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100 RESEARCH DESIGN

The best statistical measure of population heterogeneity for a quantitative varj
able is the standard deviation, conventionally symbolized by the Greek lette;:
sigma (). There is a direct link between this measure and the concept of standarq:
etror, introduced earlier in our discussion of probability sampling theory. The stay:
dard error, recall, indicates the degree of error in a sample estimate (the “average
amount by which a sample estimate deviates from the population value it egf
mates). The formula used to calculate the standard error is o/VN, that is, the stan;
dard deviation divided by the square root of the sample size N. From this formy]
one can see that the standard error is directly related to the heterogeneity of the po]é
ulation as measured by o and is inversely related to sample size. Also, the formu]
itself is a statement of the first principle regarding sample size: the greater the h
erogeneity of the population, the larger the sample necessary to achieve a gis
level of precision.

Desired Precision

Technically speaking, precision refers to the degree of variability or error in a
ple estimate, hence to the standard error. Intuitively, however, the concept of
cision is perhaps best conveyed by relating it to the size of the confidence int
used to estimate a population value. Thus it is more precise to say that the avg
number of beers consumed is likely to fall between 2.0 and 4.0 than to say
average is likely to fall between 1.0 and 5.0. For a given confidence level (s
percent), the size of the confidence interval is directly related to the standard
that is, the smaller the standard error, the smaller the confidence interval:
more precise the sample estimate. Of course, the larger the sample, the sm
standard error. Therefore, it follows that the larger the sample, the greater th
cision of the sample estimate. :
Two facts about this relationship are especially noteworthy because tt
intuition to a certain extent. First, ordinarily it is the absolute size of the
rather than the proportion of the population sampled that determines precis
long as the population is relatively large, the proportion of the population
has a negligible effect on precision. For example, in 1990 the populatio
mont was a little over 560,000 and the population of Massachusetts wa
million. Now, if one were to take a simple random sample of 2000 in eac
states, the sample proportion of the total population would be 1 of every
sons in Vermont and 1 of every 3000 persons in Massachusetts. Yet, base
samples, an estimate (say, of average income) would be just as precise i
chusetts as for Vermont. »
We can get a mathematical understanding of this relationship by.r
the formula for the standard error. Although the formula given above
the standard error is determined only by the standard deviation and samj
formula actually applies to populations of theoretically infinite size. Fo;
ulations, the formula should be multiplied by a correction factor eq
where f is the sampling fraction, or proportion of the population in
sample (Kish, 1965:43-44). Notice, however, that if the sampling: frd
near zero, then the correction factor becomes 1, or 1, which has
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standard error. In most practical examples, the population is so much larger than
‘the sample that £ is extremely small—near zero—and the correction factor can be
ignored. Only with small populations would we expect f to be much larger than
yero; however, for a small population a small f implies a small sample size, and it
is the latter that has the greater impact on the standard error.
Although precision is governed primarily by the absclute numerical size of the
Smple rather than by the proportion of the population sampled, the sample need
not be enotmous in size to yield very precise results. This is the second crucial fact
about precision and sample size. The sampling error tends to be quite small for a
ample of size 2000 to 3000, and increasing the sample size beyond this number
ecreases the error by so little that it usually is not worth the additional cost.
“The mathematical explanation for this once again can be found in the standard
';rb:r formula. Notice that the standard error goes down as the square root of the
amiple size goes Up. Because of the square root function, each time we wish to de-
" dse the standard error by one-half we must increase the sample size fourfold. At
rate, the precision gained with increased sample size reaches a point of minute,
winishing returns after a few thousand cases. Consider, for example, how sample
affects the standard error of a percentage, such as the estimated percentage of
iotea candidate will receive in an election. With two candidates and an evenly
vote, the standard error will be 5.0 percent for a sample size of 100. This er-
scredses to 2.5 percent when the sample reaches 400, and to 1.0 percent when
atnié reaches 2500, as Table 6.4 shows. To get the error down to 0.5 percent
jd require 2 sample size of 10,000.
he reader should now begin to understand how election forecasters can make
_Qr_edictions using samples of a few thousand out of millions of voters. The
of:the population has no effect on the precision of sample estimates. And
size of 2000 to 3000 is large enough to predict accurately all but the clos-

asten to add that 2000 to 3000 should not be regarded as the standard size
Sample results. Not only does sample size depend on factors other than
s necessary levels of precision also vary widely from one study to the
- extreme, the CPS requires a sample of some 60,000 housing units, a
gé-enough so that the sampling errors of the total estimates of unem-
e only about 0.1%” (Sudman, 1976:3). At the other extreme, thirty cases

ABLE 6.4. Standard Error of a Percentage of 50 Percent,
Broken Down by Sample Size*

Standard error
(percent)

5.0
25
1.0
0.5

.erors are smaller for percentages greater than or less than 50 percent.
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generally is regarded as minimally adequate for statistical data analysis, although
most social researchers would probably recommend at least one hundred. :

Sampling Design

The type of sampling design also affects decisions about sample size. Recall that
one way of increasing precision other than selecting a larger sample is to use strat:
ified rather than simple random sampling. In other words, for the same level of pre-
cision, a stratified random sample requires fewer cases than a simple random sam:
ple. A cluster sample, on the other hand, requires a somewhat larger number of
cases for precision equal to that of a simple random sample. A nonmathematical ex.
planation for these comparisons rests on the concept of heterogeneity.
Remember that stratified random sampling provides greater sampling eff
ciency (or precision) when the stratifying variable is related to the variable oneijs
estimating. If it is related, much of the variation or heterogeneity in the estimate
variable resides in differences between the strafa, and each stratum tends to be
atively homogeneous. With respect to beer consumption, for example, there is muig
less variability among men or among women than between men and women:. By
sampling every stratum, the effect of stratified random sampling is to eliminate thi
between source of heterogeneity, leaving only the variation within the strata. Ap
because of their homogeneity, each stratum requires a relatively small sample;
Although cluster sampling has the advantage of low cost, it lacks efficienc
precision. In two-stage cluster sampling, for example, there is variability bo'th_.
tween and within the clusters. By taking a sample of clusters, the “between sou
of heterogeneity that was eliminated in stratified sampling is still present in cly
sampling. If the variability between clusters tends to be large compared with
variability within the clusters, then the sampling error could be considerab!
pending on how many clusters are selected. (For this reason, we want clusters to
heterogeneous compared with differences between the clusters—just the op
of the strategy in stratified sampling.) Furthermore, each stage in a multistage
ter design coniributes a source of variability or error to the total sample;
quently, the more stages, the larger the total sampling error tends to be; an
larger the sample required for a given level of precision.

Available Resources

Each individual case requires an expenditure of available resources. Consed
at some point cost must enter into the equation for determining sample s
a fixed amount of money and/or time has been allocated for a proje
(1976:88--89) offers the following rule of thumb for survey research: allo
half of both money and time to data collection (and the other half to dafa.
Once the data collection procedure is specified, the sample size can be: déf
on a time and cost per case basis. That is, the number of cases will be.equal
total time for data collection divided by the time per case, or the total fun
collection divided by the cost per case. :



Number of Breakdowns Planned

The number of variables and variabie categories into which the data are to be
grouped and analyzed also must be taken into account in determining sample size.
In general, the more breakdowns planned in the analysis—the more complex the re-
‘lationships under investigation or the more distinct subcategories of separate
" interest—the larger the sample must be. Consider, for example, what happens when
‘4 sample of 1000 is divided into males/females, then into blacks/whites, then into
_people over/under 18 years of age, then into urban/rural residence. If we were in-
“terested in describing rural black young men, we might find that a breakdown of
the 1000 cases looks something like this:

Sample 1000

Males 489
Black males 60
Young biack males 20
Rural young black males 4

just four cases available, the sample clearly would be too small for a reliable
atysis of this particular subgroup. Te aveid this kind of problem, it is important
mate the number of breakdowns to be made during data analysis and to make
at the total sample size will provide enough cases in each subcategory. If the
tisite sample size turns out to be vather large, it might be more efficient to sam-
e relevant subcategories separately, as in stratified and quota sampling.

‘Final Notes en Sampling Errors and Generalizability

m_is" on probability sampling and sarople size considerations, we spoke re-
é_fsampling error—the deviation of a sample estimate from the true pop-
alue. The sampling error referred to in our discussions is random error, pro-
the random selection of elements. Though unavoidable in sampling, this
an Be estimated and reduced by increasing the size or efficiency of one's
here is, however, another type of sampling error, called samptle bias,!!
nonrandom, difficult to detect, and often much more damaging to sample

b_ility sampling designs, the two most common sources of sample bias
error due to incomplete sampling frames and nonresponse bias due
e data collection. As an example of coverage error, we mentioned ear-
hore directories provide inadequate sampling frames to the extent that
& poor who cannot afford telephones and the more wealthy who tend
{ed numbers. The problem of nonresponse bias arises when, through
perate, unreturned guestionnaires, missing records, or some other
Hple turms out to be a fraction of the number of cases originally se-





