwarz criterion (SC), 96, 103, 104, 279

score statistic, 71, 409

score test see Lagrange multiplier (LM) test

scoring, method of, 409



SEARCH, 85, 217

seasonal adjustment, 230

seasonal factors, 272, 278

seemingly unrelated regression estimation (SURE), 169, 175, 180

exercises, 371

selection bias, 6, 79, 251-2, 255

selection equation, 251

semi-log functional form, 108

semi-parametric estimation, 303, 306, 312

SEMTSA see structural econometric time series approach (SEMTSA)

sequential logit model, 241

sequential probit model, 241

serial correlation, 79, 96, 409

ShapiroWilk test, 79, 304

SHAZAM, 26, 130, 133, 215, 274, 284

Shiller's distributed lag, 199

shocks, 121-2

significance tests, 64

simulation, 293

simultaneous equation estimation, 44, 46, 157-82, 266-7, 270, 298

autocorrelated errors, 171-2

exercises, 378-9

Hausman test, 169, 174-5



hypothesis testing, 171

Monte Carlo studies, 163, 165, 171, 173

single-equation methods, 163-6, 171-2, 177-80

size of a test, 69, 409

slope coefficients, 225-6, 229, 230

Slutsky's theorem, 323

smoothing parameter, 311

specification, 73-93, 304

specification errors, 3, 43, 94-112

forecasting, 289, 290, 291, 293

limited dependent variables, 254-5

logit and probit models, 240

multicollinearity, 185-6

nonspherical disturbances, 122, 129

tests for, 77, 78-81, 88-90, 92-3

spectral analysis, 272, 279-81

spectral window, 281

spline theory, 108, 230

SPSS, 26

SSE (error sum of squares), 26, 27, 226, 229

SSR (regression sum of squares), 26, 27

SST (total sum of squares), 26, 27
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state space model, 277

stationarity, 263, 271, 409

ARIMA models, 264, 277-8

unit root tests, 268, 269, 274, 285, 286

Stein estimator, 189, 191, 192-3, 198, 202-3, 214

Stein positive rule estimator, 203

stepwise regression, 52

stochastic relationship, 3, 22-3, 137, 146, 234

stochastic restrictions, 195, 200-1, 203-4

stock-adjustment model, 409

structural change tests changing parameter values, 100-1, 108

nonlinearity, 99

specification, 78, 79, 80

structural econometric time series approach (SEMTSA), 265-6, 272

studentized residual, 305

sufficient statistic, 409

superconsistency, 275, 286, 327

SURE see seemingly unrelated regression estimation (SURE)

survival analysis, 257

survivor function, 260

systems methods, 163, 166-7, 172-3, 180

T



t test

asymptotic variance of, 65

hypothesis testing, 54-5, 65, 66

observation-specific dummies, 226

omitted variables, 78

time series, 268, 283

Taylor series expansion, 37, 105, 110, 111

tender loving care, 290, 294

test, test, test (TTT)

error correction models, 273

independent variables, 95-6

specification, 75, 76, 84, 85, 87, 91

testing down, 75, 76, 77, 92, 95-6

testing up, 76, 77

Theil's compatibility statistic, 201

Theil's inequality statistic, 297

theory-consistency, 85

three-group method, 142, 148

three-stage least squares, 166-7, 172-3

threshold loss function, 410

Time, 292

time series, 263-87

ARCH, 128-9



ARIMA models, 264-6, 267, 271-2, 273, 277-81, 286, 290-1, 296

autocorrelated disturbances, 122

Bayesian estimation, 294-5

changing parameter values, 99

cointegration, 79, 268, 269-70, 271, 272, 274-7, 286-7

cross-sectional studies, 189

error-correction models, 85, 266-8, 269-70, 272-3, 275, 277, 281-3,
291, 295

forecasting, 288, 290-1, 294-5

period-specific dummies, 226

R2, 26

random shocks, 121-2

SEMTSA, 265-6, 272

unit root tests, 79, 268-9, 270, 274, 283-6

Tobit model, 205-2, 255-6, 298

transcendental functional form, 108

transfer model, 272

transformation, 40, 97

exercises, 339-40

logarithmic, 115

simultaneous equations, 159-60

translog, 109, 168

trimean, 301



trimmed least squares, 301, 305

truncated samples, 250, 251, 255, 257, 258-9

truncated squared error loss, 410

TSP, 26

TTT see test, test, test

turning points forecast, 291

two-group method, 142, 148

two-stage least squares, 165, 166-7, 171, 172, 173, 179, 180

nonlinear, 152

type I error rate, 87, 92

average economic regression, 76

Bayesian analysis, 219

extraneous information, 204

hypothesis testing, 64, 69

J test, 93

type I extreme-value distribution see Weibull distribution
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