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TOBIT MODELS: A SURVEY 

Takeshi AMEMIYA* 

Stanford University, Stanford, CA 94305, USA 

1. Introduction 

Tobit models refer to regression models in which the range of the dependent 
variable is constrained in some way. In economics, such a model was first 
suggested in a pioneering work by Tobin (1958). He analyzed household 
expenditure on durable goods using a regression model which specifically took 
account of the fact that the expenditure (the dependent variable of his 
regression model) cannot be negative. Tobin called his model the model of 
limited dependent variables. It and its various generalizations are known 
popularly among economists as Tobit models, a phrase coined by Goldberger 
(1964) because of similarities to probit models. These models are also known as 
censored or truncated regression models. The model is called truncated if the 
observations outside a specified range are totally lost and censored if one can at 
least observe the exogenous variables. A more precise definition will be given 
later. 

Censored and truncated regression models have been developed in other 
disciplines (notably biometrics and engineering) more or less independently of 
their development in econometrics. Biometricians use the model to analyze the 
survival time of a patient. Censoring or truncation occurs either if a patient is 
still alive at the last observation date or if he or she cannot be located. 
Similarly, engineers use the model to analyze the time to failure of material or 
of a machine or a system. These models are called survival models.’ Sociologists 
and economists have also used survival models to analyse the duration of such 
phenomena as unemployment, welfare receipt, employment in a particular job, 
residing in a particular region, marriage, and the period of time between 
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births.* Mathematically, survival models belong to the same general class of 
models as Tobit models and share certain characteristics. However, I will not 
discuss survival models in this survey because they possess special features of 
their own. See the survey by Heckman and Singer in this issue. 

Between 1958, when Tobin’s article appeared, and 1970, the Tobit model 
was used infrequently in econometric applications, but since the early 1970’s 
numerous applications ranging over a wide area of economics have appeared 
and continue to appear. This phenomenon is due to a recent increase in the 
availability of micro sample survey data which the Tobit model analyzes well 
and to a recent advance in computer technology which has made estimation of 
large-scale Tobit models feasible. At the same time, many generalizations of 
the Tobit model and various estimation methods for these models have been 
proposed. In fact, models and estimation methods are now so numerous and 
diverse that it is difficult for econometricians to keep track of all the existing 
models and estimation methods and maintain a clear notion of their relative 
merits. Thus, it is now particularly useful to examine the current situation and 
prepare a unified summary and critical assessment of existing results. 

I will try to accomplish this objective by means of classifying the diverse 
Tobit models into five basic types. (My review of the empirical literature 
suggests that roughly 95% of the econometric applications of Tobit models fall 
into one of these five types.) While there are many ways to classify Tobit 
models, I have chosen to classify them according to the form of the likelihood 
function. This way seems to me to be the statistically most useful classification 
because a similarity in the likelihood function implies a similarity in the 
appropriate estimation and computation methods. It is interesting to note that 
two models which superficially seem to be very different from each other can 
be shown to belong to the same type when they are classified according to my 
scheme. 

The remainder of the paper consists of two parts: part I deals with the 
Standard Tobit model (or Type 1 Tobit) and part II deals with the remaining 
four types of models. Basic estimation methods, which with a slight modifica- 
tion can be applied to any of the five types, are discussed at great length in 
part I. More specialized estimation methods are discussed in relevant passages 
throughout the paper. Each model is illustrated with a few empirical examples. 

I should note the topics, in addition to the survival models mentioned above, 
which I do not discuss. I do not discuss disequilibrium models except for a few 
basic models which are examined in section 11.5. Some general references on 
disequilibrium models are cited there. Nor do I discuss the related topic of 
switching regression models. For a survey on these topics, the reader should 

2See Bartholomew (1973), Singer and Spilerman (1976), Tuma, Hannan and Groeneveld (1979), 
Lancaster (1979), Tuma and Robins (1980). and Flinn and Heckman (1982). 
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consult Maddala (1980). I do not discuss Tobit models for panel data (individ- 
uals observed through time), except to mention a few papers in relevant 
passages, since they can be best discussed with survival models. 

The econometrics text books which discuss Tobit models (with the relevant 
page numbers) are Goldberger (1964, pp. 251-255) Maddala (1977, pp. 
162-171) and Judge, Griffiths, Hill and Lee (1980, pp. 609-616). Maddala 
(1983) gives a comprehensive discussion of Tobit models as well as qualitative 
response models and disequilibrium models. 

I. Standard Tobit Model (Type 1 Tobit) 

2. Definition of the model 

Tobin (1958) noted that the observed relationship between household ex- 
penditures on a durable good and household incomes looks like fig. 1, where 
each dot represents an observation for a particular household. An important 
characteristic of the data is that there are several observations where the 
expenditure is zero. This feature destroys the linearity assumption so that the 
least squares method is clearly inappropriate. Should one fit a nonlinear 
relationship? First, one must determine a statistical model which can generate 
the kind of data depicted in fig. 1. In doing so the first fact one should 
recognize is that one cannot use any continuous density to explain the 
conditional distribution of expenditure given income because a continuous 
density is inconsistent with the fact that there are several observations at zero. 
Below I develop an elementary utility maximization model to explain the 
phenomenon in question. 

Expenditure 

Fig. 1 
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Define the symbols needed for the utility maximization model as follows: 

y = a househ o Id ‘s expenditure on a durable good, 
y,= the price of the cheapest available durable good, 
z = all the other expenditure, 
x = income. 

A household is assumed to maximize utility U(y, z) subject to the budget 
constraint y + z 5 x and the boundary constraint y 2 y0 or y = 0. Suppose y* is 
the solution of the maximization subject to y + z 5 x but ignoring the other 
constraint, and assume y* = /3i + &x + u, where u may be interpreted as the 
collection of all the unobservable variables which affect the utility function. 
Then, the solution to the original problem, denoted by y, can be defined by 

Y=Y* if Y* >Yo, 

=0 or y0 if y* Syo. 
(1) 

If we assume that u is a random variable and that y,, varies with households but 
is assumed known, this model will generate data like fig. 1. We can write the 
likelihood function for n independent observations from the model (1) as 

(4 

where 4 and f, are the distribution and density function respectively of y;*, n, 
means the product over those i for which yi* 5 yoi, and n, means the product 
over those i for which yj* > y,,. Note that the actual value of y when y* $ y, 

has no effect on the likelihood function. Therefore, the second line of eq. (1) 
may be changed to the statement ‘if y* 5 y,,, one merely observes that fact’. 

The model originally proposed by Tobin (1958) is essentially the same as the 
above except that he specifically assumes y * to be normally distributed and 
assumes y,, to be the same for all households. We define the Standard Tobit 
model (or Type 1 Tobit) as follows: 

y,* = x(/3 + 24. IV 
i=1,2 n, ,.*., (3) 

Yi = Yi if y,*>O, 

= 0 if y,* 2 0, 
64) 

where {u,} are assumed to be i.i.d. drawings from N(0, a*). It is assumed that 
{ y, } and {xi } are observed for i = 1,2,. . . , n, but { y,* } are unobserved if 
yi* s 0. Defining X to be the n x K matrix whose i th row is x;, we assume that 
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lim “-‘CC n -‘XX is positive definite. In the Tobit model one needs to dis- 
tinguish the vectors and matrices of positive observations from the vectors and 
matrices of all the observations; the latter appear in bold print. 

Note that y: > 0 and y,* 5 0 in (4) may be changed to y,* > y, and y,* 6y0 
without essentially changing the model, whether y, is known or unknown, since 
y0 can be absorbed into the constant term of the regression. If, however, y,, 
changes with i and is known for every i, the model is slightly changed because 
the resulting model would be essentially equivalent to the model defined by (3) 
and (4) where one of the elements of /3 other than the constant term is known. 
The model where y,, changes with i and is unknown is not generally estimable. 

The likelihood function of the Standard Tobit model is given by 

where @ and $I are the distribution and density function respectively of the 
standard normal variable. 

The Tobit model belongs to what is sometimes known as the censored 
regression model. In contrast, if one observes neither y, nor x, when yj* 4 0, the 
model is known as a truncated regression model. The likelihood function of the 
truncated version of the Tobit model can be written as 

Henceforth, the Standard Tobit model refers to the model defined by (3) and 
(4), namely a censored regression model, and the model whose likelihood 
function is given by (6) will be called the truncated Standard Tobit model. 

3. Empirical examples 

Tobin (1958) obtained the maximum likelihood estimates of his model 
applied to data on 735 non-farm households obtained from Surveys of Con- 
sumer Finances. The dependent variable of his estimated model was actually 
the ratio of total durable goods expenditure to disposable income and the 
independent variables were the age of the head of the household and the ratio 
of liquid assets to disposable income. 

Since then, and especially since the early 1970’s, numerous applications of 
the Standard Tobit model have appeared in economic journals, encompassing 
a wide range of fields in economics. I will present below a brief list of recent 
representative papers, with a description of the dependent variable and the 
main independent variables. In all the papers except Kotlikoff, who uses a 
two-step estimation method which I will discuss later, the method of estimation 
is maximum likelihood. 
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Adams (1980) 
y: Inheritance. 
x: Income, marital status, number of children. 

Ashenfelter and Ham (1979) 
y: Ratio of unemployed hours to employed hours. 
x: Years of schooling, working experience. 

Fair (1978) 
y: Number of extra-marital affairs. 
x: Sex, age, number of years married, number of children, education, 

occupation, degree of religiousness. 

Keeley, Robins, Spiegelman and West (1978) 
y: Hours worked after a Negative Income Tax program. 
x: Pre-program hours worked, change in the wage rate, family character- 

istics. 

Kotlikofl(l979) 
y: Expected age of retirement. 
x: Ratio of social security benefits lost at full time work to full time 

earnings. 

Reece (1979) 
y: Charitable contributions. 
x: Price of contributions, income. 

Rosenzweig (1980) 
y: Annual days worked. 
x: Wages of husbands and wives, education of husbands and wives, 

income. 

Stephenson and McDonald (1979) 
y: Family earnings after a Negative Income Tax program. 
x: Earnings before the program, husband’s and wife’s education, other 

family characteristics, unemployment rate, seasonal dummies. 

Wiggins (1981) 
y: Annual marketing of new chemical entities. 
x: Research expenditure of the pharmaceutical industry, stringency of 

government regulatory standards. 

Witte (1980) 
y: Number of arrests (or convictions) per month after release from 

prison. 
x: Accumulated work release funds, number of months after release until 

first job, wage rate after release, age, race, drug use. 
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4. Properties of estimators under standard assumptions 

In this section I will discuss the properties of various estimators of the Tobit 
model under the assumptions of the model. The estimators I consider are 
probit maximum likelihood (ML), least squares (LS), Heckman’s two-step, 
nonlinear least squares (NLLS), nonlinear weighted least squares (NLWLS), 
and the Tobit ML. 

4.1. Probit maximum likelihood estimator 

The Tobit likelihood function (5) can be trivially rewritten as follows: 

Then, the first two products of the right-hand side of (7) constitute the 
likelihood function of a probit model, and the last product is the likelihood 
function of the truncated Tobit model as given in (6). The probit ML estimator 
of o! = p/u, denoted &, is obtained by maximizing the logarithm of the first 
two products. The maximization must be done by an iteration scheme such as 
Newton-Raphson or the method of scoring [see Amemiya (1981b, p. 1496)], 
where convergence is assured by the global concavity of the logarithmic 
likelihood function.3 

Note that one can only estimate the ratio /3/a by this method and not /I or u 
separately. Since the estimator ignores a part of the likelihood function that 
involves /3 and u, it is not fully efficient. This loss of efficiency is not surprising 
when one realizes that the estimator uses only the sign of yi*, ignoring its 
numerical value even when it is observed. 

The probit MLE is consistent and one can show by a standard method [see, 
for example, Amemiya (1978, p. 1196)] that 

oi - a 9 ( X'DIX)-lX'DID,-'( IV- Ew), (8) 

‘Let log L,(O) be a logarithmic likelihood function of a parameter vector B in general. Then, 
global concavity means that J210g L/83X?‘ is negative definite over the whole parameter space. 
Let fi be the MLE. Then, by a Taylor expansion we have 

log qe) = log ~(4) + f(e - P)‘( a210g L/aeae’)(e - 611, 
where we have used the fact that alog L/N evaluated at d is zero by definition of the MLE, and 
J*log L/,/aOW is evaluated at a point between b’ and 1. Therefore, global concavity implies 
iogL(e)<iogL(BI)foranye#8. 
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where D, is the n x n diagonal matrix whose ith element is $(x,‘(r), D, is the 
n X n diagonal matrix whose ith element is @(x,‘a)-‘[l - @(x:a)] p1$(x;a)2 
and w is the n-vector whose ith element wi is defined by 

wi = 1 if y,* > 0, 

(9) 
=0 if y,*sO. 

Note that the ith element of Ew is equal to @(x:a). The symbol 5 means that 
both sides have the same asymptotic distribution.4 Therefore, ai is asymptoti- 
cally normal with mean a and asymptotic variance-covariance matrix given by 

Vci = (X'D,X)-'. 00) 

4.2. Least squares estimator 

From fig. 1 it is clear that the least square regression of expenditure on 
income using all the observations including zero expenditures yields biased 
estimates. though it is not so clear from the figure, the least squares regression 
using only the positive expenditures also yields biased estimates. These facts 
can be mathematically demonstrated as follows. 

First, I will consider the regression using only positive observations of y,. We 
get from (3) and (4) 

E(y,ly,>O)=x:p+E(u;Ju,> -x:/j). (II) 

The last term of the right-hand side of (11) is generally non-zero (even without 
assuming ui is normal). This implies the biasedness of the LS estimator using 
positive observations on y, under more general models than the Standard Tobit 
model. When we assume normality of U, as in the Tobit model, (11) can be 
shown by straightforward integration to be 

E(Y,lYi>O)=X:p+uh(X:P/u), (12) 

where h(z) = $( z)/O( z).~ As I will show below, this equation plays a key role 
in the derivation of Heckman’s two-step, NLLS, and NLWLS estimators. 

A 
4 More precisely, = means in this particular case that 6 times both sides of the equation have 

the same limit distribution. 

sA(.) is known as the hazard rate and its reciprocal is known as Mills’ ratio. Tobin (1958) gives a 
figure which shows that h(z) can be closely approximated by a linear function of z for - 1 -C z < 5. 
Johnson and Katz (1970, p. 278t) give various expansions of Mills’ ratio. 
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Eq. (12) clearly indicates that the LS estimator of /3 is biased and incon- 
sistent, but the direction and magnitude of the bias or inconsistency cannot be 
shown without further assumptions. Goldberger (1981) evaluated the asymp- 
totic bias (the probability limit minus the true value) assuming that the 
elements of xi, except the first element which is assumed to be a constant, are 
normally distributed. More specifically, Goldberger rewrites (3) as 

and assumes xi - N(0, 2) and is distributed independently of ui. (Here, the 
assumption of zero mean involves no loss of generality since a non-zero mean 
can be absorbed into &.) Under this assumption he obtains 

plim&= [(l-Y)/(l-P*Y)lP,, 04) 

where y = a,-‘h(&/u,,)[& + u,h(&/u,,)] and p* = uYP2&Ql, where $= a2 
+ &Z@,. It can be shown that 0 < y < 1 and 0 < p* < 1; therefore, (14) shows 
that B, shrinks /?I toward zero. It is remarkable that the degree of shrinkage is 
uniform in all the elements of &. However, the result may not hold if X, is not 
normal; Goldberger gives a nonnormal example where & = (1,l)’ and plim pi 
= (1.111,0.887)‘. 

Next, I will consider the regression using all the observations of y,, both 
positive and zero. To see that the least squares estimator is also biased in this 
case, one should look at the unconditional mean of y,, 

Writing (3) again as (13) and using the same assumptions as Goldberger, 
Greene (1981) showed 

PlimB, = @(Po/~,>~P,9 

where 16, is the LS estimator of pi in the regression of y, on X, using all the 
observations. This result is even more remarkable than (14) because it implies 
that (n/n*). p, is a consistent estimator of pi, where n, is the number of 
positive observations of y,. A simple consistent estimator of & can be similarly 
obtained. Greene (1983) gives the asymptotic variances of these estimators. 
Unfortunately, however, one cannot confidently use this estimator without 
knowing its properties when the true distribution of Xi is not normal. 

Chung and Goldberger (1982) generalize the results of Goldberger (1981) 
and Greene (1981) to the case where y* and X are not necessarily jointly 
normal but E(~ly*) is linear in y*. 
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4.3. Heckman’s two-step estimator 

Heckman (1976), following a suggestion of Gronau (1974), proposed a 
two-step estimator in a two-equation generalization of the Tobit model. I 
classify this model as the Type 3 Tobit model and discuss it later. But his 
estimator can also be used in the Standard Tobit model, as well as in more 
complex Tobit models, with only a minor adjustment. I will discuss the 
estimator in the context of the Standard Tobit model because all the basic 
features of the method can be revealed in this model. However, one should 
keep in mind that since the method requires the computation of the probit 
MLE, which itself requires an iterative method, the computational advantage 
of the method over the Tobit MLE (which is more efficient) is not as great in 
the Standard Tobit model as it is in more complex Tobit models. 

To explain this estimator, it is useful to rewrite (12) as 

y, = xl/3 + ah( x:a) + E,, for i such that y, > 0, (17) 

where I have written (Y = /3/a as before and &i = y, - E( y,] y, > 0) so that 
EE, = 0. The variance of E, is given by 

V&; = a2 - a*x)+)Y) -a2X(x;ry)*. (18) 

Thus, (17) is a heteroscedastic nonlinear regression model with n, observations. 
The estimation method Heckman proposed consists of the following two steps: 
(1) Estimate (Y by the probit MLE (denoted ai) defined earlier. (2) Regress y, on 
xi and h(x,%) by least squares using only the positive observations on y,. 

To facilitate further the discussion of Heckman’s estimator, rewrite (17) 
again as 

y,=x,~p+ah(xlai)+~;+~~, forisuchthat y,>O, (19) 

where ?, = u[ A( xlcr) - A(x,%)]. I write (19) in vector notation as 

y=xp+aT;+E+7j, (20) 

where the vectors y, & E and q have n, elements and the matrix X has n, rows, 
corresponding to the positive observations of y,. I further rewrite (20) as 

y=iy+e+q, (21) 

where I have defined 2 = (X, fi) and y = (/3’, a)‘. Then, Heckman’s two-step 
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estimator of y is defined as 

The consistency of p follows easily from (21) and (22). I will derive its 
asymptotic distribution for the sake of completeness, though the result is a 
special case of Heckman’s result (1979). From (21) and (22) we have 

(23) 

Since the probit MLE & is consistent, we have 

(24) 

where Z = (X, A). It is easy to prove 

n;fZ’e + N(0, a21im niP’Z’,XZ), (25) 

where a22 = EEE’ is the ni x n, diagonal matrix whose diagonal elements are 
Vq given in (18). We have by Taylor expansion of A(x’s) around h(x’a), 

n z -u( aA/aa’)( ai - a). (26) 

Using (26) and (8) we can prove 

n1 -ihj+N[0,02Z'(J-B)X(X'D,X)-1X'(I-2)Z], (27) 

where D, was defined after (8). Next, note that E and n are uncorrelated 
because n is asymptotically a linear function of w on account of (8) and (26) 
and E and w are uncorrelated. Therefore, from (23) (24) (25) and (27) we 
finally conclude that p is asymptotically normal with mean y and the asymp- 
totic variance-covariance matrix given by 

(28) 

The above expression may be consistently estimated either by replacing the 
unknown parameters by their consistent estimates or by (Z’Z) ~ ‘Z’AZ( ZZ) ~ ’ 
where A is the diagonal matrix whose ith diagonal element is [y, - x,/B - 
BA( xlai)12, following the idea of White (1980). 
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Note that the second matrix within the square bracket above arises be- 
cause A had to be estimated. If A were known, one could apply least squares 
directly to (17) and the exact variance-covariance matrix would be 
a*(Z’Z)-‘Z’ZZ(Z’Z)-‘. 

Heckman’s two-step estimator uses the conditional mean of y, given in (12). 
A similar procedure can also be applied to the unconditional mean of y, given 
by (15).6 That is to say, one can regress all the observations of y, including 
zeros on @xi and + after replacing the a that appears in the argument of Q, and 
$I by the probit MLE 8. In the same way as we derived (17) and (19) from (12), 
we can derive the following two equations from (15): 

Y,=~(X;“)[X:P+aX(xla)] +I$, (29) 

and 

y,=~(x;~)[x;p+ah(x;ai)] +&+[,, (30) 

where 6, =y, - Ey, and & = [@(~;a)- @(x,%)]xi/I + a[@(x,‘cx)- $(x:&)]. A 
vector equation comparable to (21) is 

y=D&+6+[, (31) 

where 6 is the n x n diagonal matrix whose ith element is @(~,‘a). Note that 
the vectors and matrices appear in bold print because they consist of n 

elements or rows. The two-step estimator of y based on all the observations, 
denoted y, is defined as 

p = (~$*~)-l~gjy. (32) 

The estimator can easily be shown to be consistent. To derive its asymptotic 
distribution, we obtain from (31) and (32) 

J;;(y - y) = (n-1~$2i)-l(n-ti’fi~ + n-ik-,Ij[). (33) 

Here, unlike the previous case, an interesting fact emerges: by expanding 
@(xi&) and $(x,:6) in Taylor series around x$ one can show & = O(n -‘). 

Therefore, 

plimn-fZ’&=O. (34) 

Corresponding to (24), we have 

plimn-‘Z’D*Z=limn-‘Z’D*Z, (35) 

6This was suggested by Wales and Woodland (1980). 
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where D is obtained from 6 by replacing ai with (Y. Corresponding to (25), we 
have 

n-f.?& + N(0, a’lim n-‘Z’D2QZ), (36) 

where a21n = EM is the n x n diagonal matrix whose ith element is 
~~@(x;a){(x,G~)~ + x:ah(x;a) + 1 - @(x:a)[x;a + A(_x,‘~)]~}. Therefore, from 
(33) - (36), we conclude that y is asymptotically normal with mean y and the 
asymptotic variance-covariance matrix given by7 

VP= o~(Z’D~Z)-‘Z’D~&?Z(Z~D~Z)-~. (37) 

Which of the two estimators p and p is preferred? Unfortunately, the 
difference of the two matrices given by (28) and (37) is generally neither 
positive definite nor negative definite. Thus, an answer to the above question 
depends on parameter values. 

Both (21) and (31) represent heteroscedastic regression models. Therefore, 
one can obtain asymptotically more efficient estimators by using weighted least 
squares (WLS) in the second step of the procedure for obtaining 7 and 7. In 
doing so, one must use a consistent estimate of the asymptotic variance- 
covariance matrix of E + TJ for the case of (21) and of 6 + t for the case of (31). 
Since these matrices depend on y, an initial consistent estimate of y (say, I; or 
p) is needed to obtain the WLS estimators. I call these WLS estimators ?w and 
yw, respectively. It can be shown that they are consistent and asymptotically 
normal with the asymptotic variance-covariance matrices given by 

and 

I’?, = o~(Z’D~,-~Z)~~. (39) 

Again, one cannot make a definite comparison between two matrices. 

4.4. Nonlinear least squares and nonlinear weighted least squares estimators 

In this subsection I will’consider four estimators: the NLLS and NLWLS 
estimators applied to (17), denoted j& and PNw respectively, and the NLLS 
and NLWLS estimators applied to (29), denoted fN and yNW. 

All these estimators are consistent and their asymptotic distributions can be 
obtained straightforwardly by noting that all the results of a linear regression 

‘To the best of my knowledge, this result was first obtained by Stapleton and Young (1981). 
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model hold asymptotically for a nonlinear regression model if we treat the 
derivative of the nonlinear regression function with respect to the parameter 
vector as the regression matrix.* In this way one can show the interesting fact 
that & and &+, have the same asymptotic distributions as 7 and pw respec- 
tively.’ One can also show that -& and yNw are asymptotically normal with 
mean y and with their respective asymptotic variance-covariance matrices 
given by 

and 

vp, = a2(SS)-1S’~:S(SS)-1, (40) 

VP Nw = a2(S’ZPIS)_‘, (41) 

where S = (ZX, D,h), where D, is the nt X nl diagonal matrix whose ith 
element is 1 + (x,/a)’ + x:ah(xia). One cannot make a definite comparison 
either between (28) and (40) or between (38) and (41). 

In the two-step methods defining p and 7 and their generalizations pw and 
yw, one can naturally define an iteration procedure by repeating the two-steps. 
For example, having obtained 9, one can obtain a new estimate of a, insert it 
into the argument of A, and apply least squares again to eq. (17). The 
procedure is to be repeated until a sequence of estimates of a thus obtained 
converges. In the iteration starting from pw, one uses the m th round estimate 
of y not only to evaluate h but also to estimate the variance-covariance matrix 
of the error term for the purpose of obtaining the (m + 1)st round estimate. 
Iterations starting from J and yw can be similarly defined but are probably not 
worthwhile because f and yw are asymptotically equivalent to TN and BNW as I 
have indicated above. The estimators ( pN, p Nw, yN, yNw) are clearly stationary 
values of the iterations starting from (9, pw, 7, pw). However, they may not 
necessarily be the converging values. 

A simulation study by Wales and Woodland (1980) based on only one 
replication with sample sizes of 1000 and 5000 showed that pN is distinctly 
inferior to the MLE and is rather unsatisfactory. 

4.5. Tobit maximum likelihood estimator 

The likelihood function of the Tobit model was given in (5), from which we 
obtain the logarithmic likelihood function 

logL=zlog[l-@(x,‘&‘a)] -~logoz--&~(y,-x;/3)2. (42) 
0 1 

*See Amemiya (1981a). Hartley (1976b) proved the asymptotic normality of YN and YNW and 
that they are asymptotically not as efficient as the MLE. 

9The asymptotic equivalence of -&, and $ was proved by Stapleton and Young (1981). 
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The derivatives are given by 

a1og L 1 c ~(w+, --= -- 
ap 

+kgy,-x$)x;, 
(J (J 14(x;&%) cJ2 1 

17 

(43) 

and 

al0gL 1 -- 
aa2 

c x:P@ (x:&q 
-“I+-Qy,-x;@2. (44) 

-2a3 (J 1 - @(x:/3/u) 2u2 2u4 1 

Amerniya (1973) proved that the Tobit MLE is strongly consistent and 
asymptotically normal with the asymptotic variance-covariance matrix equal 
to -(a210gL/&%3P-1,where8=(p~,~2)‘.10 

The Tobit MLE is defined as a solution of the equations obtained by 
equating the partial derivatives (43) and (44) to zero. The equations are 
nonlinear in the parameters and hence must be solved iteratively. However, 
Olsen (1978a) proved the global concavity of log L in the Tobit model in terms 
of the transformed parameters LY = p/u and h = u -l, which implies that a 
standard iterative method such as Newton-Raphson or the method of scoring 
always converges to the global maximum of log L.” The log L in terms of the 
new parameters can be written as 

0 

from which Olsen obtains 

a2i0g L a2i0g L ___ ~ 
aff ad aaah 

a2iog L a2iog L ___ ____ 
ahad ah2 

_ 

(45) 

0 

n1 
2 I 

(46) 

“The formulae for the second derivatives are given in Amemiya (1973, p. 1000). The asymptotic 
variance-covariance matrix may also be estimated by -(Ea210g L/~OCM’) -‘, which is given in 
Amemiya (1973, p. 1007). 

“Amemiya (1973) showed that the Tobit likelihood function is not globally concave with respect 
to the original parameters B and (I’. 
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where $+ = +(x+x) and Gi = @(x,%x). But, x+x - [l - @(x$)1 P1+(x$x) < 0. 
Therefore, the right-hand side of (46) is the sum of two negative-definite 
matrices and hence is negative definite. 

Even though convergence is assured by global concavity, it is a good idea to 
start an iteration with a good estimator because it will improve the speed of 
convergence. Tobin (1958) used the following simple estimator based on a 
linear approximation of the reciprocal of Mills’ ratio to start his iteration for 
obtaining the MLE: By equating the right-hand side of (43) to zero, we obtain 

-UC- @l x,+C(y,-x;p)x,=o. 
0 I-@, 1 

(47) 

If we premultipIy (47) by p’/(204) and add it to the equation obtained by 
setting (44) equal to zero, we get 

Approximate (1 - @,) -‘I#, by the linear function a + b. (x;p/o) and substitute 
it into the left-hand side of (47) to obtain 

-uC[u+b.(x:p/u)]x,+C(y,-x:p)x,=o. 
0 1 

(49) 

Solve (49) for p and insert it into (48) to obtain a quadratic equation in u. If 
the roots are imaginary, Tobin’s method does not work. If the roots are real, 
one of them can be chosen arbitrarily. Once an estimate of u is determined, an 
estimate of p can be determined linearly from (49). Amemiya (1973) showed 
that Tobin’s initial estimator is inconsistent. However, empirical researchers 
have found it to be a good starting value for iteration. 

Amemiya (1973) proposed the following simple consistent estimator: We 
have 

Combining (12) and (50) yields 

E( Y,?Y, ’ 0) = x:PE(Y,IY, ’ 0) +a21 (51) 

which can be alternatively written as 

y;=Y,x:P+u2+5,7 for i such that y, > 0, (52) 
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where E(&ly, > 0) = 0. Then, consistent estimates of /? and a* are obtained by 
applying an instrumental variables method to (52) using (GLx:, 1) as the 
instrumental variables where 9, is the predictor of yi obtained by regressing 
positive y, on x, and, perhaps, powers of xi. The asymptotic distribution of the 
estimator is given in Amemiya (1973). A simulation study by Wales and 
Woodland (1980) indicates that this estimator is rather inefficient. 

4.6. The EM algorithm 

The EM algorithm is a general iterative method for obtaining the MLE, first 
proposed by Hartley (1958) and generalized by Dempster, Laird and Rubin 
(1977), which is especially suited for censored regression models such as Tobit 
models. It has good convergence properties making it especially useful for 
handling the more complex Tobit models, which I will discuss later, where 
global concavity may not hold. However, I will discuss it in the context of the 
Standard Tobit model because all the essential features of the algorithm can be 
explained for that model. I will first present the definition and the properties of 
the EM algorithm under a general setting and then apply it to the Standard 
Tobit model. 

I will explain the EM algorithm in a general model where a vector of 
observable variables z are related to a vector of unobservable variables y* in 
such a way that the value of y* uniquely determines the value of z but not vice 
versa. In the Tobit model, { y,*} defined in (3) constitute the elements of y*, 
and { y,} and { wi} defined in (4) and (9) respectively constitute the elements of 
z. Let the joint density or probability of y* bef( y*) and let the joint density or 
probability of z be g(z). Also, define k(y*)z) =f( y*)/g( z). We implicitly 
assume that f, g and k depend on a vector of parameters 8. The purpose is to 
maximize 

L(e)Gn -‘logg(z) = n -ilogf(y*) -n -llogk(Y*lz), (53) 

with respect to 8. Define 

where we are taking expectation assuming 8, is the true parameter value, and 
doing this conditional on z. Then, the EM algorithm purports to maximize 
L(8) by maximizing Q(tYlt9,) with respect to 8 when 8, is given at each step of 
the iteration. The E of the name EM refers to the expectation taken in (54) and 
the M refers to the maximization of (54). 

I will consider the convergence properties. Define 

(55) 
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Then we have, from (53), (54), and (55) and the fact that L(810,) = L(8), 

(56) 

But we have by Jensen’s inequality” 

(57) 

Now, given 8,, let M(8,) maximize Q(el0,) with respect to 8. Then, we have 

(58) 

But, since Q(Mle,) 2 Q(el0,) by definition and H(Mle,) 5 H(t9#?,) by (57), 
we have from (56) and (58) 

Thus, we have proved the desirable property that L always increases or stays 
constant at each step of the EM algorithm. Next, let B be the MLE. Then, 
L(8) 2 L[M(d)] by definition. But L(b) 5 L[ M(d)] by (59). Therefore we 
have 

L(B)=L[M(B)], (60) 

which implies that if L(8) has a unique maximum and if the EM algorithm 
converges, it converges to 6. 

We still need to prove that the EM algorithm converges to the MLE. 
Unfortunately, it is never easy to find reasonable and easily verifiable condi- 
tions for the convergence of any iterative algorithm. Dempster et al. (1977) do 
not succeed in doing this. I will merely give a sufficient set of conditions below. 

The conditions I impose are (A) L is bounded and (B) the smallest 
characteristic root of - a*Q(ele,)/aeae is bounded away from 0 for all 8, 
and 8. Consider 

~(6) = Qwt) - mtie,), (61) 

12We have by (55) 

n[ ff(W’,) - WW,)] = E+%[ k(y*lWk( y*lh)] 1 
where I have omitted the conditioning variable .z to simplify notation and EB, means that the 
expectation is taken on the assumption that the density of y* is k(y*&). But, by Jensen’s 
inequality [see Rao (1973, p. 149]), 

E,,log[ k(y*I~).&*~Q] 6 logE8,[ W1W+*1Ql. 

Thus, (57) follows from the above results and by noting 

logE8,[k(y*ie)/k(Y*ie1)] =logjk(Y*le)dy* =o. 
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and 

W%+,) = Q(@,+,lU -W,+,l@,). (62) 

Since we previously established L( 0,+ i) 1 L( 0,) assumption (A) implies 
lim r_ ,[ L( 0,+ i) - L(e,)] = 0. Therefore, from (61) and (62) and using (57) and 
Q(e,+,]e,) 2 (e,]&) by definition we have 

hm [Q(e,+,]e,) - eovt~l = 0. (63) T’cc 

Now, denoting only the first argument of Q and suppressing its second 
argument, we have by a Taylor expansion of Q(k),) about Q(8,+i) 

e(e,+l>-e(e,>=~(e,-e,+,>‘[-a*p/aeae~l(e,-e,+,) 
2- 9, a - t+I)‘(e - er+dy (64) 

where the matrix of the second derivatives is evaluated at a point between 0, 

and q+i and h, denotes its smallest characteristic root. Note that in obtaining 
the equality above I have noted aQ(0,+,l0,)/@+, = 0 by definition. Thus, 
(63) (64) and assumption (B) imply 

lim (er+l - e,) = 0, (65) r-+m 

meaning that the EM algorithm converges.13 

Now, consider an application of the algorithm to the Tobit model.14 Define 
8 = (/3’, a’)‘. Then, in the Tobit model we have 

iogf(y*le) = - ti0g a2 - -$ ,gl (y,* - x:P)21 (66) 

and, for a given estimate 0i = (pi, a:)‘, the EM algorithm maximizes with 
respect to p and u* 

E[logf(Y*i0Y,w, 41 
= - ;1ogo* -shiv,-x:P)‘-~~E[(y:-x:P):ly=O,e,] 

1 0 

= - ;1ogo* -~~(Y;-~;B)*-~~[“(Y~lw,=o.8’)-x;~]~ 

(67) 

“See Wu (1983) for more discussion of the convergence of the EM algorithm 

14For an alternative account, see Hartley (1976~). 
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where 

and 

v( y,*lw, = 034) = 0: + x:&[v#d(l - @,>I - b1w0 - WI*, 

(69) 

where $r = $(x,!/3r/ui) and @r = @(~~&/a~). 

From (67) it is clear that the second-round estimate of p in the EM 
algorithm, denoted &, is obtained as follows: Assume without loss of general- 
ity that the first n, observations of Y, are positive and call the vector of those 
observations Y as I did in (20). Next, define an (n - n,)-vector Y* whose 
elements are the Y,’ defined in (68). Then, we have 

p*= (xx-‘X’ ;. , 
[ 1 

(70) 

where X was defined after (4). In other words, the EM algorithm amounts to 
predicting all the unobservable values of Y,* by their conditional expectations 
and treating the predicted values as if they were the observed values. The 
second-round estimate of u2, denoted a;, is given by 

(72 
2=n-’ 

~(Y,-X:P2)2+~(Y~-Xl~2)2+~~(Y~l~,=O~~I) . 1 
(71) 

Although this follows from the general theory of the algorithm given earlier, 
we can also directly show that the MLE 4 is the equilibrium solution of the 
iteration defined by (70) and (71). Partition X = (X’, X0’)’ so that X is 
multiplied by y and X0 by y”. Then, inserting 6 into both sides of (70) yields, 
after collecting terms, 

x@ = xly - x0/[ b#J( x$/&)/(1 - @(x$/G))] ) (72) 

where the last bracket denotes an (n - n,)-dimensional vector whose typical 
element is given inside. But, clearly, (72) is equivalent to (47). Similarly, the 
MLE 4 can be shown to be an equilibrium solution of (71). 

Unfortunately, conditions (A) and (B) do not generally hold for the Tobit 
model. However, they do hold if the sample size is sufficiently large and if the 
iteration is started from a point sufficiently close to the MLE. Schmee and 
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Hahn (1979) performed a simulation study of the EM algorithm applied to a 
censored regression model (a survival model) defined by 

Y, = Y, if y,*sc, 

=C if y;*>c, 

where y,* - N(cu + /3x,, a*). They generally obtained rapid convergence. 

5. Properties of the Tobit MLE under non-standard assumptions 

In this section I will discuss the properties of the Tobit MLE - the estimator 
which maximizes (42) - under various types of non-standard assumptions: 
heteroscedasticity, serial correlation, and non-normality. It will be shown that 
the Tobit MLE remains consistent under serial correlation but not under 
heteroscedasticity or non-normality. The same is true of the other estimators 
considered earlier. This result contrasts with the classical regression model in 
which the least squares estimator (the MLE under the normality assumption) is 
generally consistent under all of the three types of non-standard assumptions 
mentioned above. 

Before proceeding with rigorous argument, I will given an intuitive explana- 
tion of the above-mentioned result. By considering (17) we see that serial 
correlation of y, should not affect the consistency of the NLLS estimator, 
whereas heteroscedasticity changes (I to a, and hence invalidates the estimation 
of the equation by least squares. If y,* is not normal, eq. (17) itself is generally 
invalid, which leads to the inconsistency of the NLLS estimator. Though the 
NLLS estimator is different from the ML estimator, one can expect a certain 
correspondence between the consistency properties of the two estimators. 

5.1. Heteroscedasticity 

Hurd (1979) evaluated the probability limit of the truncated Tobit MLE 
when a certain type of heteroscedasticity is present in two simple truncated 
Tobit models: (1) the i.i.d. case (that is, the case of the regressor consisting 
only of a constant term) and (2) the case of a constant term plus one 
independent variable. Recall that the truncated Tobit model is the one in 
which no information is available for those observations for which y,* < 0 and 
therefore the MLE maximizes (6) rather than (5). 

In the i.i.d. case, Hurd created heteroscedasticity by generating rn observa- 
tions from N(p, u,‘) and (1 - r)n observations from N(p, u,‘). In each case, he 
recorded only positive observations. Let y,, i = 1,2,. . . , n,, be the recorded 
observations. (Note n, 2 n.) One can show that the truncated Tobit MLE of p 
and (I *, denoted p and h2, are defined by equating the first two population 
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moments of y, to their respective sample moments, 

(73) 
i=l 

and 

8*+8PX(~/6)+82=n,l~~~. (74) 
r=l 

Taking the probability limit of both sides of (73) and (74) and expressing 
plim n;‘C_yi and plim “1 ‘c ? yl as certain functions of the parameters ~1, a:, q? 
and r, one can define plim fi and plim8* implicitly as functions of these 
parameters. Hurd evaluated the probability limits for various values of p and 
ui after having fixed r = 0.5 and a2 = 1. Hurd found large asymptotic biases in 
certain cases. 

In the case of one independent variable, Hurd generated observations from 
N( (Y + /3x,, u,‘) after having generated xi and loglu,\ from Bivariate 
N(O,O, VP, I’:, p). For given values of (Y, p, Vi, V, and p, Hurd found the 
values of LX, p and u* that maximize Elog L, where L is as given in (6). Those 
values are the probability limits of the MLE of (Y, j3 and u2 under Hurd’s 
model if the expectation of log L is taken using the same model. Again, Hurd 
found extremely large asymptotic biases in certain cases. 

Arabmazar and Schmidt (1981) show that the asymptotic biases of the 
censored Tobit MLE in the i.i.d. case are not as large as those obtained by 
Hurd. 

5.2. Serial correlation 

Robinson (1982a) proved the strong consistency and the asymptotic normal- 
ity of the Tobit MLE under very general assumptions about U, (normality is 
presupposed) and obtained its asymptotic variance-covariance matrix, which 
is complicated and therefore not reproduced here. His assumptions are slightly 
stronger than the stationarity assumptions but are weaker than the assumption 
that U, possesses a continuous spectral density. His results are especially useful 
since the full MLE that takes account of even a simple type of serial 
correlation seems computationally intractable. The autocorrelations of U, need 
not be estimated in order to compute the Tobit MLE but must be estimated in 
order to estimate its asymptotic variance-covariance matrix. The consistent 
estimator proposed by Robinson (1982b) may be used for that purpose. 

5.3. Non-normality 

Goldberger (1980) considered an i.i.d. truncated sample model in which data 
are generated by a certain non-normal distribution with mean p and variance 1 
and are recorded only when the value is smaller than a constant c. Let y 
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represent the recorded random variable and let 7 be the sample mean. The 
researcher is to estimate p by the MLE assuming that the data are generated by 
N(p, 1). As in Hurd’s i.i.d. mode!, the MLE fi is defined by equating the 
population mean of y to its sample mean, 

/i-qc-fi)=y. (75) 

Taking the probability limit of both sides of (75) under the true model and 
putting plim ji = p* yields 

p*-X(c-p*)=p-h(c-P)? (76) 

where h( c - I*) = E(I_~ - yl y -C c), the expectation being taken using the true 
model. Defining m = p* - p and 8 = c - p, we rewrite (76) as 

m=A(e-m)-h(e). (77) 

Goldberger calculated M as a function of B when the data are generated by 
Student’s t with various degrees of freedom, Laplace and logistic distributions. 
The asymptotic bias was found to be especially great when the true distribu- 
tion is Laplace. Goldberger also extended the analysis to the regression model 
with a constant term and one discrete independent variable. Arabmazar and 
Schmidt (1982) extended Goldberg’s analysis to the case of an unknown 
variance and found that the asymptotic bias was further accentuated. 

5.4. Tests for normality 

The fact that the Tobit MLE is generally inconsistent when the true 
distribution is non-normal makes it important for a researcher to test whether 
his data are generated by a normal distribution. Nelson (1981) devised tests for 
normality in the i.i.d. censored sample model and the Tobit model. His tests 
are applications of the specification test of Hausman (1978). 

In Hausman’s test, one uses the MLE B obtained under the null hypothesis, 
which is asymptotically efficient under the null hypothesis but loses consistency 
under an alternative hypothesis, and a consistent estimator 8, which is asymp- 
totically less efficient than the MLE under the null hypothesis but remains 
consistent under an alternative hypothesis. Hausman (1978) noted that 
(4 - (?)‘V-‘(f? - 8) is asymptotically distributed under the null hypothesis as 
&i-square with K degrees of freedom (K being the number of elements in 8) 
where V= I’(e) - V(g), the difference of the asymptotic variance-covariance 
matrices evaluated under the null hypothesis. An advantage of Hausman’s test 
is that one need not know the covariance between fi and 4 to perform the test. 



26 T. Amemiya. Tobit models: A survey 

Nelson’s i.i.d. censored sample model is defined by 

Y, = Y, if y;*>O, 

= 0 if y,* 5 0, i=1,2 ,..., n, 

where y,* - N( ~1, a2) under the null hypothesis. Nelson considers the estima- 
tion of P( y,* > 0). Its MLE is #(P/I?) where r_i and 6 are the MLE of the 
respective parameters. A consistent estimator is provided by n/n where, as 
before, n, is the number of positive observations of y,. Clearly, nl/n is a 
consistent estimator of P( y,* > 0) under any distribution provided that it is 
i.i.d. Nelson derived the asymptotic variances under normality of the two 
estimators. 

If we interpret what one is estimating by the two estimators as 
lim,,,n -‘Z;= iP( y,* > 0), Nelson’s test can be interpreted as a test of the 
null hypothesis against a more general misspecification than just non-normal- 
ity. In fact, Nelson conducted a simulation study to evaluate the power of the 
test against a heteroscedastic alternative. The performance of the test was 
satisfactory but not especially encouraging. 

In the Tobit model, Nelson considers the estimation of 

Its MLE is given by the right-hand side of this equation evaluated at the Tobit 
MLE, and its consistent estimator is provided by n -‘X’y. Hausman’s test 
based on these two estimators will work because this consistent estimator is 
consistent under general distributional assumptions on y. Nelson derived the 
asymptotic variance-covariance matrices of the two estimators. 

Nelson was ingenious in that he considered certain functions of the original 
parameters for which one can easily obtain estimators which are consistent 
under very general assumptions. However, it would be better if one could find 
a general consistent estimator for the original parameters themselves. An 
example is Powell’s least absolute deviations estimator, which I discuss below. 

Bera, Jarque and Lee (1982) propose using Rao’s score test in testing for 
normality in the standard Tobit model where the error term follows the 
two-parameter Pearson family of distributions, which contains normal as a 
special case. 

5.5. Non-normal Tobit 

If ui in the Tobit model (3) is not normal, one of two things can be done: (1) 
Specify a non-normal distribution and use the true MLE or some other 
estimator tailor-made for the distribution. (2) Use an estimator which is 
consistent under general distributions, both normal and non-normal. In this 
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subsection I give examples of the first approach. An example of the second 
approach is given in the next subsection. 

Amemiya and Boskin (1974) studied the effect of wage and other indepen- 
dent variables on the number of months during a five-year period in which a 
household received welfare payments. Since the dependent variable is naturally 
bounded between 0 and 60, one must impose both an upper and lower 
truncation point if one uses a normal Tobit model. Instead, the authors 
assumed the dependent variable to be lognormal and hence positive, so that 
only an upper truncation needs to be imposed. The MLE was used. 

Pokier (1978) considers the model in which the dependent variable y is 
constrained by a <_y < b and its Box-Cox transformation (y’ - 1)/h is trun- 
cated normal. 

The majority of models I will discuss in part II assume a normal distribu- 
tion. Exceptions are some of the models proposed by Cragg (1971) mentioned 
in footnote 15 and the model of Dubin and McFadden (1980) discussed in 
section 11.7. 

5.6. Powell’s least absolute deviations estimator 

Powell (1981, 1983) proposed the least absolute deviations (LAD) estimator 
for censored and truncated regression models, proved its consistency under 
general distributions, and derived its asymptotic distribution. The intuitive 
appeal for the LAD estimator in a censored regression model arises from the 
simple fact that in the i.i.d. sample case, the median (of which the LAD 
estimator is a generalization) is not affected by censoring (more strictly, left 
censoring below the mean), whereas the mean is. In a censored regression 
model, the LAD estimator is defined as that which minimizes C:=,Jy, - 
max(O, x,‘p)I. The motivation for the LAD estimator in a truncated regression 
model is less obvious. Powell defines the LAD estimator in the truncated case 
as that which minimizes C:=,l_y, - max(2-‘y,, x:/3)/. In the censored case, the 
limit distribution of 0(/I - p), where b is the LAD estimator, is normal with 
mean zero and variance-covariance matrix 4f(O)*limr, ,,T -‘,I~= II( x;p > 
0)x,x:, where f is the density of the error term and 1 is the indicator function 
taking on unity if xi/3 > 0 holds and zero otherwise. In the truncated case, the 
limit distribution of @(B - /?) . IS normal with mean zero and variance-covari- 
ante matrix 2 - ‘A _ ‘BA _ ‘, where 

A = Fimrn +(x:8 > O)[f(O) -f(x$)] F(x:P)-lx,x:. 
and 

B=+>aT’ i I(~;P~O)[F(X;~)-F(O)]F(X;~)-~X,~;, 
t=1 

where F is the distribution function of the error term. 
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Powell’s estimator is attractive because it is the only known estimator which 
is consistent under general non-normal distributions. However, its main 
drawback is the computational difficulty it entails. Paarsch (1984) conducted a 
Monte Carlo study to compare Powell’s estimator, the Tobit MLE, and 
Heckman’s two-step estimator in the standard Tobit model with one exogenous 
variable under situations where the error term is distributed as normal, 
exponential and Cauchy. Paarsch found that when the sample size is small (50) 
and there is much censoring (50% of the sample), the minimum frequently 
occurred at the boundary of a wide region over which a grid search was 
performed. In large samples Powell’s estimator appears to perform much better 
than Heckman’s estimator under any of the three distributional assumptions 
and much better than the Tobit MLE when the errors are Cauchy. 

Another problem with Powell’s estimator is finding a good estimator of the 
asymptotic variance-covariance matrix, which does not require the knowledge 
of the true distribution of the error. Powell (1983) proposes a consistent 
estimator. 

Poweli observes that his proof of the consistency and asymptotic normality 
of the LAD estimator generally holds even if the errors are heteroscedastic. 
This fact makes Powell’s estimator further attractive because the usual estima- 
tors are inconsistent under heteroscedastic errors as noted earlier. 

6. Variations of the Standard Tobit model 

In this section I discuss a few models that are variations on the Tobit model. 
More significant generalization of the Tobit model are discussed in part II. 

Rosett (1959) proposed a model in which the observable random variables 
{ y, } are defined by 

Y; = Y? if yi*sO, 

= 0 if O<y,* <c~, (78) 

=yT-a if (Y 4 yi*, i= 1,2 ,..., n, 

where y,* - N(x(& a2). One can estimate a as well as /I and u2. Rosett called it 
a model of friction because the model implies that the dependent variable 
assumes a certain value (in this case 0) until a change in an independent 
variable overcomes the friction. At this point the dependent variable either 
increases or decreases depending upon the type of the stimulus. Maddala 
(1977) remarks that this model is useful in analyzing dividend policies, changes 
in wage offers by firms, and similar examples where firms respond by jumps 
after a certain cumulative effort. 
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Rosett and Nelson (1975) considered the following simple generalization of 
the Tobit model: 

Y, = a1 if y,* 5 al, 

= Y, if al <yT < az, (79) 

=a 2 if a2Ql*, 

where y,* - N(x(/3, a2). If xi contains a constant term, one can assume a1 = 0 
without loss of generality. Then, the Standard Tobit model is obtained as a 
special case by putting a2 = w. According to Maddala (1977a), an example of 
a problem to which this model has been applied is the demand for health 
insurance by people on medicare, where both a minimum coverage and a 
maximum amount are imposed. 

Dagenais (1969) proposed a model which is obtained by making the boundary 
points of Rosett’s model stochastic as follows: 

Y, =y,* if Yi* 5 Ui, 

= 0 if ui < yi* < xiy + W,, (80) 

= y,* - x,fy if X,!y + Wi 5 yj*, 

where yi* - N(x$, a2) and u, and w, are also normal. Unfortunately, there is a 
logical inconsistency in the model because ui -C x,‘y + w, cannot always be 
guaranteed. Perhaps for this reason, this model does not seem to have been 
applied to real data. Dagenais (1975) begins to discuss this model but the 
model he actually estimated is of Type 2 Tobit, which I will discuss later. 

II. Generalized Tobit Models 

7. Introduction 

As I stated in section 1, I will classify the majority of Tobit models into five 
common types according to similarities in the likelihood function. Type 1 is the 
Standard Tobit model which I have discussed in part I. In part II, I will define 
and discuss the remaining four types of Tobit models. 

It is useful to characterize the likelihood function of each type of model 
schematically as in table 1, where each Y,, i = 1,2,3, is assumed to be distrib- 
uted as N(x,$,, uj2), and P denotes a probability or a density or a combination 
thereof. One is to take the product of each P over the observations that belong 
to a particular category determined by the sign of y,. Thus, in Type 1 
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Table 1 

Type 1 P(Y, < O).fvYl) 
2 P(y, < 0). QYI ’ 0, Y2) 

3 P(Y, <O)‘P(Y,*Y2) 
4 P(Y,<O*Y,)~P(Y,1Y2) 
5 P(y, < 0, Y,)‘P(Y, ’ 0, Y2) 

(Standard Tobit model), P(y, < 0). P(yl) is an abbreviated notation for 
n,P( y: < 0) .n,fii( _yi,), wherefn is the density of N( xi,&, u-i?). This expres- 
sion can be rewritten as (5) after dropping the unnecessary subscript 1. 

Another way to characterize the five types is by the classification of the three 
dependent variables which appear in table 2. In table 2 below, B is an 
abbreviation for Binary and C for Censored. In each type of model, the sign of 
y, determines one of the two possible categories for the observations, and a 
censored variable is observed in one category and unobserved in the other. 
Note that when y, is labelled C, it plays two roles: the role of the variable 
whose sign determines categories and the role of a censored variable. 

We allow for the possibility that there are constraints among the parameters 
of the model (/I,, u,~), i = 1,2,3. For example, constraints will occur if the 
original model is specified as a simultaneous equations model in terms of y,, y, 
and y,. Then, the p’s denote the reduced-form parameters. 

I will not discuss here models in which there are more than one binary 
variable and, hence, models whose likelihood function consists of more than 
two components. Such models are computationally more burdensome because 
they involve double or higher-order integration of joint normal densities. The 
only exception occurs in section 11.7, which includes models that are obvious 
generalizations of the Type 5 Tobit model. Neither will I discuss a simulta- 
neous-equation Tobit model of Amemiya (1974b). The simplest two-equation 
case of this model is defined by y,, = max(y,Y2, + xi,& f ui,,O) and y,, = 
max(y,y,, + x&f12 + u~~,O) where (uli, u2,) is bivariate normal and yly2 < 1 
must be assumed for the model to be logically consistent. A schematic 
representation of the likelihood function of this two equation model is 

KY,, y2). KY, < 0, y3). W2 < 0, IQ. f’03 < 0, .Y, < 0) with Y’S w- 
propriately defined. 

Table 2 

Yl Y2 Y3 

Type 1 c 
2 B C 
3 c C 
4 C C C 
5 B C C 
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8. Type2:P(y,<o)*~(Yt’“,yZ) 

8.1. Definition and estimation 

The Type 2 Tobit model is defined as follows: 

Y2r = v2: if y: > 0, (81) 

= 0 if yc 5 0, i=1,2 n, ,..., 

where {q,, u2r} are i.i.d. drawings from a bivariate normal distribution with 
mean zero, variances I$ and a:, and covariance q2. It is assumed that only the 
sign of yz is observed and that yz is observed only when yc > 0. It is assumed 
that xi, are observed for all i but x2i need not be observed for i such that 
yc 5 0. One may also define, as in (9). 

wi, = 1 if yc > 0, 

=0 if ~650. 
(82) 

Then, { wir, y2, } constitute the observed sample of the model. It should be 
noted that, unlike the Type 1 Tobit, y,, may take negative values.15 As in (4), 
y2, = 0 merely signifies the event y{ =< 0. 

The likelihood function of the model is given by 

~=~P(Y;:40)~~(y,,lYl:>O)P(Y,:>o), (83) 

where n, and n, stand for the product over those i for which y,, = 0 and 
y2, # 0, respectively, and f( .Iyc > 0) stands for the conditional density of yz 
given yc > 0. Note the similarity between (7) and (83). As in Type 1 Tobit, one 
can obtain a consistent estimate of &/a, by maximizing the probit part of 

(83) 

ProbitL=yP(y$jO)vP(yl:>O). (84) 

Also, (84) is a part of the likelihood function for every one of the five types of 
models; therefore, a consistent estimate of &/a, can be obtained by the probit 
MLE in each of these types of model. 

“See Cragg (1971) for models which insure the non-negativity of yz as well as _yl. 
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One can rewrite (83) as 

(85) 

where f( ., .) denotes the joint density of y: and ~2.. One can write the joint 
density as the product of a conditional density and a marginal density, i.e., 

f(y& ~~~1 =.f(yl:I~~~).f(y~,), and deterfine a specific form forf(yCl~~,) from 
the well-known fact that the conditional distribution of yc given yz = y2, is 
normal with mean xl,& + o12u2- *(yZi - x&fi2) and variance u: - u&u2- *. Thus, 
one can further rewrite (8.5) as 

X~@([x;i~lu<l+u u-'"~2(Y2i-x~~P2)] 12 1 

x [ 1 - uf2u1- Zu2- * ]~‘)“~‘~[u;1(Y2~-x;ia)]’ (86) 

Note that L depends on ur only through &ul~’ and u12ulP1; therefore, if there 
is no constraint on the parameters, one can put o1 = 1 without any loss of 
generality. Then, the remaining parameters can be identified. If, however, there 
is at least one common element in & and P2, u1 can be also identified. 

I will show how Heckman’s two-step estimator can be used in this model. To 
obtain an equation comparable to (17), we need to evaluate E( yz]y;: > 0). For 
this purpose we use the well-known result 

where c2, is normally distributed independently of yl”; with mean zero and 
variance u; - ~~~a;‘. Using (87), one can express E( $1~1: > 0) as a simple 
linear function of E(y,:ly;: > 0), which was already obtained in part I. Using 
(87), one can also derive V( y; Iyc > 0) easily. Thus, we obtain 

y,, = x;,b2 + u,,u<‘h( ~;,a,) + &2i, for i such that ~2, > 0, (88) 

where CX~ = &cJ-~, EeZi = 0, and 

VEZi = Cl; - u~2ul- = [ XL”lh(x~ial) +x(xLal)2]. (89) 

As in the case of the Type 1 Tobit, Heckman’s two-step estimator is the LS 
estimator applied to (88) after replacing (Y~ with the probit MLE. The asymp- 



T. Amemiya, Tobit models: A survey 33 

totic distribution of the estimator can be similarly obtained as in section 4.3 by 
defining Q; in the same way as before. It was first derived by Heckman (1979). 

The Standard Tobit (Type 1) is a special case of Type 2, in which y$ = ~2:. 
Therefore, (88) and (89) will be reduced to (17) and (18) by putting xl,& = xi,& 
and a*=a:=a . 

A g&teralizati& of the two-step method applied to (29) can be easily defined 
for this model but will not be discussed. 

It is important to note, as pointed out by Olsen (1980) that the consistency 
of Heckman’s estimator does not require the joint normality of y: and y$ 
provided that y: is normal and eq. (87) holds with l2 independently distributed 
of y: but not necessarily normal. For, then, (88) would be still valid. As 
pointed out by Lee (1982) the asymptotic variance-covariance matrix of 
Heckman’s estimator can be consistently estimated under these less restrictive 
assumptions by using White’s estimator analogous to the one mentioned after 
eq. (28). Note that White’s estimator does not require (89) to be valid. 

8.2. A special case of independence 

Dudley and Montmarquette (1976) analyzed whether or not the United 
States gives foreign aid to a particular country and, if it does, how much 
foreign aid it gives using a special case of the model (81) where the indepen- 
dence of ul, and u2, is assumed. In their model, the sign of yz determines 
whether aid is given to the i th country, and y$ determines the actual amount of 
aid. They used the probit MLE to estimate /$ (assuming u1 = 1) and the least 
squares regression of y,, on x*1 to estimate &. The LS estimator of & is 
consistent in their model because of the assumed independence between uli 
and uZI_ This makes their model computationally advantageous. However, it 
seems unrealistic to assume that the potential amount of aid. y;, is indepen- 
dent of the variable which determines whether or not aid is given, y;“. This 
model is the opposite extreme of the Tobit model, which can be regarded as a 
special case of Type 2 model where there is total dependence between y: and 
yz, in the whole spectrum of models (with varying correlation between y;* 
and y;) contained in Type 2. 

Because of the computational advantage mentioned above, this ‘indepen- 
dence’ model and its variations were frequently used in econometric applica- 
tions in the 1960’s and early 70’s. In many of these studies, authors made the 
additional linear probability assumption: P(y;l > 0) = xii&, which enabled 
them to estimate & (as well as /3,) consistently by the least squares method. 
For examples of these studies, see Huang (1964) and Wu (1965). 

8.3. Gronau (1973) 

I take up Gronau’s model as the first example of the Type 2 Tobit model 
because he seems to be the first person to suggest an empirical model of this 
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type, even though he did not use all the information provided by the model 
and sometimes used incorrect estimation procedures, as I will show below. His 
model of labor supply, based on the idea of a reservation wage, has since been 
used and extended by many authors. 

First, I will briefly sketch Gronau’s theory of how a housewife decides 
whether or not to work and how much to work. Gronau assumes that the 
offered wage IV0 is given to each housewife independently of hours worked H, 
rather than as a schedule W’(H). Given IV’, a housewife maximizes her 
utility function U(C, X) subject to X = W”H + V and C + H = T, where C is 
time spent at home for child care, X represents all other goods, T is total 
available time, and V is other income. Thus, a housewife does not work if 

and works if the inequality in (90) is reversed. If she works, the hours of work 
H and the actual wage rate W must be such that 

(au/ac)/( au/ax) = w. 

Gronau calls the left-hand side of (90) the housewife’s value of time, or, more 
commonly, the reservation wage, denoted W’.16 

Assuming that both W” and W’ can be written as linear combinations of 
independent variables plus error terms, his model may be statistically de- 
scribed as follows: 

w” = x;ip* + U2*, wr = z,!a + ui, 

w,=H$O if I?$‘> yr, (91) 

= 0 if W;Os Kr, i=1,2 n, ,**-, 

where (u,~, u,) is an i.i.d. drawing from a bivariate normal distribution with 
mean zero, variances u,’ and u,‘, and covariance uUU. Thus, the model can be 
written in the form of (81) by putting y” - wr =yc and y” = y& Note that 
H (hours worked) is not explained by this statistical model though it is 
determined by Gronau’s theoretical model. A statistical model explaining H as 
well as W was later developed by Heckman (1974). I will discuss this in the 
section on Type 3 models. 

Since the model (91) can be transformed into the form (81) in such a way 
that the parameters of (91) can be determined from the parameters of (Sl), all 

16For a more elaborate derivation of the reservation wage model based on search theory, see 
Gronau (1974). 
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the parameters of the model are identifiable except V( FI$’ - I+$‘), which can be 
set equal to 1 without loss of generality. If, however, at least one element of xZi 
is not included in zi, all the parameters are identifiable.17 They can be 
estimated by the MLE or Heckman’s two-step estimator by procedures de- 
scribed in section 8.1 above. One can also use the probit MLE (the first step of 
Heckman’s two-step) to estimate a certain subset of the parameters. However, 
the main estimation method used by Gronau is not among the above. I will 
describe his method after correcting a minor error. 

The full likelihood function of Gronau’s model (91) can be written as 

(92) 

where no and n, are the products over those observations for which w:” 5 y’ 
and w” > er, respectively, and f(. , -) is the joint density of u/;’ and w:‘. 
Gronau assumes that u2, and u, are independent.18 Under this assumption, (92) 
can be written as 

where 

Maximizing (93) yields the MLE of (Y, &, a,, and au, which are consistent and 
asymptotically efficient under Gronau’s independence assumption. Maximizing 
(94) yields estimates of (Y, & and a0 which are consistent but asymptotically not 
fully efficient. 

Gronau’s method consists of two steps. The first step is carried out as 
follows: We have under Gronau’s independence assumption 

E(qJ&‘< ~“)=x;i&+(~~+u~)-tu~@i-l~;r (95) 

“Gronau specifies that the independent variables in the W’ equation include woman’s age and 
education, family income, number of children, and husband’s age and education, whereas the 
independent variables in the W” equation include only woman’s age and education. However, 
Gronau readily admits to the arbitrariness of the specification and the possibility that ah the 
variables are included in both. 

‘sThis may not be a realistic assumption since common independent variables, which are 
excluded from the set of regressors, may be included in both u, and u,. The assumption is not 
necessary if one uses either the MLE or Heckman’s twostep estimator. It should be noted that the 
independence of u, and u, does not imply the independence of ut, and us, in (81) so that Gronau’s 
model is not as simple as the model considered in section 8.2 above. Also note that this assumption 
makes all the parameters identifiable even if no element of a is set equal to zero. 
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where +, and Qi are + and @ evaluated at (u,’ + u,‘) -f(xGifi2 - ~;a). Since 
Gronau’s data are such that there are many individuals with the same value of 
the independent variables, one can estimate Gi directly by the ratio of the 
number of working wives to the number of wives with the characteristics xi. 
Given this estimate, denoted &;, one can estimate & by 6; = cp[ Cp -‘( !&;)I. Next, 
one regresses positive w on x2i and &i:.-lq$ to estimate p2. This estimate, 
denoted fi2, is consistent (provided that the above estimates of 9; and !P, are 
consistent), and, therefore, the first problem of the first estimation method is 
solved. In the second step, Gronau maximizes L* after replacing /3* by &.” 

Despite the minor error in the estimation method, Gronau’s article made a 
significant econometric contribution (besides a substantive empirical contribu- 
tion which I have ignored) by suggesting a two-step method based on the 
conditional expectation equation, which became a precursor of Heckman’s 
two-step estimator. 

8.4. Other applications 

Nelson (1977) noted that a Type 2 Tobit model arises if y,, in (1) is assumed 
to be a random variable with its mean equal to a linear combination of 
independent variables. He reestimated Gronau’s model by maximizing the 
correct likelihood function (93). 

Dagenais (1975) used a Type 2 Tobit model to analyze household purchase 
of automobiles. In this model, y; in (81) represents the desired expenditure on 
a car and x2 includes permanent income, education, and the number of 
children. He assumes that a household purchases a car if yc exceeds a 
stochastic threshold S = 8, + 0,,4 + u, where A is the dummy variable taking 
unity if the household anticipated buying a car at the time of a prior 
questionaire and the actual value of purchase y, =yT if v? > S. Thus, _Y; - S 
plays the role of JJ: in (81). Like Gronau, Dagenais assumes independence 
between y? and S, and, in addition, he assumes equality of the variances of y? 
and S. These assumptions are not necessary for identification. Dagenais’ 
model, like Gronau’s, has a weakness in that an arbitrary separation of the 
independent variables into some which go into the _@ equation and some 
which go into the S equation (IV’ equation and IV0 equation in Gronau’s 
model) is maintained. 

In the study of Westin and Gillen (1978), u; represents the parking cost with 
x2 including zonal dummies, wage rate (as a proxy for value of walking time), 
and the square of wage rate. A researcher observes ~2 = y, if y? < C where C 
represents transit cost, which itself is a function of independent variables plus 
an error term. 

19Gronau actually omitted 0, from the expression for L*, which renders his estimates incon- 
sistent. 
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9. Type3 P(y,<O)*P(y,,Yz) 

9.1. Definition and estimation 

The Type 3 Tobit model is defined as follows: 

Yli = Vii if y$ >O, 
(96) 

Y2, = r2: if yz>O, 

= 0 if j$~O, i=1,2 n, ,..., 

where {or,, uzi} are i.i.d. drawings from a bivariate normal distribution with 
mean zero, variances uf and u;, and covariance ur2. Note that this model 
differs from Type 2 only in that y; is also observed when it is positive in this 
model. 

Since the estimation of this model can be handled similarly to that of Type 
2, I will discuss it only briefly. Instead, in the following I will give a detailed 
discussion of the estimation of Heckman’s model (1974), which constitutes the 
structural-equations version of the model (96). 

The likelihood function of the model (96) can be written as 

wheref( ., .) is the joint density of _~fi and J$ Since _~l’; is observed when it is 
positive, all the parameters of the model are identifiable, including uf. 

Heckman’s two-step estimator was originally proposed by Heckman (1976a) 
for this model. Here we obtain two conditional-expectation equations, eqs. (17) 
and (88), for yi and y2, respectively. [Add subscript 1 to all the variables and 
the parameters in (17) to conform to the notation of the present section.] In the 
first step of the method, ai = &a~’ is estimated by the probit MLE &i. In the 
second step, least squares is applied separately to (17) and (88) after replacing 
a, by hr. The asymptotic variance-covariance matrix of the resulting estimates 
of (pi, al) is given in (28) and that for (p,, ulzul-‘) can be similarly obtained. 
The latter is given by Heckman (1979). A consistent estimate of a2 can be 
obtained using the residuals of eq. (88). As Heckman (1976a) suggested and as 
I noted in section 4.3, a more efficient WLS can be used for each equation in 
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the second-step of the method. An even more efficient GLS can be applied 
simultaneously to the two equations. However, even GLS is not fully efficient 
compared to MLE, and the added computational burden may not be suffi- 
ciently compensated for by the gain in efficiency. A two-step method based on 
unconditional means of y, and y2, which is a generalization of the method 
discussed in section 3.3, can be also used for this model. 

Wales and Woodland (1980) compared the LS estimator, Heckman’s two-step 
estimator, probit MLE, conditional MLE (using only those who worked), 
MLE, and another inconsistent estimator in a Type 3 Tobit model in a 
simulation study with one replication (sample size 1000 and 5000). The 
particular model they used is the labor supply model of Heckman (1974), 
which I will discuss in the next subsection. ” the LS estimator was found to be 
poor, and all three ML estimators were found to perform well. Heckman’s 
two-step estimator was ranked somewhere between LS and MLE. 

9.2. Heckman (1974) 

Heckman’s model differs from Gronau’s model (91) in that Heckman 
includes the determination of hours worked H in his model.*’ Like Gronau, 
Heckman assumes that the offered wage IV0 is given independently of H; 
therefore, Heckman’s W” equation is the same as Gronau’s: 

q” = x&/3* + u2i. (98) 

Heckman defines W’ = (&Y/aC)/( SJ/dX) and specifies22 

qr=yHi+z;ct+vi. (99) 

It is assumed that the ith individual works if 

~r(Hi=O)=t(a+vi< w”, (100) 

and then, the wage q and hours worked Hi are determined by solving (98) 
and (99) simultaneously after putting W;.‘= W;:l= w. Thus, we can define 

“Though Heckman’s model (1974) is a simultaneous-equations model, Heckman’s two-step 
estimator studied by Wales and Woodland is essentially a reduced-form estimator which I have 
discussed in the present section, rather than the structural equation version I will discuss in the 
next subsection. 

“For a panel-data generalization of Heckman’s model, see Heckman and MaCurdy (1980). 

22Actually, Heckman uses log W’ and log W”. The independent variables x2 include husband’s 
wage, asset income, prices, and individual characteristics, and the z include housewife’s schooling 
and experience. 
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Heckman’s model as 

6 = x;,p* + U2;r (101) 
and 

W=yyHi+z,~CY+ui, (102) 

for those i for which desired hours of work 

H,* = x;,pl + u1; > 0, (103) 

where x;J?r = y-‘(x$,p2 - z(a) and pi, = y P1(~2i - u;). Note that (100) and 
(103) are equivalent because y > 0. 

I will call (101) and (102) the structural equations; then, (101) and the 
identity part of (103) constitute the reduced form equations. The reduced form 
equations of Heckman’s model can be shown to correspond to the Type 3 
Tobit model (96) if we put H* =yT, H=y,, W”=y,“, and W=y,. Since I 
have already discussed the estimation of the reduced-form parameters in the 
context of the model (96), I will now discuss the estimation of the structural 
parameters. 

Heckman (1974) estimated the structural parameters by MLE. In the next 
two subsections I will discuss three alternative methods of estimating the 
structural parameters. 

9.3. Heckman (I 976a) 

This articles proposes the Heckman two-step estimator of the reduced-form 
parameters, which I have discussed in section 9.1 above, but also reestimates 
the labor supply model of Heckman (1974) using the structural equation 
version. Since (101) is a reduced-form as well as a structural equation, the 
estimation of p2 is done in the same way as I have discussed in section 9.1: 
namely, by applying least squares to the regression equation for E( W 1 Hi* > 0) 
after estimating the argument of A (the hazard rate) by probit MLE. So I will 
only discuss the estimation of (102) here. Rewrite (102) as 

H,=y-‘~-~;ay-~-y-~o,. 004) 

By subtracting E(qlH,* P 0) from ui and adding the same, we rewrite (104) 
further as 

H,=y-‘~-z,‘cry-‘-al,o,‘y-‘h(x;i&/al)-y-l~i, (105) 

where ulU = cov(+, ui), u; = Vuli and E; = u, - E( u, 1 Hi* > 0). Then, consistent 
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estimates of y-l, (my-’ and (~i~ui-~y-~ are obtained by the least squares 
regression applied to (105) after replacing &/a, by its probit MLE and y by 
lI$, the least squares predictor of W, obtained by applying Heckman’s two-step 
estimator to (101). The asymptotic variance-covariance matrix of this estima- 
tor can be deduced from the results in Heckman (1978) who considered the 
estimation of a more general model (which I will discuss in the section on Type 
5 Tobit models). 

Actually, there is no apparent reason why one must first solve (102) for H, 
and proceed as I have indicated above. Heckman could just as easily have 
subtracted and added EZ(o,lH,* > 0) to (102) itself and proceeded similarly. 
This method would yield alternative consistent estimates. Inferring from a 
well-known fact that the two-stage least squares estimates of the standard 
simultaneous equations model yield asymptotically equivalent estimates re- 
gardless of which normalization is chosen, I conjecture that the Heckman 
two-step method applied to (102) and (104) would also yield asymptotically 
equivalent estimates of y and a. 

Lee, Maddala and Trost (1980) extended Heckman’s simultaneous-equations 
two-step estimator and its WLS version (taking account of the heteroscedastic- 
ity) to more general simultaneous-equations Tobit models and obtained their 
asymptotic variance-covariance matrices. 

9.4. Amemiya’s LS and GLS 

Amemiya (1978 and 1979) proposed a general method of obtaining the 
estimates of the structural parameters from given reduced-form parameter 
estimates in general Tobit-type models and derived the asymptotic distri- 
bution. Suppose that a structural equation and the corresponding reduced-form 
equations are given by 

y= Yy+X#+u, [y, Yl = X[T n1+ y, 006) 

where Xl is a subset of X. Then the structural parameters y and /3 are related to 
the reduced-form parameters VT and II in the following way: 

r=IIy+Jp, (107) 

where J is a known matrix consisting of only ones and zeros. It is assumed that 
V, y and /3 are vectors and I7 and J are matrices of conformable sizes. Eq. (107) 
holds for Heckman’s model and more general simultaneous-equations Tobit 
models, as well as the standard simultaneous-equations model. 

Now, suppose certain estimates 7i and fi of the reduced-form parameters are 
given. Then, using them, we rewrite (107) as 

7j=I?ly+Jj3+(+n)-(&fl)y. (108) 
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Amemiya proposed applying LS and GLS estimation to (108). From Amemiya’s 
(1978) result, one can infer that Amemiya’s GLS applied to Heckman’s model 
yields more efficient estimates than Heckman’s simultaneous-equations two-step 
estimator discussed above. Amemiya (1982) shows the superiority of the 
Amemiya GLS estimator to the WLS version of the Lee-Maddala-Trost 
estimator in a general simultaneous-equations Tobit model. 

9.5. Other examples 

Shishko and Rostker (1976) used Heckman’s model to explain the wage and 
hours worked in a second job. They estimated the wage equation (101) by least 
squares (yielding inconsistent estimates) and estimated the hours equation 
(104) by the Tobit MLE after replacing F by its least squares predictor. There 
is little justification for the second procedure even if the first yielded consistent 
estimates. 

Roberts, Maddala and Enholm (1978) estimated two types of simultaneous- 
equations Tobit models to explain how utility rates are determined. One of 
their models has a reduced form which is essentially Type 3 Tobit and the 
other is a simple extension of Type 3. 

The structural equations of their first model are 

and 

where y; is the rate requested by the i th utility firm, yz is the rate granted for 
the ith firm, x2, includes the embedded cost of capital and the last rate granted 
minus the current rate being earned, and x3; includes only the last variable 
mentioned. It is assumed that yz and y$ are observed only if 

I’; = z,‘CI + 0, > 0, (111) 

where z, include the earnings characteristics of the ith firm. (Vu, is assumed to 
be unity.) The variable y: may be regarded as an index affecting a firm’s 
decision as to whether or not it requests a rate increase. The above model can 
be labelled as P( y, < 0). P(y, > 0, y,, y,) in my short-hand notation and 
therefore is a simple generalization of Type 3. The author’s estimation method 
is that of Lee, Maddala and Trost (1978) and can be described as follows: 
(1) Estimate a by the probit MLE. (2) Estimate fi2 by Heckman’s two-step 
method. (3) Replace y.$ in the right-hand side of (110) by Jz obtained in step 
(2) and estimate y and /3, by the least squares applied to (110) after adding the 
hazard rate term E(u,,l y; > 0). 
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The second model of Roberts et al. is the same as the first model except that 
(111) is replaced by 

~2: > R;, (112) 

where R, refers to the current rate being earned, an independent variable. 
Thus, this model is essentially Type 3. (It would be exactly Type 3 if Rj = 0.) 
The estimation method is as follows: (1) Estimate & by the Tobit MLE. 
(2) Repeat (3) as described in the preceding paragraph. 

Nakamura, Nakamura and Cullen (1979) estimated essentially the same 
model as Heckman (1974) using Canadian data on married women. They used 
the WLS version of Heckman’s simultaneous-equations two-step estimator; 
that is, they applied WLS to (105). Nakamura and Nakamura (1981) estimated 
a more elaborate version of the preceding model incorporating income tax, 
leading to a complex nonlinear hours equation. 

Hausman and Wise (1976,1977,1979) used Type 3 and its generalizations to 
analyze the labor supply of participants in the Negative Income Tax (NIT) 
experiments. Their models are truncated models since they used observa- 
tions on only those who participated in the experiments. The first model of 
Hausman and Wise (1977) is a minor variation of the Standard Tobit model 
where earnings Y follow 

K=q* if yI*cL,, K* - N( x$, d), (113) 

where Li is a (known) poverty level which qualifies the i th person to participate 
in the NIT program. It varies systematically with family size. The model is 
estimated by LS and MLE. (The LS estimates were always found to be smaller 
in absolute value, confirming Greene’s result given in section 4.2.) In the 
second model of the same article, earnings are split into wage and hours as 
Y = We H, leading to the same equations as Heckman’s (101) and (102) except 
that the conditioning event is 

10gw,+10gH,<10gL,, (114) 

instead of Heckman’s (113). Thus, this model is a simple extension of Type 3 
and belongs to the same type of models as the first model of Roberts, Maddala 
and Enholm (1978), which I discussed earlier, except for the fact that the 
model of Hausman and Wise is a truncated one. The model of Hausman and 
Wise (1979) also belongs to this type. The model of their (1976) article is an 
extension of (113), where earnings observations are split into the pre-experi- 
ment (subscript 1) and experiment (subscript 2) periods as 

Yii = Yz and YIi = YIT if Yc < Li. (115) 
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Thus, the model is essentially Type 3, except for a minor variation due to the 
fact that Li varies with i. 

10. Type 4: P( y, < 0, Y,)*p( Yl, J’2) 

10. I. Definition and estimation 

The Type 4 Tobit model is defined as follows: 

YZ: = x;~P* + Qi3 

Y;(; = x;,B3 + u3i9 

Yli = Yl? if yz>O, 

= 0 if y:sO, 
016) 

Y2, = Y2: if y; > 0, 

= 0 if y: SO, 

Y3, = Y3: if yl’:sO, 

= 0 if yc>O, i=1,2 n, ,-a., 

where { uli, uzl, usi} are i.i.d. drawings from a trivariate normal distribution. 
This model differs from Type 3 defined by (96) only by the addition of y$, 

which is observed only if y; 5 0. The estimation of this model is not signifi- 
cantly different from that of Type 3. The likelihood function can be written as 

wheref, (. , -) is the joint density of y; and y.$ and f2(. , .) is the joint density of 
y: and y.$. Heckman’s two-step method for this model is similar to the method 
for the preceding model. However, one must deal with three conditional 
expectation equations in the present model. The equation for yJi will be slightly 
different from the other two because the variable is non-zero when y: is 
non-positive. We obtain 

E( ~3rl~1: =< 0) = Xi;& - a,+~<‘h( -X&P,/u,)* 018) 
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I will discuss three examples of the Type 4 Tobit model below: Kenny, Lee, 
Maddala and Trost (1979) Nelson and Olson (1978), and Tomes (1981). In the 
first two models, the y* equations are written as simultaneous equations, like 
Heckman’s model (1974), for which the reduced-form equations take the form 
of (116). Tomes’ model has a slight twist. The estimation of the structural 
parameters of such models can be handled in much the same way as the 
estimation of Heckman’s model (1974): that is, by either Heckman’s simulta- 
neous-equations two-step method (and its Lee-Maddala-Trost extension) or 
by Amemiya’s LS and GLS, both of which I discussed in section 9 above. 

In fact, these two estimation methods can easily accomodate the following 
very general simultaneous-equations Tobit model: 

r’y;* = B’x, + ui, i=1,2 n, ,*.., (119) 

where the elements of the vector y,* contain the following three types of 
variables: (1) always completely observable, (2) sometimes completely observ- 
able and sometimes observed to lie in intervals, and (3) always observed to lie 
in intervals. Note that the variable classified as C in table 2 belongs to class (2) 
above, and the variable classified as B belongs to class (3). The models of 
Heckman (1974) Kenny, Lee, Maddala and Trost (1979), and Nelson and 
Olson (1978), as well as a few more models I will discuss under Type 5 such as 
Heckman (1978) are all special cases of the model (119). 

10.2. Kenney, Lee, Maddala and Trost (1979) 

These authors tried to explain earnings differentials between those who went 
to college and those who did not. I will explain their model using the variables 
appearing in (116). In their model, y: refers to the desired years of college 
education, y; the earnings of those who go to college, and y: the earnings of 
those who do not go to college. A small degree of simultaneity is introduced 
into the model by letting y: appear in the right-hand side of they? equation. 
The authors used the MLE. They note that the MLE iterations did not 
converge when started from the LS estimates, but did converge very fast when 
started from Heckman’s two-step estimates (simultaneous-equations version). 

10.3. Nelson and Olson (1978) 

The empirical model actually estimated by these authors is more general 
than Type 4 and is a general simultaneous-equations Tobit model (119). The 
Nelson-Olson empirical model involves the following four elements of the 
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vector y * : 

_Y: = time spent on vocational school training, completely observed if y; > 0, 
and otherwise observed to lie in the interval (- 00, 01, 

~2’ = time spent on college education, observed to lie in one of the three 
intervals (- cc, 01, (0, 11 and (1, cc), 

y? = wage, always completely observed, 
y$ = hours worked, always completely observed. 

These variables are related to each other by simultaneous equations. How- 
ever, they merely estimate each reduced-form equation separately by various 
appropriate methods and obtain the estimates of the structural parameters 
from the estimates of the reduced-form parameters in an arbitrary way. 

The model which Nelson and Olson analyze theoretically in more detail is 
the following two-equation model: 

yc = YlY2i + xlia* + 'll) (17-O) 
and 

Y2, = Y2Y:: + 02 + “21) (121) 

where y2, is always observed and yc is observed to be yrl if _JJ~ > 0. This model 
may be used, for example, if one is interested in explaining only .y: and y: in 
the Nelson-Olson empirical model. The likelihood function of this model may 
be characterized by P(y, -C 0, y2). P( y,, y2), and therefore, the model is a 
special case of Type 4. 

Nelson and Olson proposed estimating the structural parameters of this 
model by the following sequential method: (1) Estimate the parameters of the 
reduced-form equation for r: by the Tobit MLE and that for v$ by LS. (2) 
Replace yzi in the right-hand side of (120) by its LS predictor obtained in step 
(1) above and estimate the parameters of (120) by the Tobit MLE. (3) Replace 
J$ in the right-hand side of (121) by its predictor obtained in step (1) and 
estimate the parameters of (121) by LS. Amemiya (1979) obtained the asymp- 
totic variance-covariance matrix of the Nelson-Olson estimator and showed 
that the Amemiya GLS (see section 9.4) based on the same reduced-form 
estimates is asymptotically more efficient. 

10.4. Tomes (1981) 

This article studies a simultaneous relationship between the inheritance and 
the recipient’s income. Though it is not stated explicitly, Tomes’ model can be 
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defined by 

y2; = YZYl; + x;iP2 + u2i, 023) 

Yl, = Y:: if yc > 0, 

= 0 if yc 5 0, 
024) 

where yc is the potential inheritance, yli is the actual inheritance, and yzi is the 
recipient’s income. Note that this model differs from Nelson’s model defined 
by (120) and (121) only in that yli, not y& appears in the right-hand side of 
(123). Assuming yly2 -C 1 for the logical consistency of the model [as in 
Amemiya (1974) and mentioned in section 71, we may rewrite (122) as 

and (123) as 

y2,=y~~)~(1-YlY2)-1[Y2(X~iPl+uli)+X~~P2+U2~] if Y1:“, 

= yg’ = xg2 + uzi if y$sO. 

(126) 

Thus, the likelihood function of the model is 

027) 

which is the same as (117). 

11. TY~~~:P(Y,<O,Y,)*P(Y,>O,Y,) 

11.1. Definition and estimation 

The Type 5 Tobit model is obtained from the Type 4 model (116) by 
omitting the equation for yli. One merely observes the sign of J$. Thus, the 
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model is defined by 

_Yc = x;iP* + uli9 

Y$ = x;iP* + u21 3 

Y2, = Yz: if yc>O, 

= 0 if y:sO, 

(128) 

Y3, = Y3T if y:sO, 

= 0 if yE>O, i=1,2 n, ,**-, 

where ( ulir u2,, u3i} are i.i.d. drawings from a trivariate normal distribution. 

The likelihood function of the model is 

(129) 

where f3 and f2 are as defined in (117). Since this model is somewhat simpler 
than Type 4, the estimation methods I discussed in the preceding section apply 
to this model a fortiori. Hence, I will immediately go into the discussion of 
applications. 

11.2. Lee (1978) and Lee and Trost (1978) 

In Lee’s (1978) model, yz represents the logarithm of the wage rate of the ith 
worker in case he or she joins the union and y3: represents the same in case he 
or she does not join the union. Whether or not the worker joins the union is 
determined by the sign of the variable 

y;=y2;-y3:+z,GY+u;. (130) 

Since we observe only y; if the worker joins the union and ~3’: if the worker 
does not, the logarithm of the observed wage, denoted y,, is defined by 

y;=y; if yc PO, 

=y$ if y2 50. 
(131) 
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Lee assumes that x2 and x3 (the independent variables in the YT and Y$ 
equations) include the individual characteristics of firms and workers such as 
regional location, city size, education, experience, race, sex and health, whereas 
z includes certain other individual characteristics and variables which represent 
the monetary and non-monetary costs of becoming a union member. Since Y: 
is unobserved except for the sign, the variance of Y: can be assumed to be 
unity without loss of generality. 

Lee estimated his model by Heckman’s two-step method applied separately 
to the YT and the YT equations. In Lee’s model, simultaneity exists only in the 
Y: equation and hence is ignored in the application of Heckman’s two-step 
method. Amemiya’s LS or GLS, which accounts for the simultaneity, will of 
course work for this model as well and the latter will yield more efficient 
estimates, though, of course, not as fully efficient as the MLE. 

The model of Lee and Trost (1978) is identical to Lee’s model above except 
that Yc is defined simply as Z;(Y + u, and does not depend on the difference 
Yc - Yc as in Lee’s model. Thus, there is no simultaneity in the Lee-Trost 
model. In their model, YT and YT represent annual expenditure on the housing 
owned and rented respectively, x2 and x3 include the age, race, sex of the 
family head, family size, income, city size, distance from center of city and the 
relative price index of housing, while z includes all the independent variables 
above except the last. In estimation, Heckman’s two-step estimates were 
obtained and then used to start the Newton-Raphson iteration. 

11.3. Heckman (1978) 

Heckman’s model is 
equations, 

a simultaneous equations model consisting of two 

and 

Yl’; = YlY2r + xLP1 + 61wi + Ulr 3 (132) 

Y2i = Y2YE + x;~P2 + ‘Zwr + ‘2i 3 

where we observe y,,, xi,, x2,, and wj defined by 

(133) 

wi = 1 if yc>O, 
(134) 

=0 if yEsO. 

There are no empirical results in this article, but the same model is estimated 
by Heckman (1976b), in which yz represents the average income of black 
people in the i th state, yz the unobservable sentiment toward blacks in the i th 
state, and w, = 1 if an antidiscrimination law is instituted in the i th state. 
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Another possible application of the model is to the same problem to which 
Lee’s article was addressed (though Lee’s model seems more suitable for this 
problem). Then, yzi would represent the ith worker’s wage (or earnings) for 
both union and non-union workers, and _vfi would represent the ith worker’s 
propensity to join a union. As I will discuss later in section 10.4, such an 
application was made by Schmidt and Strauss (1976) using a special case of 
Heckman’s model. 

When one solves (132) and (133) for _& the solution should not depend 
upon w;, for that would clearly lead to logical inconsistencies. Therefore, one 
must assume 

in order for Heckman’s model to be logically consistent.23 Using the above 
constraint, the reduced-form equations (though strictly speaking not a reduced 
form because of the presence of w,) of the model can be written as 

and 

y2; = 6,w, + x)72 + Vii, (137) 

where one can assume Vu,, = 1 without loss of generality. Thus Heckman’s 
model is a special case of Type 5 with just a constant shift between y; and y: 
(i.e., ~2 = xjr* + uzi and ~3”; = 6, + xiv2 + c+~). Moreover, if 6, = 0, it is a 
special case of Type 5 where y? = JJ?. 

Let us compare Heckman’s reduced-form model defined by (136) and (137) 
with Lee’s model. Heckman’s (136) is essentially the same as Lee’s (130). Lee’s 
(131) can be rewritten as 

Y,=w,(x;,P*+u2,)+(1-wi)(x;,P3+~3i) 
(138) 

= X;jp3 + Uji + wj( X$i& + 242j - x;ifij - u3,). 

By comparing (137) and (138), we readily see that Heckman’s reduced-form 
model is a special case of Lee’s model in which the coefficient multiplied by q 
is a constant. 

Heckman proposed a sequential method of estimation for the structural 
parameters, which can be regarded as an extension of Heckman’s simulta- 

23Constraints like (131) are often necessary in simultaneous-equations model involving binary or 
truncated variables, as was first noted by Amemiya (1974b). For an interesting unified approach to 
this problem, see Gourieroux, LatTont and Monfort (1980). 
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neous-equations two-step estimation discussed in section 9.3. His method 
consists of the following steps: (1) Estimate ?r by applying the probit MLE to 
(136). Denote the estimator 7i, and define 4 = F(x:T?~), (2) Insert (136) into 
(133) replace 7~~ with 7i, and wi with 4, and then estimate yz, & and 6, by least 
squares applied to (133). (3) Solve (132) fory,,, elirninatey~ by (136) and then 
apply least squares to the resulting equation after replacing ?rr by 7i, and w, by 
4. to estimate yr-‘, yr-l/3, and yr-‘6,. 

Amemiya (1978) derived the asymptotic variance-covariance matrix of 
Heckman’s estimator defined above and showed that Amemiya’s GLS (defined 
in section 9.4) applied to the model yields an asymptotically more efficient 
estimator in the special case of 6, = S, = 0. As pointed out by Lee (1981), 
however, Amemiya’s GLS can be also applied to the model with non-zero 6’s 
as follows: (1) Estimate rrr by the probit MLE 7i, applied to (136). (2) Estimate 
6, and 1~~ by applying the instrumental variables method to (137) using F, as 
the instrument for wi. Denote these estimators as 6, and $. (3) Derive the 
estimates of the structural parameters yr, /3r, a,, yz, & and 6, from +,, +$ and 
8, using the relationship between the reduced-form parameters and the struct- 
ural parameters as well as the constraint (135) in the manner described in 
section 9.4. The resulting estimator can be shown to be asymptotically more 
efficient than Heckman’s. 

11.4. Schmidt and Strauss (1976) and related papers 

Schmidt and Strauss studied the effect of unions on earnings and earnings 
on unions by the following model: 

p(wj=llY*i)=y(xlP1 + YlY*i)9 039) 

whereZ(x) = (1 + eeX)-r, and 

f(y,iIwi)=N(x~~*+Y2W;,a2). (140) 

In this model, w, = 1 if the ith worker is a union member, y2, represents the i th 
worker’s earnings, and xi includes education, experience, race, sex, and re- 
gional dummies. 

Eq. (140) can be written as a regression equation like (137), but, unlike (137), 
w, is independent of the error term of the regression because (140) describes a 
conditional distribution. From (139) and (140) one can derive the marginal 
distribution of wi as 

(141) 

In the process of obtaining the above result, it becomes apparent that one must 
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have 

U2Y, = Y:! (142) 

in order for the model to be logically consistent because, unless (142) holds, _yzi 
will appear in the argument of Yin the right-hand side of (141).24 Note that 
(141) can be written in the form of (136) with ui, following a logistic 
distribution. Hence, we conclude that the Schmidt-Strauss model is essentially 
a special case of Heckman’s model in which uli and u2, are independent. As 
pointed out by Lee (1979), this independence considerably simplifies the 
estimation: assuming that x, contains a constant term, the MLE of all the 
parameters can be obtained by applying LS to (140) and the logit MLE to 
(141) separately. 

Warren and Strauss (1979) used the same model as above to study a related 
but different problem. In their study, w, = 1 if the ith state has right-to-work 
legislation and y2, represents the proportion of non-agricultural employment 
that is unionized. The constraint (142) was also ignored in this study. 

Schmidt (1978) considered the same union and earnings problem using a 
model which is a slight generalization of the Schmidt-Strauss model. It can be 
interpreted as Heckman’s model in which (137) is generalized as 

y2, = w, . z(a + 475 + 02,. (143) 

Note that this equation is between (137) and (138) in its degree of generality 
concerning the term multiplied by w;. While it is more general than Heckman’s 
model in this sense, it is more restrictive than Heckman’s in the more 
significant sense that Schmidt, like Schmidt and Strauss or Warren and 
Strauss, assumes independence between ui, and v2,. 

Another example of the Schmidt-Strauss model is the model of Ray (1981), 
in which w, = 1 if non-tariff barriers existed in the ith industry (U.S. four-digit 
manufacturing industry), yzi represents an average of tariffs within the ith 
industry, and x, includes various industry characteristics. 

I I. 5. Disequilibrium models 

Disequilibrium models constitute an extensive area of research, in which 
numerous papers have been written. Some of the early econometric models are 
surveyed by Maddala and Nelson (1974). A more extensive and up-to-date 
survey is given by Quandt (1982). See, also, Hartley (1976) for a connection 
between a disequilibrium model and the Standard Tobit model. Here I will 

24This constraint was overlooked by Schmidt and Strauss (1976) and was noted by Olsen 
(1978b). 
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only mention two basic models first discussed in the pioneering work of Fair 
and Jaffee (1972). 

The simplest disequilibrium model of Fair and Jaffe is a special case of the 
Type 5 model (128), in which Yz is the quantity demanded in the i th period, Y;“i 
is the quantity supplied in the i th period, and Yl’; = Y$ - Yz. Thus, the actual 
quantity sold, which a researcher observes, is the minimum of supply and 
demand. The fact that the variance-covariance matrix of (YF, Yf, Yz) is only 
of rank 2 because of the linear relationship above does not essentially change 
the nature of the model because the likelihood function (129) involves only 
bivariate densities. 

Another model considered by Fair and Jaffee adds a price equation to the 
above as 

Y,, = Y(Y2: -Y3?L (144) 

where Y,, denotes a change in the price at the i th period. The likelihood 
function of this model can be written as25 

L=v/’ f3(Y:, Y3ilY4t)f(Y4r)dYiT 

--oo 

(145) 

The form of the likelihood function does not change if one adds a normal error 
term to the right-hand side of (144). In either case, the model may be 
schematically characterized by 

P(y, <O,Y,,Y,).P(Y,'O,Y2,Y4), 046) 

which is a simple generalization of the Type 5 model. 

11.6. Multivariate generalizations 

By a multivariate generalization of Type 5, I mean a model in which yz and 
y; in (128) are vectors, whereas yc is a scalar variable whose sign is observed 
as before. Therefore, the Fair-JalTee model with likelihood function char- 
acterized by (146) is an example of this type of model. 

In Lee’s model (1977), the yz equation is split into two equations, 

c; = x&p2 + u2, (147) 

*‘A more explicit expression for the likelihood function was obtained by Amemiya (1974a), who 
pointed out the incorrectness of the likelihood function originally given by Fair and JalTee. 
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T2y = z;;az + v2, 

53 

048) 

where C,T and T2y denote the cost and the time incurred by the i th person 
travelling by a private mode of transportation and, similarly, the cost and the 
time of travelling by a public mode are specified as 

c-z = x;,pj + t.43) (149) 

and 

T3: = z;, a3 + vg . wo 

Lee assumes that C,l and T,: are observed if the ith person uses a private 
mode and C,T and T3t are observed if he or she uses a public mode. A private 
mode is used if uz > 0, where vl: is given by 

Lee estimated his model by the following sequential procedure: (1) Apply 
the probit MLE to (151) after replacing the starred variables with their 
respective right-hand sides. (2) Apply LS to each of the four equations (147) 
through (150) after adding to the right-hand side of each the estimated hazard 
from step (1). (3) Predict the dependent variables of the four equations (147) 
through (150) using the estimates obtained in step (2) above, insert the 
predictors into (151) and apply the probit MLE again. (4) Calculate the MLE 
by iteration starting from the estimates obtained at the end of the step (3). 

Willis and Rosen (1979) studied earnings differentials between those who 
went to college and those who did not using a more elaborate model than that 
of Kenny, Lee, Maddala and Trost (1979), which I discussed in section 10.2. In 
the model of Kenny et al., yc (the desired years of college education, whose 
sign determines whether one attends college) is specified not to depend directly 
on ~2: and y$ (the earnings of the college-goer and the non-college-goer, 
respectively). The first inclination of a researcher might be to hypothesize 
y;“, = y$ - ~3:. However, this would be an oversimplification because the deci- 
sion to go to college should depend on the difference in expected life time 
earnings rather than current earnings. 

Willis and Rosen solved this problem by developing a theory of the 
maximization of discounted, expected life-time earnings, which led to the 
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following model: 

Gz = z&a2 + v2, (153) 

1; = x&P3 + U3r (154) 

G,*, = z&a3 + v3, (155) 

and 

R, = s;‘y + E, , i=1,2 n, Ye.., (156) 

where Z2T and Gz denote the initial earnings (in logarithm) and the growth rate 
of earnings for the college-goer, Z; and G; denote the same for the non-col- 
lege-goer, and Rj denotes the discount rate. It is assumed that the ith person 
goes to college if J$ > 0 where 

y; = 1; - Z; + 6, + 6,G,*, + 6,G,*, + 6, Ri , (157) 

and that the variables with subscript 2 are observed if y; > 0, those with 
subscript 3 are observed if ~$5 0, and R, is never observed. Thus, the model is 
formally identical to Lee’s model (1977). Willis and Rosen used the same 
estimation method as Lee’s method given above. 

Borjas and Rosen (1980) used the same model as Willis and Rosen to study 
the earnings differential between those who changed jobs and those who did 
not within a certain period of observation. 

11.7. Multi-response generalizations 

In all the models we have considered so far in section 11, the sign of yc 
determined two basic categories of observations, such as union members versus 
non-union members, states with an anti-discrimination law versus those 
without, or college-goers versus non-college goers. By a multi-response gener- 
alization of Type 5, I mean a model in which observations are classified into 
more than two categories. I will devote most of this section to a discussion of 
Duncan (1980), who seems to be the first person to present a full discussion of 
estimation methods applicable to this type of model. 

Duncan presents a model of joint determination of the location of a firm and 
its input-output vectors. A firm chooses the location for which profits are 
maximized, and only the input-output vector for the chosen location is 
observed. Let s,(k) be the profit of the i th firm when it chooses location k, 
i= 1,2,..., n, and k = 1,2,. . . , K, and let y,(k) be the input-output vector for 
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the ith firm at the k th location. To simplify the analysis, I will subsequently 
assume yi( k) is a scalar, for a generalization to the vector case is straightfor- 
ward. It is assumed that 

(158) 

and 

y; (k ) = x,$‘;s + u,~, (159) 

where x$’ and x,(i) are vector functions of the input-output prices and 
economic theory dictates that the same j? appears in both equationsz6 It is 
assumed that (u,i, r+, . . . , uiK, uil, u,~ , . . . ,uiK) is an i.i.d. drawing from a 
2K-variate normal distribution. Suppose s,(k,) > s,(j) for any j # k,. Then. a 
researcher observes y, ( ki) but does not observe y, ( j) forj # k,. 

For the subsequent discussion it is useful to define K binary variables for 
each i by 

w,(k) = 1 if i th firm chooses k th location, 
(160) 

= 0 otherwise, 

and define the vector wI = [w,(l), w,(2),...,w,(K)]‘. Also define P,k = P(w,(k) 

= 1) and the vector P, = ( Pi1, P,z,. . . , PIK)‘. 
There are many ways to write the likelihood function of the model, but 

perhaps the most illuminating way is to write it as 

L=nr[Y,(k,)lwi(k,)=llP,,~, 
I 

where ki is the actual location the i th firm was observed to choose. 
The estimation method proposed by Duncan can be outlined as follows: (1) 

Estimate the j3 that characterize f in (161) above by nonlinear WLS. (2) 
Estimate the p that characterize P in (161) above by the multi-response probit 
MLE using the nonlinear WLS iteration. (3) Choose the optimum linear 
combination of the two estimates of /I obtained in steps (1) and (2). I will 
explain these steps in more detail below. 

In order to describe step (1) explicitly, we must evaluate ~1, = Qy, (k,)) w, (k,) 

= l] and u,’ = V[y,(k,)lw,(k,) = l] as functions of /3 and the variances and 
covariances of the error terms of equations (158) and (159). These conditional 

*%q. (158) is the maximized profit function and (159) is an input demand or output supply 
function obtained by differentiating (158) with respect to the own input pr output price (Hotelling’s 
lemma). For convenience only one input or output has been assumed, so strictly speaking x$’ and 
x/i’ are scalars. 
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moments can be obtained as follows. Define z;(j) = s,(k,) - q(j) and the 
(K- 1)-vector z, = [z,(l) ,..., zi(k, - l), zi(ki+ 1) ,..., z,(K)]‘. To simplify the 
notation, write z, as z omitting the subscript. Similarly, write y,(k,) as y. 
Also, define R = E(y - Ey)(z - Et)‘: [E(z - Ez)(z - Ez)‘]-’ and Q = Vy - 
R&z - Ez)(y - Ey)‘. Then, we obtain*’ 

and 

CL, = E( y]z > 0) = Ey + RE( z]z > 0) - REz, (162) 

a,* = I”( y]z > 0) = RV( zlz > 0) R’ + Q. (163) 

The conditional moments of z appearing in the formulae above can be found 
in Amemiya (1974, p. 1002) as well as in Duncan (1980, p. 850). Finally, I can 
describe the nonlinear WLS iteration of step (1) above as follows: Estimate CI, 
by inserting the initial estimates (for example, those obtained by minimizing 
[~~(mk&e~,]2) of the parameters into the right-hand side of (163) - call it 6:. 

064) 

with respect to the parameters that appear in the right-hand side of (162). Use 
these estimates to evaluate the right-hand side of (163) again to get another 
estimate of u,‘. Repeat the process, to yield new estimates of fl. 

Now, consider step (2). Define 

2, = E( w, - P,)( w,-P,)‘=D,-P,P,‘, (165) 

where D, is the K x K diagonal matrix whose k th diagonal element is P,k. To 
perform the nonlinear WLS iteration, first, estimate .Zj by inserting the initial 
estimates of the parameters into the right-hand side of (165) (denote the 
estimate thus obtained as zi) and, second, minimize 

(166) 

where the minus sign in the superscript denotes a generalized inverse, with 
respect to the parameters that characterize Pi, and repeat the process until the 
estimates converge. 

Finally, regarding step (3) above, if we denote the two estimates of p 
obtained by step (1) and (2) by pi and R,, respectively, and their respective 

27These two equations correspond to two equations in a proposition of Duncan (1980, p. 851). It 
seems that Duncan inadvertently omitted the last term from (162). 
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asymptotic variance-covariance matrices2* by Vi and V,, the optimal linear 
combination of the two estimates is given by (Vi- ’ + V2- ‘) - ‘VI- ‘fi, + (VI- ’ + 
V2- ‘) -‘V,- ‘b2. This final estimator is asymptotically not fully efficient, how- 
ever. To see this, suppose the regression coefficients of (158) and (159) differ: 
call them /3i and h2, say. Then, by a result of Amemiya (1976), we know that 
fil is an asymptotically efficient estimator of &. However, as I have indicated 
in section 4.4, b2 is not. So a weighted average of the two could not be 
asymptotically efficient. 

Dubin and McFadden (1980) used a similar model to Duncan’s in their 
study of the joint determination of the choice of electric appliances and the 
consumption of electricity. In their model, s,(k) may be interpreted as the 
utility of the i th family when they use the k th portfolio of appliances, and 
y,(k) as the consumption of electricity for the ith person holding the kth 
portfolio. The estimation method is essentially similar to Duncan’s. The main 
difference is that Dubin and McFadden assume that the error terms of (158) 
and (159) are distributed as Type I extreme value distribution and hence the P 
part of (161) is multinomial logit [cf. Amemiya (1981, p. 1516)]. 
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