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 Multiple Regression in Legal Proceedings

 Franklin M. Fisher *

 Multiple regression analysis is a device for making precise and quanti-

 tative estimates of the effects of different factors on some variable of interest.

 It is not a new tool, going back in its origins to Carl Friedrich Gauss, an

 extremely important mathematician born about 200 years ago. Nevertheless,

 the practical use of multiple regression has grown very substantially over the

 past twenty-five years or so. This growth is due partly to the development

 of modern statistical methods, partly to increasing availability of decent

 statistical data, and perhaps most of all to the development of the electronic

 computer. Some of the increasing use of multiple regression and related

 techniques has occurred in connection with legal proceedings of various kinds,

 although lawyers and judges have often tended to view such use with general

 (and occasionally healthy) distrust.

 In light of the increasing prominence of multiple regression analysis,

 it is important for lawyers to understand what it is, how it works, and what it

 properly can be used for. Perhaps the single most important legal use of

 multiple regression thus far has been the analyses of the deterrent effects of
 the death penalty on murder, cited by the Solicitor General in his amicus

 brief before the Supreme Court in the death penalty cases.1 The fact that

 the studies relied on by the Solicitor General were, in my opinion, fatally
 flawed 2 only adds to the importance of understanding the methodology

 involved. On a less grand level, multiple regression studies have figured in

 a number of other legal proceedings, and while the ones with which I am

 most familiar have been regulatory proceedings, there is no reason why

 multiple regression should not be used in other litigation as well.3
 This Article first explains, on a basic level, the concept of multiple

 regression analysis, its basic properties, and the fundamental assumptions

 upon which its validity rests.4 I will also discuss methods of measuring the

 * Professor of Economics, Massachusetts Institute of Technology. A.B. 1956, M.A. 1957,
 Ph.D. 1960, Harvard University.

 This Article was adapted from a paper delivered before the Association of the Bar of the
 City of New York (Special Committee on Empirical Data in Legal Decision Making) in May
 1979. I am indebted to Michael 0. Finkelstein for helpful criticism but retain the usual
 responsibility for error.

 1. Fowler v. North Carolina, 428 U.S. 904 (1976); Woodson v. North Carolina, 428
 U.S. 280 (1976); Jurek v. Texas, 428 U.S. 262 (1976); Proffitt v. Florida, 428 U.S. 242
 (1976); Gregg v. Georgia, 428 U.S. 153 (1976). See generally Deterrence and Incapacitation:
 Estimating the Effects of Criminal Sanctions on Crime Rates (A. Blumstein, J. Cohen &
 D. Nagin eds. 1978) [hereinafter cited as Deterrence and Incapacitation], which contains,
 among other things, some devastating discussion of the studies involved. (In particular, see
 the paper by Klein, Forst & Filatov, The Deterrent Effect of Capital Punishment: An Assess-
 ment of the Estimates, id. at 336.)

 2. See text accompanying notes 38-46 infra.
 3. For an excellent discussion of proceedings using multiple regression studies, see

 Finkelstein, Regression Models in Administrative Proceedings, 86 Harv. L. Rev. 1442 (1973).
 4. I have been responsible for several multiple regression studies used in legal proceedings

 and, because I know them best, it is those studies on which I shall draw for examples for
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 MULTIPLE REGRESSION I 703

 accuracy and reliability of estimates generated by multiple regression. The

 second part of the Article explores in greater depth the proper use of multiple
 regression in legal proceedings by focusing on three areas in which multiple
 regression studies might play a role-the examination of wage discrimination,
 the determination of antitrust damages, and the evaluation of punishment
 as a deterrent to crime.

 I. MULTIPLE REGRESSION ANALYSIS

 A. Uses of Multiple Regression

 The two primary uses of multiple regression analysis are best illustrated

 through an examination of actual situations in which multiple regression

 studies were employed. Consider the following two cases:

 1. For many years after the disappearance of coal-burning

 locomotives, there was a perennial labor dispute concerning the
 preservation of the jobs of railroad firemen. Whatever the merits

 of that dispute (ultimately resolved, I believe, through negotiation),

 one of the issues in it concerned the question of whether the pres-
 ence of a fireman on trains contributed to railroad safety. A study

 of that issue, using multiple regression, was presented in testimony
 before a Presidential emergency board in 1970.5

 2. Cable television systems (CATVs) have been the subject
 of repeated rulemaking proceedings by the Federal Communications

 Commission. Among the issues involved in such proceedings is
 the effect of the entry and activity of CATVs on the profits and
 growth of broadcast television stations. This issue involves such

 questions as the influence of CATVs on the viewing audience

 reached by particular broadcast stations and the effect of changes

 in a station's audience on the revenue it receives.6 In general, as
 one would expect, cable operators have claimed such effects to be

 small and broadcast stations have insisted they are large. The
 problem has been studied repeatedly by multiple regression meth-
 ods, most recently in a study of the relationship between audience
 size and revenues authored in part by me and submitted to the
 FCC in 1978-79.7

 much of this Article, hoping thereby to put some more interest into what otherwise might
 degenerate into a fairly dry and technical discussion.

 5. The study is most conveniently reported in Fisher & Kraft, The Effect of the Removal
 of the Firemen on Railroad Accidents 1962-1967, 2 Bell J. Econ. & Management Sci. 470
 (1971).

 6. These are important questions for the FCC since they bear on the extent to which
 regulation of cable television is needed to foster the growth of new UHF stations or to
 maintain the profits that subsidize the public service and other programming of local broadcast
 stations.

 7. Charles River Associates, The Audience-Revenue Relationship for Local Television
 Stations (1978) (FCC Docket No. 21284); Charles River Associates, The Value of Different
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 704 COLUMBIA LAW REVIEW [Vol. 80:702

 In the first case, the issue is whether or not a particular variable

 (presence or absence of firemen) has any effect on some other variable

 (railroad safety). In the second case (the audience-revenue relationship),

 there is not much doubt that audience size affects television revenue-viewer

 attention is what stations sell to advertisers, and all parties are vitally inter-

 ested in audience statistics; the problem is rather one of measuring the effect.

 These two uses of multiple regression are what statisticians call "testing

 hypotheses" on the one hand and "parameter estimation" on the other. In
 the first type, one wishes to be able to state whether or not something is true.

 In the second, one is more interested in the precise magnitude of the effects

 involved. Obviously, the two questions are closely related.

 There is a third, but less widespread, use to which multiple regression

 analysis can be put: to forecast the values of some variable. A multiple
 regression analysis shows how certain independent variables affect a depend-

 ent variable. From that analysis, and from a forecast of the values of the

 independent variables (obtained from some other source), one can generate

 a forecast of the dependent variable. This type of "unconditional forecast" is
 not always useful-which is fortunate, since such unconditional forecasts

 tend to be relatively inaccurate. Far more often what is of interest is a

 "conditional forecast"-a prediction of what will happen to the dependent
 variable if another variable is changed or, looking retrospectively, what would
 have happened to the dependent variable had the value of an independent
 variable been different.

 Consider the two examples already described. The question in the case
 of the railroad firemen did not really involve predicting the number of rail-
 road accidents. Rather, it involved trying to decide whether the number of

 those accidents would be significantly greater if the railroad firemen were no

 longer employed. Similarly, while prediction of television station revenue

 would be desirable for some regulatory ends, the primary issue in the

 audience-revenue study was systematic measurement of the effects on revenue

 of changes in the size and socio-economic characteristics of a station's audi-

 ence.

 The firemen example best brings out the problems involved in making
 such predictions. By their nature, railroad accidents involve random, chance
 events. Even the accident rate (however measured) is subject to such chance
 fluctuations. Simply determining whether the presence or absence of firemen
 makes a significant difference to the railroad accident rate may be easier than
 predicting the rate itself with great precision. One of the distinctive charac-

 teristics of multiple regression analysis is that it is able to provide information
 about the effects of the variable of interest (in this case the employment of

 Day Parts in the Audience-Revenue Relationship for Local Television Stations (1979) (FCC
 Docket No. 21284). The first study of the problem was, I believe, the one that I gave as
 written testimony to the FCC in 1964. It is most conveniently reported in Fisher, Ferrall,
 Jr., et al., Community Antenna Television Systems and Local Television Station Audience,
 80 Q.J. Econ. 227 (1966). Both studies were done on behalf of the National Association
 of Broadcasters.
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 the firemen) on the dependent variable (here, railroad accidents) without

 necessarily being able to predict the dependent variable itself with great

 accuracy.

 In a way, one might describe multiple regression as a method used to

 extract a systematic signal from the noise presented by data. There are two
 primary problems involved in extracting such a signal. First, it is typically

 the case that the factor whose influence one wishes to test or measure is not

 the only major factor affecting the dependent variable-for example, the

 amount of traffic on the railroads has something to do with accidents as well.

 Second, even if one can somehow account for the effects of the other impor-

 tant systematic factors, there typically remain chance components.

 If we could make controlled experiments, it would be relatively easy to

 quantify the relationship being investigated. A controlled experiment in the

 audience-revenue case, for example, would vary station audiences and the

 other variables expected to influence revenue one at a time, holding every-

 thing else constant and observing the resulting revenue. Obviously, this is
 impossible-there is no way we can tinker with station audiences. This
 means that we must be content with analyzing, as it were, the experiments
 performed by nature, in which more than one of the variables deemed likely
 to affect revenue move at the same time.

 Moreover, even if we could control station audiences and hold constant
 the variables that we believed to be important, we would not know enough
 about the audience-revenue relationship to be sure of holding constant all the
 variables that actually affect the revenues of an individual station. It may

 be, for example, that the personality and effectiveness of the stations' sales
 representatives or the advertising policies or publishing quality of competing
 newspapers affect revenue. These variables are hard to measure, let alone
 hold constant.8

 Inability to perform well-controlled experiments is not uncommon.
 Indeed, it occurs even when one is making so-called controlled experiments
 in the natural sciences. The difference there is that one can be fairly sure
 that the uncontrolled effects that one does not know about in detail are
 extremely small. When dealing with observations from the economic system
 (or, indeed, from any system in which the experiments are performed by
 nature rather than by the experimenter), there is likely to be a nontrivial,
 residual element of unexplained effects on the variable of interest, even after
 one has taken account of the major systematic effects. Multiple regression is
 a way of dealing with these difficulties.

 B. How Multiple Regression Works

 1. An Overall View. In multiple regression, one first specifies the
 major variables that are believed to influence the dependent variable. In our

 8. Similarly, in the case of the firemen, even if we could experiment with firemen em-
 ployment, we could not hold railroad traffic constant. Moreover, other variables affecting
 safety (the ones we call "chance") are never known precisely.

This content downloaded from 130.91.93.179 on Thu, 29 Aug 2019 20:54:17 UTC
All use subject to https://about.jstor.org/terms



 706 COLUMBIA LAW REVIEW [Vol. 80:702

 examples, this means specifying the important or systematic influences that
 may affect station revenue or railroad safety. There inevitably remain minor

 influences, each one perhaps very small, but creating in combination a non-
 negligible effect. These nminor influences are treated by placing them in what
 is called a random disturbance term and assuming that their joint effect is

 not systematically related to the effects of the major variables being investi-
 gated-in other words by treating their effects as due to chance.9 Obviously,
 it is very desirable to have the random part of the relationship small, par-

 ticularly relative to the systematic part. Indeed, the size of the random part

 provides an indication of how correctly one has judged what the systematic
 part is. Multiple regression thus provides a means not only for extracting
 the systematic effects from the data but also for assessing how well one has
 succeeded in doing so in the presence of the remaining random effects.

 The relationship between the dependent variable and the independent

 variable of interest is then estimated by extracting the effects of the other
 major variables (the systematic part). When this has been done, one has
 the best available substitute for controlled experimentation. The results of
 multiple regressions can be read as showing the effects of each variable on
 the dependent variable, holding the others constant. Moreover, those results
 allow one to make statements about the probability that the effect described
 has merely been observed as a result of chance fluctuation.

 2. Estimating Multiple Regressions. Suppose that the relationship to

 be examined is to include only two variables, the dependent variable (Y)

 and one independent variable (X). Suppose further (for simplicity of

 exposition) that it is believed that the relationship between these variables

 is a straight line.10 Such a relationship could be expressed mathematically as:

 (1) Y= a + bX

 or, diagrammatically, as in Figure 1. The problem for the investigator is to

 discover the values of the parameters, a and b (i.e., the intercept and slope

 of the line). If the relationship really were exact-if there were no random

 influences at all-this would be extremely easy to do. One would need only

 to observe two points with different values of X. Since two points determine

 a line, it would require only routine arithmetic calculation to find the line

 they determine.

 In real life, however, the relationships to be fitted are not exact. Rather

 9. The disturbances (the random or unsystematic part) will then affect the dispersion
 of the true values of the dependent variable around the values that would be predicted from
 the systematic part alone.

 10. I chose the straight line case as the easiest to understand, but the theory is not so
 restricted. There is nothing to prevent one or more of the variables in equation (1) from
 being a square, a logarithm, or the ratio or two other variables. Many (not all) mathematical
 relations can be cast into the form of equation (1) by transforming or redefining the variables.
 Furthermore, most nonlinear relationships can be at least approximated by straight lines.
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 there are random influences on the dependent variable, as described above.

 Hence, the correct relationship is not equation (1) but rather:

 (2) Y=a-+ bX-+[u

 where u represents the random influences. Different values of u will produce
 different values of Y which will be either above or below the line; indeed,
 they will produce a scatter of points such as that shown in Figure 1. The
 task for the investigator is to cut through the noise generated by these random
 influences and extract the "signal," namely, the line around which the points

 are scattered. This is done by picking the line that best fits the scatter of

 points in the sense that the sum of the squared deviations between predicted

 and actual Y values is minimized.1" This is called "least squares regression."

 (The adjective "multiple" is us2d when there is more than one X.)

 Y

 a~~~~~~~~~~~~~~~~~~~

 x

 F i g u r e 1

 1 L~~~~~~~1

 Figure 1~~~~~~

 1 1. Using the sum of squared deviations gives equal weight to positive and negative
 deviations. Further, in a multi-dimensional diagram (not drawn) it can be shown that there
 is a sense in which minimizing the sum of squared deviations amounts to minimizing the

This content downloaded from 130.91.93.179 on Thu, 29 Aug 2019 20:54:17 UTC
All use subject to https://about.jstor.org/terms
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 3. Assumptions of Least Squares Regression. In practice, least squares

 regression is not done diagrammatically but numerically (generally by com-

 puter), resulting in numerical estimates of a and b. The relation that such

 estimates are likely to have to the true values of a and b depends on the

 assumptions one is willing to make about the random disturbance term, u,

 and its relationship with the independent variable, X, whose effect on Y

 (represented by b) is to be measured.

 There are essentially three major assumptions involved: (a) that the

 effects of the random disturbance term are independent of the effects of the

 independent variable; (b) that the values of the random term for different
 observations are not systematically related and that the average squared size

 of the random effect has no systematic tendency to change over observations;

 and (c) that the sum of random effects embodied in the disturbance term

 is distributed normally, in the "bell curve" generally characteristic of the

 distribution of the sum of independent random effects.2

 The validity of these assumptions bears on the effectiveness and reli-
 ability of least squares analysis. VariouLs properties of multiple regression
 depend on the accuracy of the assumptions, different properties involving
 different assumptions. Moreover, the dependence is cumulative: if the early

 assumptions are invalid, the properties associated with the later assumptions
 are not likely to be present. In situations where the assumptions may fail,
 the use of multiple regression analysis is likely to be inappropriate.'3

 a. Independence of the Disturbance Term. The fundamental assump-

 tion of least squares regression is that the uncontrolled effects of the random
 disturbance (u) are in an appropriate technical sense independent of the
 controlled effects of the independent variable (X). (Alternatively, this can

 be expressed as the assumption that the disturbance term has a zero mean
 whatever the value of X. In repeated samples, the disturbance term for any

 given X is neither positive nor negative on the average.) If this were not so,
 then attempting to determine the effects of X on Y could not be done simply
 by observing different X's and trying to average out the effects of u. In such
 a case, movements in X would be systematically associated with movements
 in u and, without a great deal of care, the estimates of b would include not

 merely the direct effects of X on Y, but also the associated effects of move-
 ments in the disturbance term, u.

 When is such an assumption likely to fail? The simplest case to under-
 stand occurs when some large and systematic factor, other than X, has been

 distance between the point which represents the actual values of the dependent variable and
 the point which represents the values one would predict from the regression. Average squared
 values are the standard statistical measure olf dispersion.

 12. The word "normal" here is a term of art referring to the shape of the distribution.
 The name indicates that the distribution involved is characteristic of many random variables.
 Most important, if a random variable is coinposed of the sum of other random variables
 acting independently, that sum tends to be distributed normally. This makes the assumption
 of normality the obvious one unless there is a compelling reason to depart from it.

 13. As a general rule, there are methods of testing for and dealing with the failure of
 such assumptions, but they involve the more advanced tools of econometrics rather than least
 squares regression.

This content downloaded from 130.91.93.179 on Thu, 29 Aug 2019 20:54:17 UTC
All use subject to https://about.jstor.org/terms



 19801 MULTIPLE REGRESSION I 709

 left out of the analysis; this is called misspecification. In the revenue-
 audience study, for example, it turns out that average household income as
 well as size of audience affects television station revenue. Suppose, however,
 that we had not thought of this but had simply tried to estimate the effect of
 audience size on revenue. (Here, revenue would be Y and audience size

 would be X.) In effect, this would mean that we were placing household
 income in the disturbance term. Yet, if household income across television
 markets is positively associated with audience size, then part of what we
 would attribute to larger audience size would in fact be attributable to higher
 income. In other words, we would have failed to control for income levels
 and the lack of such control would matter.

 Obviously, the assumption that one has controlled for all the important
 influences is basic to any attempt to measure those influences correctly. There
 are, however, other ways in which the assumption of independence between
 random disturbance and included factors can be violated. In general, this
 will happen when there exist relations between the dependent and independent
 variables in addition to the relation being estimated. I shall discuss specific
 examples of such cases in part II.

 If the assumption of independence between u and X is warranted, then
 least squares estimates of the parameters (a and b) will have some desirable
 properties. First, the estimates will be unbiased-they will be correct on the
 average. This means that if one did the calculations for a sample of a
 particular size, and were then to repeat the procedure on numerous samples
 of the same size, each time obtaining different estimates for a and b, the
 average of the estimates so obtained would be the true values of a and b.
 To put it a little differently, least squares estimates have no tendency to err
 systematically on either the high side or the low side.

 Further, if the assumption of independence is correct, least squares
 estimates will be consistent. The property of consistency means that, as the
 sample size increases, the probability of obtaining least squares estimates
 that differ from the true values by more than any given amount goes to zero.
 Thus, as more data become available it will become easier to extract the true
 values of a and b from the noise presented by the random part.

 b. Behavior of the Disturbance Term. Consistency is the minimal prop-
 erty that one wants an estimator to have. But there are many consistent
 estimators and, in some situations, even many unbiased ones. Moreover,
 unbiasedness assures only that the estimator is right on the average; it does
 not indicate how far off it is likely to be on any given sample. Similarly,
 consistency guarantees only that one will get close to the true values of the
 parameters if one knows enough; it cannot determine how much one needs
 to know to get close. It is clearly desirable to have measures of reliability-
 that is, measures of how far off one can generally expect estimates to be.
 Moreover, within the class of unbiased or consistent estimators, it is obviously
 desirable to choose the one likely to be most reliable.

 With an additional assumption, least squares regression turns out to be
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 710 COLUMBIA LAW REVIEW [Vol. 80:702

 such an estimator and will itself generate estimates of its reliability. This

 assumption concerns the nature of the random disturbance term (u), rather

 than an assumption concerning its relation with X. The assumption can be

 divided into two parts.

 First, it is assumed that if one had information about the value of u

 for some observations, one would not thereby gain any information about

 its value for other observations. For example, if the observations are on the

 variables over time, an unusually high and positive value for u should not be

 followed by a tendency for u to be high the next year. Rather, successive

 values of u should be independent of each other. One can see why this is

 likely to matter. Least squares regression is a generalized form of averaging.

 Averaging is an excellent way to take care of random noise, provided that

 one is averaging over independent events. If the random disturbances from

 different observations are not mutually independent, however, then the

 averaging involved in least squares regression will not defuse the random

 effects. In such a case one could do better by expressly assuming that a high

 disturbance term in one period indicates something about the value of the

 disturbance term in the following period, and then using this information to

 attempt to factor the disturbance out of the equation.

 Second, it is assumed that there is no systematic tpndency for the ran-

 dom disturbance (u) to be either big or small.14 To put it differently, one

 assunmes that the chances of a large random effect versus a small one are the
 same for all observations.15 Again, one can see why this will matter. If

 some observations tended to have larger random effects than others, then the
 observations with large random effects would contain less reliable informa-

 tion than would the observations with small random effects. In any aver-

 aging procedure, one would want to give more weight to the latter. Since
 least squares regression will treat all observations equally, it will not take
 this into account.16

 These assumptions will be violated if, when dealing with a series of
 observations over time, the disturbance term includes the effects of variables
 that behave systematically over time. Certainly, this is a serious possibility

 14. We have already assumed that the random disturbance term has no systematic tendency
 to be high or low-that is, that it has a mean, or expected value, of 0 for all values of X.
 ("Expected value" is to be thought of as the population mean. Roughly speaking it is the
 average value one expects to obtain if one takes a large enough sample.) That assumption
 involves the algebraic sign of the random disturbance term. The present assumption, on the
 other hand, has to do with the absolute magnitude of the disturbance term, regardless of sign.
 Put more precisely, the dispersion of a random variable is measured by the average or
 expected value of the squared deviation from its mean. This is called the "variance." Its
 square root is called the "standard deviation." The assumption previously made in the text
 was that the mean of the random disturbance term is not systematically related to X. The
 assumption now being made is that the variance or standard deviation of the disturbance
 term is not so related and is, in fact, the same for all observations.

 15. Technically, this is the property that the variance of the disturbance term should be
 the same for all observations.

 16. There are ways of taking this failure of assumption into account: not surprisingly,
 the technique involved is called "weighted least squares," a variety of "generalized least
 squares."
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 in econometric models. Similarly, if the observations are of individual

 entities, such as firms, it may very well be that the effects of particular un-

 controlled events (such as political events) will be larger for large firms

 than for small ones. In such a case, the second part of the assumption

 would be violated. As with all the assumptions of least squares regression,

 however, one would want to be sure that the violations are really important

 before abandoning regression analysis. In the cases posited above, small

 departures from the assumptions would have small effects. Furthermore,

 the properties of least squares associated with the assumptions are so strong

 as to make least squares regression superior to the alternative estimators

 that would result from trying to cure such small departures.

 Given the validity of the assumptions under discussion, least squares

 estimates will be efficient. This means that, within a wide class of unbiased
 and consistent estimators, least squares estimates will have the smallest

 variation. Thus, if one could take repeated samples, the variation of the
 least squares estimates around the true values of a and b would be less

 than the variation of other unbiased and consistent estimators; in short, the

 least squares estimates will be more reliable.

 c. Normality of Distribution. The last assumption of least squares

 imposes greater restrictions on the random disturbance, u, than the ones

 already discussed. The assumption is that u, for all values of X, follows the

 normal distribution (bell curve),17 with a mean of zero, as already assumed.
 This, however, is not as restrictive as it may appear. As a general proposi-
 tion of statistics, the normal distribution is characteristic of large averages
 of independent random effects. To the extent that the error term is made
 up of the sum of small random effects, that sum will tend to be distributed
 normally.'8

 The normality assumption, in addition to bolstering least squares' pro-
 perty of efficiency, implies the ability to make precise probability statements
 concerning how far off the least squares estimates are likely to be.'9

 4. Multiple Independent Variables. In practice, one does not usually
 work with relationships involving only two variables, but rather with relation-

 ships in which a dependent variable is influenced by many independent ones
 (railroad traffic as well as firemen employment; audience income as well as
 audience size). Denoting the independent variables as X1, X2, . . . , Xk,
 the relationship to be estimated (assuming linearity) 20 can be expressed as:

 (3) Y= a+b,Xj-+b2X2-+-. . .+bkXk+u

 17. See note 12 supra.
 18. See note 12 supra. The "normal" distribution is completely characterized by its mean

 and variance. It is hard to construct practical examples in which one would be inclined to
 question normality without also questioning the other assumptions about the random dis-
 turbance term. Hence, while there are tests for departure from normality, they are hardly
 ever used.

 19. See text accompanying notes 24-28 infra.
 20. Again, I have chosen a linear form here. Least squares theory runs mostly in terms

 of such forms, but this is not as restrictive as it might appear, since many nonlinear forms
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 If there is only one independent variable, this is the case already considered,

 the case of a straight line. When there are two independent variables, one is

 fitting a plane to a scatter of points in space. When there are more than two

 independent variables, one is fitting a hyperplane (the generalization of a

 plane to more than three dimensions), but the principles are still the same,

 although the visualization is no longer immediate. Least squares still retains

 all the properties listed for the simple case above.

 Least squares regression takes advantage of the fact that the independent

 variables seldom move in perfect step together but rather move (as the name

 suggests) independently. By determining how the dependent variable changes

 when the independent variables move in a variety of different ways, the

 effect of each of the independent variables is extracted.

 This kind of systematic extraction of the effects of each variable is
 important. Examination of raw data leads to facile, and sometimes

 erroneous, conclusions. Over time, for example, removal of firemen and
 increased numbers of accidents both occurred. That these events were

 causally connected cannot be concluded if both are also associated with

 increases in a third variable (railroad traffic) that plausibly affects railroad

 accidents. Only by systematically using the fact that railroad traffic, while

 associated with fireman employment in the data, is not perfectly so associated,

 can one find out about the independent effect of the firemen. Not controlling

 for railroad traffic would place it in the disturbance term of equation (3)

 and violate the fundamental assumption of least squares that disturbance

 terms and independent variables are independent.

 can be cast into a linear form similar to equation (3) by appropriate transformations of the
 variables.

 The basic assumption involved in linearity is that the effect of each independent variable
 on the dependent variable is independent of the level of the other independent variables.
 Thus, in the firemen example, linearity would imply that the effect of the presence of firemen
 on the number of railroad accidents was the same at high levels of traffic as at low levels.
 It would also imply that the effect was the same regardless of whether there were other crew
 members substituting for the firemen. Obviously, these are not assumptions on which one
 necessarily wants to rely.

 Fortunately, it is not necessary to rely on them. If one thought, for example, that two
 of the variables-say Xl and X2-interacted, then one could define a new variable X3 as the
 product of X, and X2. Least squares regression would then proceed as if X3 were simply
 a different variable, but its coefficient would tell you something about the importance of
 such interaction.

 To take a different example, it is often not very plausible to suppose (as linearity does)
 that the effect on the dependent variable of changing an independent variable by one unit
 should be the same in absolute terms for all levels of the independent variable. It is
 frequently more plausible to assume that a one percent change in an independent variable
 has a constant percentage effect on the dependent variable. Such cases can be treated within
 the framework of linearity by entering into equation (3) not the original variables themselves,
 but rather their logarithms. This is frequently done and has the advantage, as well, of
 assuming that the effect of the random error on different observations is likely to be of the
 -same size in percentage rather than absolute terms, a matter that came up above in the
 discussion of one of the least squares assumptions. See text accompanying notes 14-16 supra.

 In general, the choice of the form in which to enter the variables or, more generally, the
 form of the relationship requires serious thinking about the way in which the relationship
 being estimated is likely to work. As with deciding which variable to include in the relation-
 ship in the first place, this must be done in large part by thinking about the problem rather
 than by hoping that the data will provide the answer. In any case, relations such as equation
 (3) are substantially more general than might appear at first sight.
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 As this description suggests, it is very important that variables do in

 fact move somewhat independently. Suppose, for example, that in the

 revenue-audience study one wished to investigate the separate effects on

 station revenue of audiences close to a station (XI) and audiences located
 farther away (X2). Suppose, as is not the case, that whenever the nearby

 audience increased by ten percent, as one went from station to station, the

 far-away audience also increased by ten percent. Then, although one would

 be able to determine the influence on revenue of the total audience, one

 could not find out the separate effects on revenue of the two subdlivisions of
 that audience. No "experiment performed by nature" would have separated

 those effects in any way.

 Such an extreme situation is not generally encountered in practice;

 rather what is encountered is something close to it. Suppose that every

 time the nearby audience went up by ten percent, the far-away audience

 went up by amounts that varied only slightly up or down from ten percent.

 In that case, it would be possible to estimate the separate effects generated

 by each subdivision of audience size, but one would be very uncertain

 about the estimate. Nature would not be performing experiments calculated
 to separate those effects with any high degree of accuracy. Such a circum-

 stance is called multicollinearity-so called because it involves an additional

 linear relationship between the variables on the right hand side of the

 equation.

 Obviously, the less multicollinearity is present, the better able one will

 be to separate out the effects of interest. Unless multicollinearity is perfect,
 however, multiple regression will be able to separate the effects to some
 extent and, again, will do so more precisely than any other method, producing
 estimates with the properties discussed above as well as measures of the

 reliability of these estimates. The effects of multicollinearity will show up
 in such reliability measures (standard errors), as discussed below.21

 5. Erroneous Inclusion or Exclusion of Variables. The discussion thus

 far has presumed that the true systematic relationship is the one being
 estimated. To put it another way, we have already seen in discussing un-

 biasedness that multiple regression retains the desirable properties associated
 with it only if one has in fact included all the variables likely to have a
 large effect on the dependent variable and can safely assume that the remain-
 ing effects are not correlated with the independent variables included. In the

 audience-revenue study it was thus necessary to control for household income
 and not place it in the disturbance term. It is therefore important to

 21. See text accompanying notes 24-28 infra.
 Note that the problem here occurs when two of the independent variables move together

 in an approximately linear fashion. If they move together nonlinearly, there will not be
 so severe a problem. If what is involved is not another relation between two or more of the
 independent variables but another relation between the dependent variable and an independent
 variable, then the basic assumption of least squares will be violated and we will have a situation
 involving simultaneous equations as discussed below. See text accompanying notes 34, 35 &
 43-45 infra.
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 proceed by including at some stage all the variables that one might think

 could possibly have a significant effect on the dependent variable. In general,
 one does this by first examining those variables that one thinks are actually
 important and then asking what happens when additional variables are

 included.

 Note that this must be done by specifying in advance what variables are
 thought to be important. To proceed by first looking at the data and then

 including those factors that appear correlated with the dependent variable is

 a recipe for spurious results. It leads to a situation where no true test of the

 estimated relationship can be made. In addition, it is likely to leave out

 variables that truly belong in and thus lead to invalid as well as untested

 results. The measurement provided by least squares regression is a way of

 making theoretical assumptions precise or of testing them; it is not a sub-

 stitute for thought.

 I mention this emphatically because a number of packaged computer
 programs that are sometimes used involve what is known as "step-wise

 regression." Such programs build up multiple regressions in ways similar

 to the following. First, the program finds the independent variable in the

 list most correlated with the dependent variable and does a regression involv-

 ing it. It then looks at the sample deviations from the regression (the
 differences between actual and predicted values) and asks whether those

 deviations are correlated with another independent variable. If so, it puts

 in the variable most correlated with those errors and so forth. This is not

 recommended. In the first place, even if none of the independent variables

 have anything to do with the dependent variable, proceeding in this fashion
 is very likely to produce the appearance of a high correlation in a particular

 sample. Second, variables that in fact belong in the relationship but that are

 correlated with the independent variables used early in the procedure tend
 never to get in. In general, such computer programs suffer from the same
 problems as attempts to look by eye at bilateral relationships that in fact

 involve the influence of many variables: they are likely to attribute the

 effects of the omitted variables to the included ones and result in biased
 estimates.

 The opposite of building regressions up one variable at a time is to

 put many variables in and then see whether some of them should come out.

 This is a somewhat better method. Whereas there is a major effect from
 excluding a variable whose true coefficient is far from zero, the effect of

 erroneously including a variable whose true coefficient is zero is of very
 little consequence. Such a variable can be thought of as actually present

 in the relationship, with the zero coefficient simply indicating that the variable

 has little or no effect. The multiple regression technique then estimates

 that coefficient along with the other true coefficients; thus, the regression

 technique must extract one more parameter from the same number of

 observations. This is equivalent to having one less observation with which
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 to extract the nonzero parameters.22 If the sample size is large (there are

 more than five hundred television stations in the United States, for example),

 there will be only a very small effect on the estimates of the remaining

 coefficients and on the prediction of the dependent variable (unless the in-

 clusion of the extra variable adds to multicollinearity). The reliability

 measures and the measures of "goodness-of-fit" 23 will take full account of

 the slight reduction in information involved. Where possible, therefore, it

 may be best to start with an overly complex model and build down.

 Nevertheless, it is important to realize that such building down cannot

 be done without an antecedent theory; the use of computer programs that

 do "backwards step-wise regression" is not recommended. Without some

 theory about which variables are likely to matter, throwing a great number

 of variables into the hopper is likely to lead to spurious results. If one tries

 enough combinations of variables, then, in a particular sample, one will tend

 to get some relationship that appears to fit well. Therefore, a properly

 done study begins with a decent theoretical idea of what variables are likely

 to be important. It then can proceed to test well-defined hypotheses about

 additional variables. But a study that casts about for a good-looking
 relationship by trying all sorts of possibilities is very likely to come up with
 relationships where none exist.

 This leads directly to two comments relevant to lawyers. First, when

 having a study done by an expert, one should not be too insistent about

 covering every possibility at once. Rather, one should make sure that the

 expert proceeds by estimating a reasonable model including the major
 variables and then goes on to test other possibilities. If one insists that all
 possible variables are likely to be of equal importance, one is likely to end
 up with a rather doubtful result.

 Second, when faced with an opposing expert who has done a regression
 study, one should find out how the expert decided on the variables he in-
 cluded and how many different combinations of variables and models he
 tried before settling on the one that is being presented. If the basic model
 was tried relatively early and variations were then tried simply to see if
 anything else seemed to matter, the study may be sound. If, however, the
 basic model being presented is the end result of vast amounts of computer

 work, particularly mindless and mechanical computer work, then one may
 have a legitimate point of attack.

 22. This is because, for the purpose of assessing reliability of the regression estimate, what
 matters is the number of "degrees of freedom"-the excess of the number of observations over
 the number of parameters to be estimated. The following conveys some idea of what is in-
 volved. One can always fit a line to two observations, but there are no degrees of freedom
 and no way of assessing the reliability of the result. If one has a third observation, then one
 cannot always fit a line exactly but some notion of reliability can be gained from observing
 how close one comes in fact. Add another variable with a coefficient to be estimated, how-
 ever, and one is estimating a plane that can be fitted precisely to three observations. Thus,
 the addition of another coefficient to be estimated has the same effect as the removal of one
 observation.

 23. See text accompanying notes 24-28 infra.
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 C. Measuring "Goodness-of-Fit"

 As I have already mentioned several times, least squares regression not

 only estimates the effects of the variables involved in the model but also

 measures the certainty or accuracy of such estimates. In addition, it provides

 overall measures of how well the model fits the data as a whole. There are

 several different measures involved and because they each measure different

 things, it is important to be clear on the differences among them.

 1. Standard Errors of Coefficients and t-Statistics. Associated with the

 estimated value of each regression coefficient (a and b in the above equations)

 is a figure known as the standard error 24 of that coefficient, which measures

 the coefficient's reliability. In general, the larger the standard error, the less

 reliable or the less accurate is the estimated value of the coefficient.

 Speaking somewhat loosely, in large samples the chances are nineteen

 out of twenty that the true coefficient lies within approximately two standard

 errors of the estimated coefficient. The chances are ninety-nine out of one

 hundred that it lies within approximately two and one half standard errors

 of the coefficient.25 (In small samples the bounds tend to be wider.)

 Thus, for example, if the estimated coefficient is ten with a standard error
 of two, the chances are nineteen out of twenty that the true coefficient lies

 between six and fourteen and ninety-nine out of one hundred that it lies

 between five and fifteen. To say that the chances are nineteen out of twenty

 that the true coefficient lies between six and fourteen, however, does not

 mean that the true coefficient is equally likely to be in any part of that

 range. The single most probable figure is ten. The probability of matching

 the correct figure decreases as one moves away from ten and, as the slight
 difference between the six-to-fourteen and five-to-fifteen ranges indicates, that

 probability decreases very fast as one moves substantially away from the

 middle estimate.

 It is conventional to use the standard error of an estimated coefficient

 to make a statistical test of the hypothesis that the true coefficient is actually
 zero-i.e., that the variable to which it corresponds really has no effect on

 the dependent variable. Essentially, such statements are constructed by

 asking how likely it is that ranges of the sort just described will include zero.

 This is done by taking the ratio of the estimated coefficient to its standard

 error. Such a ratio is called a t-statistic.

 24. As explained in note 14 supra, the two basic measures of dispersion of a random
 variable are its variance, the average square deviation around its mean, and its standard
 deviation, the square root of the variance. The standard error of a statistic (here, the standard
 error of a regression coefficient) is, in a rough sense, its expected standard deviation. More
 precisely, it is the square root of the average squared deviation that one would expect to
 obtain if one used the same estimating procedure over and over again. It is a convenient
 measure of the reliability of the statistic with which it is associated since the probability that
 the statistic differs from the true value by any given amount depends directly on the number
 of standard errors that the amount represents.

 25. This will depend on the normality assumption, discussed at text accompanying notes
 17-19 supra.
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 In large samples, a t-statistic of approximately two means that the
 chances are less than one in twenty that the true coefficient is actually zero
 and that we are observing a larger coefficient just by chance. In such a
 case, the coefficient is said to be "significant at the five percent level." A
 t-statistic of approximately two and one half means that the chances are
 only one in one hundred that the true coefficient is zero; in that case, the
 coefficient is "significant at the one percent level." 26 (In small samples,
 t-statistics must be larger for a given significance level.) In the numerical
 example given, the t-statistic would be five (ten divided by two) and the
 probability that the true coefficient is zero is extremely small. The coefficient
 would be significant at much better than the one percent level.

 Significance levels of five percent and one percent are generally used by
 statisticians in testing hypotheses. That is, given a significance level of
 five percent (or one percent for a stricter researcher) it is safe to assume
 that the true coefficient is not zero and that therefore the variable being
 tested has some effect on the dependent variable in question. Some lawyers
 might question whether the use of such levels imposes too severe a standard.
 Why reject the hypothesis that a certain coefficient is zero only if the
 probability that the results obtained are due to chance is five percent or
 less? Where the hypothesis involved is of legal importance (for example,
 when a nonzero coefficient would indicate the presence of sex discrimination
 in wages), would it not make more sense to use a "preponderence of the
 evidence" standard and require only significance at fifty percent?

 Such an approach, however, would reflect a flawed understanding of
 what significance levels really mean. In particular, a significance level of
 fifty percent would not correspond to a "preponderence of the evidence"
 standard. The significance level tells us only the probability of obtaining
 the measured coefficient value if the true value is zero; it does not give
 the probability that the coefficient's true value is zero, nor does subtrac-
 ting the significance level from one hundred percent give the probability
 that the hypothesis is not true. Because, even with a large sample, it is
 quite possible to obtain results differing from a coefficient's true value, it is
 conventionally thought that there must be a very high probability that the
 coefficient is not zero before it can be conclusively claimed that the variable
 associated with the coefficient has a definite effect on the dependent variable.

 This does not mean that only results significant at the five percent

 26. The examples of significance given in the text are for what is known as a "two-tailed
 test." For example, the significance level of five percent associated with a t-statistic of about
 two is the probability of obtaining an estimated coefficient as large as that actually obtained,
 either positive or negative, if the true coefficient is actually zero. In many situations, for
 example, there is no issue as to whether or not a particular coefficient is positive or negative;
 rather, the only issue may be whether it is positive or zero. In such a circumstance, the
 appropriate test is a "one-tailed test" in which five percent would represent the probability of
 observing some positive coefficient if the true value were really zero. The t-statistic required
 for significance at a given level on a one-tailed test is less than that required for the same
 level on a two-tailed test. In the case of five percent, for example, what is required is approx-
 imately 1.6 rather than 2.
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 level should be presented or considered. Less significant results may be
 suggestive, even if not probative, and suggestive evidence is certainly
 worth something. In multiple regressions, one should never eliminate a

 variable that there is firm theoretical foundation for including just because
 its estimated coefficient happens not to be significant in a particular sample.

 Nevertheless, the computation of the standard errors of the coeffi-

 cients or the corresponding t-statistics is a matter of considerable im-

 portance. It is routinely done by all professionals, with the five and one

 percent significance levels generally accepted as the point at which the

 zero hypothesis is rejected. Failure to report such measures of reliability
 is a clear signal that the study is suspect.

 2. The Standard Error of Estimate. Another statistic often reported
 with the results of least squares regression is the "standard error of esti-
 mate" or "standard error of the regression." This is not to be confused

 with the standard errors of the coefficients. The standard error of esti-
 mate is one of the summary measures reflecting the degree to which the

 estimated regression line or plane fits the data. In terms of the discussion
 given earlier, it is an estimate of how widely the points are scattered
 around the line.

 More precisely, the standard error of estimate describes the average
 deviation of the actual values of the dependent variable in the sample
 from the values that would be predicted from the regression.27 Thus a stan-

 dard error of zero would correspond to a perfect fit. The larger the
 standard error of estimate, the poorer is the fit, in the sense that the
 more important is the random component not being explained.

 The size of the standard error of estimate will depend upon the units
 in which the variables are measured. For example, if we were to measure
 the dependent variable in pennies rather than in dollars, the standard error
 of estimate would also be in pennies rather than in dollars and would therefore
 be multiplied by one hundred. To judge whether the standard error of
 estimate is large or small, therefore, one must compare it with something else.
 One such comparison involves computation of the correlation coefficient,
 discussed below. Other comparisons involve looking at, for example, the
 mean value of the dependent variable and determining what percentage of
 that value the standard error is. In general, the standard error of estimate
 can be used to make probability statements about how far off forecasts from
 the model are likely to be. Around the mean of the sample (if the sample is
 of considerable size), forecasts are likely to be off by more than approximately
 two standard errors of estimate only once in twenty times.28

 27. It is in fact not computed as an arithmetic average. Rather, it is the square root
 of the average squared deviation in the sample (with an adjustment for degrees of freedom,
 see note 22 supra).

 28. Related to the standard error of estimate, but not identical to it, is the standard
 error of forecast. This is a measure of how reliable forecasts made from the regression
 equation are likely to be. More precisely, it is the square root of the expected squared dif-
 ference between the actual value of the dependent variable and its forecast value. The
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 It is very important, however, to realize that a large standard error of

 estimate does not tell one anything at all about the accuracy with which the

 effects of the independent variables are measured. Similarly, a large standard

 error of estimate says nothing at all about the probability that the effects of

 those variables are really zero and one is observing only chance effects.

 (Those propositions are assessed by means of the standard errors of the

 coefficients and the t-statistics as described above.) The standard error of

 estimate is a way of assessing how important the random part of the model
 is; it does not tell one how large the effects of such randomness are on one's

 ability to measure the systematic part.

 An example may make this clear. Suppose that a group of workers are

 all paid the same per-hour wage, w, for each hour worked. Suppose, in

 addition, that work-ers are employed for different numbers of hours. Now
 suppose that at the end of each week each worker takes his pay and engages

 in a high-stakes roulette game. Then the income of each worker will be the

 sum of his pay from his job and his winnings or losings in the roulette game.

 Now suppose that we are trying to estimate the common per-hour wage,

 w, from data on the number of hours worked and total income, but that we
 cannot observe take-home pay directly. We could do this by a regression

 in which the dependent variable was total income and the independent variable

 was hours worked; the coefficient of hours worked would be our estimate

 of the per-hour wage, w. The influence of the roulette game, of course,

 would be the random part of the model.

 How would we measure the accuracy of our estimate of the per-hour
 wage? This would be measured in terms of the standard error of the estimated
 coefficient (w). If we had a large enough sample, that standard error would
 be very small. (This is the consistency property of least squares.) Despite
 this, we would still find a large standard error of estimate because no matter
 what we did, we would be unable systematically to estimate the effects of the
 unsystematic roulette game. In such a circumstance, we would be entitled
 to conclude that there were large unsystematic effects that affected our ability
 to predict total income. However, under no circumstances would we be
 entitled to conclude from that fact that we had a biased or unreliable estimate
 of the per-hour wage. Still less would we be entitled to conclude that changing
 the number of hours worked had no effect on income (i.e., that the true wage
 was equal to zero) or, to take the most extreme case, that workers should be

 standard error of forecast and the standard error of estimate differ for the following reason.
 Whereas the standard error of estimate measures the extent of deviation in the sample period
 around the relationship as estimated, forecast errors will involve not only deviation from the
 estimated relationship but also the fact that the estimated relationship itself may deviate from
 the true relationship.

 The way in which these two standard errors differ is somewhat instructive. In general,
 one expects to be surest about where the true relationship is for points that fall inside the
 range of points already observed in the sample. One would be less sure of points less typical
 of the sample. The standard error of forecast does depend on how far from typical sample
 values the values of the independent variable for the forecast period happen to fall. It is
 larger the farther away from the sample are such values. Given the location of the inde-
 pendent variables for the forecast period, however, the standard error of forecast is propor-
 tional to the standard error of estimate, which does not vary with such location.

This content downloaded from 130.91.93.179 on Thu, 29 Aug 2019 20:54:17 UTC
All use subject to https://about.jstor.org/terms



 720 COLUMBIA LAW REVIEW [Vol. 80:702

 indifferent about whether or not they are laid off. Statements of this sort

 would be signaled by very large standard errors of the estimated per-hour

 wage, the regression coefficient of hours worked, not large standard errors of

 estimate of the regression.

 Thus, a large standard error of estimate of the regression tells you that

 you do not know everything. This is not the same as telling you that you do

 not know anything. This is important in practice. In the case of the firemen

 what is involved is the difference between being able to predict the number

 of accidents well and being sure that employment of firemen affected that

 number. While related, these are not the same thing and they are measured

 differently.

 3. The Correlation Coefficient. The most common way of normalizing
 the standard error of estimate for different units is to compare it (or more

 properly, its square) with a measure of the total variation of the dependent

 variable. What such a comparison does is to split the variation of the

 dependent variable around its mean into a part that is explained by move-

 ments of the independent variable (the systematic part) and a part that is

 not so explained (the unsystematic part). The squared multiple correlation

 coefficient, R2, measures the percentage of that variation that is explained

 by the systematic part.29
 How should values of R2 be interpreted? Obviously, a value of zero

 means that movements in the independent variables do not explain move-
 ments in the dependent variable at all. The higher R2, the greater the associ-
 ation between movements in the dependent and independent variables. A
 value of unity means that the entire variation in the dependent variable is
 explained by the model.30 Beyond that, this commonly used measure must
 be approached with a fair amount of caution, since R2 can be affected by
 otherwise trivial changes in the way in which the problem is set up.31

 II. THE APPROPRIATE AND INAPPROPRIATE USE OF MULTIPLE

 REGRESSION IN LEGAL PROCEEDINGS

 So far, this Article on "Multiple Regression in Legal Proceedings" has
 been primarily about multiple regression. The time has come to talk about

 29. The reasons for writing the correlation coefficient as a square need not detain us here.
 30. How high a value of R2 is to be expected depends on the number of degrees of free-

 dom. (See note 22 supra). When one has two observations with which to fit a line, for example,
 such a fit will always be exact and R2 always equal to unity. Where the line must fit many
 observations, then an R2 near unity would be more impressive evidence that movements in the
 dependent variable are explained by movements in the independent variables.

 31. Thus, for example, suppose that in the audience-revenue relationship, we had decided
 that the true relationship was logarithmic, with the logarithm of revenue as the dependent
 variable. Suppose also that one of the independent variables was the log of audience size.
 Suppose then that we subtracted the log of audience size from both sides, making the
 dependent variable the log of revenue per viewer (equal to log of revenue minus log of
 audience size). Obviously, the only substantive thing that this would do would be to subtract
 one from the coefficient of the log of the audience. But it would also change R2, which would
 now measure how much of the variation in the log of revenue per viewer we were ex-
 plaining rather than how much of the variation of the log of revenue itself. The resulting
 value of R2 might thus be either higher or lower than the original value.
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 legal proceedings. I shall do this by discussing three areas where multiple

 regression analysis has figured: the examination of wage discrimination

 against womien; the determination of damages in price-fixing cases; and the
 evaluation of punishment as a deterrent to crime. These three examples will

 illustrate a number of the technical points already made as well as providing

 some lessons concerning what multiple regression analysis can and cannot do.

 I believe multiple regression analysis to be an entirely appropriate tool for

 the examination of possible discrimination in wages, but I am very dubious

 about its utility in price-fixing cases and I believe it to be dangerously mis-

 leading in the examination of deterrence.

 A. Discrimination in WVages

 In this example, a case is brought against a firm on behalf of a group of

 its women employees. They charge that the firm discriminates by paying

 women less than men. The object of the statistical study is to test whether

 this is indeed so.

 Let us suppose that the facts are such that it appears to be so. The

 wage paid the average female employee is less than that paid the average

 male employee. To make things simple, let us suppose that we are con-

 sidering only women and men in similar jobs.32 The firm defends (or is

 likely to defend) by claiming that the women are on the average not as

 qualified as the men. In particular, they are less well educated and have less

 job experience. They also score lower on certain aptitude tests.

 This is obviously a reasonable defense, if in fact it is true. For it to be
 true, however, it must not only be the case that women, on the average, are

 less qualified according to these various measures, but also that the difference

 in qualifications accounts for the difference in pay. If the firm does not pay

 well-educated men more than less-educated men, then it can hardly claim
 that this is the basis for the difference between male and female wages.

 Multiple regression is well suited to answer this sort of question fairly
 precisely. Moreover, without a multiple regression study it is difficult to see

 how it could be decided. The raw comparison of average wages for women
 and for men may make one suspicious, but it cannot tell one anything
 definite. Indeed, it can be misleading in either direction. For example, it

 would be entirely possible in a different setting that women are paid on the

 average just as much as men but that a multiple regression analysis would

 show that there is indeed discrimination because women are more highly

 qualified in the measures that account for the variation in male pay.33

 Returning to the original problem, how can this be set up in a multiple

 32. Controlling for job classification is an obvious thing to do and might be done by
 multiple regression.

 33. See Finkelstein, The Judicial Reception of Multiple Regression Studies in Race
 and Sex Discrimination Cases, 80 Colum. L. Rev. 737 (1980).
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 regression framework? We begin by doing something that may seem need-
 lessly cumbersome but will pay off later. We define a variable, S, as follows:

 (4) S 50 if the employee is a woman
 1 if, the employee is a man

 S is what is called a "dummy" variable, used in situations where one wants
 to examine discrete rather than continuous variations-in particular, classifi-
 cation into categories. Consider the regression equation:

 (5) Y=a+bS+u

 where Y denotes the income paid to a particular employee. It is not hard to
 see that estimating equation (5) by least squares regression is simply another
 way of computing the difference in average pay between men and women.
 If S - 0, then, on the average, pay will be given by a; this will be the average
 pay of female employees. On the other hand, if S _ 1, then, on the average,
 pay will be given by (a + b); this will be the average pay of male employees.
 The difference in the averages is thus b, the coefficient of S, and testing
 whether that coefficient is significantly different from zero tests whether men
 are indeed paid more than women.

 But of course, such a test is only a test of the original proposition, that
 men, on the average, are paid more than women and that the difference in
 pay is not accounted for only by random fluctuations. Such a test is better
 than simply looking at the difference in pay, but we have not yet tackled the
 problem of controlling for other variables, namely qualifications.

 Such controlliing is fairly easily done. For example, suppose for a
 moment that there were only one measure of qualifications (say, aptitude
 test scores), denoted by A. Consider the following modification of equation
 (5):

 (6) Y=-a+bS+cA+u

 Estimation of this equation by multiple regression will give an answer to the
 question of whether sex affects wages, with aptitude test scores constant. This
 may be seen diagramatically in Figure 2.

 In Figure 2, employee income is plotted against aptitude test scores.
 Points denoting male employees are indicated by M; points denoting female
 employees are indicated by F. I have drawn a case in which male employees
 are obviously paid more than female employees on the average, but in which,
 again on the average, female employees score lower on aptitude tests than
 do male employees. Examination of the average wages without correcting
 for aptitude tests (equivalent to least squares regression estimation of
 equation (5)) amounts to drawing a horizontal line in the diagram (hori-
 zontal because aptitude is assumed to have no effect in equation (5) ) at the
 level of average male income and another one at the level of average female
 income. These are relatively far apart. Correcting for aptitude test scores
 by estimating equation (6), on the other hand, amounts to drawing two
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 parallel lines through the male and female points respectively. The fact that
 the lines are parallel indicates the assumption that aptitude tests should have
 the same effect on wages for males and females if there is no discrimination.
 The difference in the intercepts is the coefficient of S, a measure of the re-
 maining difference in wages after aptitude scores have been controlled for.

 The proposition that males systematically earn more than females even

 after controlling for aptitude test scores can now be directly tested. This
 would be done using the t-statistic associated with b (the coefficient of S)
 to see whether that coefficient is significantly different from zero. (Since no
 one supposes that women earn systematically more than men, the appropriate
 test would be a one-tailed test.) "Significance at the five percent level"
 would require a t-statistic of a little more than 1.6.

 This example can be extended in a few ways that are worth discussing.
 In the first place, there is no reason why only one measure of qualifications-
 aptitude test scores-should be controlled. I chose that case because the
 resulting diagram was easy to draw. If there are several possible measures

 of qualifications, then all of them can be included in the regression as new

 Income

 y

 Average M M M

 Male Ym.. .......
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 variables. One of the great advantages in this problem is that there are not

 many variables that plausibly explain wages, and thus interest centers simply

 on whether sex is one of them. There is little need to thrash about for vari-

 ous different combinations of variables that might be included. Rather,
 having found an apparent effect in the raw data, the only question is whether

 that effect is caused by failure to control for other plausible variables.

 I have set up the problem in equation (6) as though the only issue was

 whether a man with given aptitude was paid a fixed number of dollars more

 than a woman with the same aptitude. This is indicated in Figure 2 by the

 constant distance between the two sloping lines. According to the equation,

 women are at a constant dollar handicap whatever their aptitude, and the

 question is whether or not that handicap is zero. But of course, this may not

 be the most likely possibility. It is at least as plausible that women are at a

 constant percentage handicap, so that the difference in dollar terms is greatest

 for women with high aptitudes. This is easily accommodated in the analysis.

 I shall not attempt to draw the resulting diagram, but all that would be

 required would be the use of the logarithm of income instead of income itself

 as the dependent variable in equation (6).

 One might also try a somewhat subtler variation. I have set up equation

 (6) (or its logarithmic equivalent) so that what is tested is the hypothesis
 that women are at a disadvantage, given that aptitude test scores affect wages
 in the same way for men and for women (the sloping lines in Figure 2 are

 drawn parallel). This is a good way to do it, but it is not the only way. One

 could estimate two separate regression equations-one for men and one for

 women-in which income would be regressed on aptitude. One could then

 test to see whether the regression coefficients for the two equations were the

 same in all respects. After all, it would be evidence of discrimination if the

 effect of aptitude tests on wages was not the same for men as for women. It is

 possible to construct cases in which b in equation (6) turns out to be zero,
 but in which separately estimated equations would yield significantly different

 values of b for men and women. On the other hand, trying to examine

 several things at once (i.e., whether whole sets of coefficients are the same

 for men and women) will produce less powerful tests than will examining
 each one of them individually.

 Two other features of this example deserve comment. First, I have
 deliberately used aptitude test scores as a measure of aptitude. It is common
 knowledge that such tests do not provide perfect measures of ability. How-

 ever, this may not make any difference in the validity of the regression model.
 To the extent that true aptitude has different dimensions, the crudeness of
 aptitude test scores as a measure may be corrected for by the other variables
 to be introduced into equation (6)-variables such as years of education

 or work experience. Second, what matters in the current problem is what
 the employer can observe in distinguishing aptitude. The defendant in this
 case will look relatively weak if he claims only that he had an unmeasurable
 way of evaluating aptitude and that all measurable methods are subject to
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 error. In effect, what is important in this problem is not some underlying

 measure of aptitude but the measure that the employer can see and reward.

 An argument that aptitude tests are subject to error ought to be challenged

 by demand for some more reliable but objective measure.

 Putting this aside, however, the crudeness of aptitude scores might make

 a substantial difference if the true variable (aptitude) were measured only by

 aptitude test scores with a random error. In such a case, it is possible to

 show that the estimates of c, the coefficient of aptitude test scores in equation

 (6), would be biased toward zero. This is perhaps what one would expect,

 since putting in variables that contain a lot of "noise" is likely to result in

 estimates suggesting that those variables do not have much systematic effect.

 More important, however, the bias will not be restricted to the coefficient of
 the variable that is subject to the error. In the present problem, the variable

 S (describing sex differences) is correlated with the variable A (denoting

 aptitude test scores), reflecting the fact that, in the sample of employees,

 women tend to score lower than men on aptitude tests. Such correlation

 means that the coefficient of S will also be biased and this coefficient is the

 one that is of interest. Unfortunately, it is not possible to say (without more

 assumptions) in what direction that coefficient will be biased. Under some

 circumstances, there are steps that can be taken to guard against the effects

 of measurement error, but it would take me too far afield to discuss them

 here.

 The final point to be made about this example is that accurate prediction

 of the dependent variable, income, is not required for successful resolution of

 the problem. Rather what is involved here is a direct test of the significance

 of a particular coefficient. The precision of that test (technically its "power")

 will depend on the standard error of that coefficient and not directly on how

 well the equation can be expected to do in predicting the dependent variable.

 Generally, tests like these are likely to be more successful than tests that

 depend directly on predictions.

 What makes the wage discrimination example so suitable for multiple

 regression is its simplicity and the readiness with which it can be cast into

 the mold of a test of the significance of a particular regression coefficient.

 Notice in particular the following feature: whether there is discrimination

 or not, one would expect the expanded version of equation (6) to fit well.

 What is being done there is to imbed in a theory of wage determination the

 difference that discrimination does or does not make. At least at this level,

 the question of what factors other than discrimination determine wages can

 be considered without regard to whether or not there is in fact discrimination.

 Further, the presence or absence of discrimination makes a clearly definable

 difference in the result one would expect to find. These features stand in

 contrast to those of the next example.
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 B. Antitrust Damages in Price-Fixing Cases

 In this example, the defendants have lost on the issue of liability in a

 price-fixing case, and the issue to be decided is the extent of damages. The
 defendants prepare a study attempting to show that the effect of fixing the
 price was minimal, in that the price would have been the same (or higher)

 without the conspiracy.34 There are a number of ways in which this might

 be done, but I am very dubious about the usefulness of any of them.
 One way to proceed is to take a leaf from the discrimination example

 just discussed. In that example, the study proceeded by controlling for
 several variables and, in effect, estimating what income would have been if

 there were no discrimination. Why not systematically estimate what prices

 would have been without price fixing? We might think of doing this as
 follows. Under competition, price is determined by the intersection of

 supply and demand curves. Let us assume, for simplicity, that there are

 no close substitutes for the product in question, so that demand depends
 only on the income of consumers (or the output of industrial customers) as
 well as on price. Supply will depend on price and on costs, which in turn

 depend on the prices of the factors of production. This suggests that we

 ought to be able to explain price by a regression equation involving con-

 sumer income and factor prices.

 Although one might assume that quantity should be included as one of

 the variables that may have an impact on price, it is more appropriate to
 treat price and quantity independently since, in fact, the same market forces
 control both. This is evident from an examination of the specific equations
 (supply and demand curves) that determine supply and demand in the
 market.

 Quantity, like price, is determined by the intersection of the supply and
 demand curves. Assuming linearity, for convenience, we can write the
 demand curve as:

 (7) Q==a-+bP+cY-+ u
 Here, Q denotes quantity, P denotes price and Y denotes consumer income.

 As before, u is a random disturbance. Similarly we can write the supply
 curve as:

 (8) Q-=d+eP+fW+v

 Here, W is a measure of factor prices and v is another random disturbance.
 Equations (7) and (8) form what are called the "structural equations"

 of a "simultaneous equation system." Such a system involves the interaction
 of more than one equation-equations that can be solved simultaneously.

 The fact that price is determined by the intersection of supply and demand
 is reflected by the fact that P and Q must have the same value in both equa-

 tions. We can thus solve both equations together for those two variables

 34. Since, under the per se rule, the ineffectiveness of a price-fixing conspiracy is not a
 defense, such a showing would be irrelevant to the issue of liability.
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 by equating the values that each equation predicts for the "quantity" variable.

 To do this, we create new coefficients (7r0, rl, 7T2, etc.) that depend on all the
 coefficients of the supply and demand curves. When this is done, the solu-

 tion for price will look as follows:

 (9) P 0?+ 1 y +[ 2 W + U*

 u* is the random disturbance, which depends on some of the coefficients

 in the supply and demand curves, as well as on u and v. (Precisely, it is

 equal to (u -v)/(e - b).) The exact algebra need not detain us. There

 will be a similar solution for Q.
 Equation (9) and its companion for Q are called the "reduced form"

 of the model. They show price and quantity directly in terms of those
 variables that are determined by forces other than those being modelled
 (Y, W, u, and v). Such reduced-form equations can be estimated by least

 squares regression.

 It would be a mistake, however, to include Q in the equation for P.

 It does not appear in tequation (9) for the very good reason that quantity

 and price are jointly determined by the same forces, and it cannot be said
 that one of them determines the other. A regression that includes quantity

 on one side and price on the other might be interpreted as an attempt to
 estimate either equation (7) or equation (8) directly, but this cannot be

 done consistently by least squares. The easiest way to see this is as follows.
 A movement in the disturbance term in equation (7), u, affects quantity,

 Q; this is essentially a random shift of the demand curve. But random
 shifts of the demand curve affect not only quantity but also price. Hence,

 shifts in u are associated with movements in P, as can be seen directly from

 equation (9) and the fact that u* depends on u. This means that, in
 estimating equation (7), the fundamental assumption of least squares-that
 random disturbances move independently of the independent variables-is

 violated. Equation (7) can be estimated, but least squares is not the way

 to do it.

 Thus, trying to determine what price would have been in a competitive
 market by regressing price on a set of variables including quantity is doomed
 to failure. Suppose, however, that we were more sensible and simply
 regressed price on income and factor price (Y and W), thus estimating
 equation (9) directly and using that equation to predict price absent the
 price-fixing agreement.

 This is better, but still not adequate. The problem here is that there
 will not be a clear distinction between the results that one would obtain if

 the market was affected by the price-fixing scheme and the results that
 one would obtain if it was not. If the market was not competitive but
 was seriously affected by price fixing, price was not determined by the inter-
 section of competitive supply and demand curves. Rather, price was deter-

 mined largely by the price fixers. But the price fixers presumably did not
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 set arbitrary prices but rather set prices to maximize their profits to the

 extent that they could.

 Without going into great detail, it is not hard to see that profit max-
 imization would have required consideration of the position and shape of

 the demand curve (7) as well as consideration of the costs of production.
 In the standard terms of economists, profit maximization requires the
 equating of marginal revenue and marginal cost. Marginal revenue will

 depend directly on demand and marginal cost directly on factor prices.

 The price and quantity that equate marginal revenue and marginal cost
 will, just as in equation (9), depend on income and factor costs. Indeed,

 for price, one is quite likely to end up with an equation identical to equation

 (9); the difference that price fixing makes is that the coefficients in equation
 (9) will be different under price fixing than under competition.

 This means, however, that there is no point to estimating equation (9)
 directly and using it to forecast price. Equation (9) would be valid whether

 or not there was price fixing and one will not be able to tell whether the

 predictions that it generates are competitive or noncompetitive. The case

 was quite different in the wage discrimination example. There the issue
 was sharply defined as whether a certain coefficient was zero or nonzero.

 Here the issue might be described as involving differences in a certain set

 of coefficients (the 7r's in equation (9)), but we can estimate those coeffi-
 cients only once and there is thus no way that we can compare the values

 we obtain with the unknown values that we would have obtained under

 either the competitive or the noncompetitive hypothesis.
 Does this mean there is nothing that can be done? No, but it comes

 close. We might proceed in a somewhat more sophisticated manner and

 try to estimate equation (7), the demand curve, which is the same under
 both regimes. We might then ask what the competitive supply curve would

 have looked like. Theoretically this could be done, but in practice it is

 probably impossible. The demand curve (equation (7)) can be estimated.

 As we have seen, it cannot be estimated by least squares under the hypothesis

 of competition, but there are other methods of estimating it, and those
 methods would remain valid, in general, even under a scheme of price

 fixing.35 However, in order to find out what price would have been under

 competitive conditions, it will be necessary to estimate the competitive supply

 curve. One cannot do that directly from the observations because to do so

 is to assume that the observations were generated by competitive supply and

 demand. That, however, is what one wants to prove. Hence, one will
 have to look elsewhere. In general this will mean estimating the cost curve

 of the producers and calculating marginal cost. Even if the defendants are

 35. If one were willing to admit that the price-fixing agreement did have a substantial
 impact on price (which, presumably, one is not), least squares estimation of the demand
 curve might become easier, essentially because prices would have been determined in a con-
 trolled manner. On this point, see my study of aluminum demand, F.M. Fisher, A Priori
 Information and Time Series Analysis 93-117 (1962).
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 willing to give up the information required for this calculation, it is likely

 to prove extraordinarily difficult to estimate. Once we move away from

 simple one-product examples, the cost calculations (and indeed the estima-

 tion of the various demand curves as well) become quite complicated. What

 is involved here is a major undertaking requiring a great deal of data, most
 of it unlikely to be in usable form, and generating only a thin promise at the

 other end. Indeed, if one is going to look directly at cost information, it

 might be better to make a direct showing that prices approximated marginal

 costs. To do that, one would not need to look at demand.

 There remains one possibility in this area that looks slightly more

 promising. Many of the problems just discussed occur because one wants

 to know how competition would have looked without directly assuming that

 competition in fact existed. If, however, there is agreement that the price-

 fixing conspiracy was in effect only for a limited time, then one might con-

 sider estimating the reduced form equataion for price (equation (9)) and

 the companion equation for quantity, using only data from the competitive

 period. One could then use those equations to forecast price for the price-
 fixing period and study the difference in results.

 This sort of program is feasible, at least in principle.36 Unfortunately,
 it is unlikely to pay off in practice. One will be using the estimated equations
 to forecast out of the sample period. If conditions have changed (and

 over time they usually do) this is going to mean forecasting away from the
 mean of the sample. Even if the model is entirely correct, one is not going

 to be able to make this sort of forecast with a great deal of certainty. One

 is likely to find that the price at a given moment during the price-fixing

 period is not significantly higher than that which would be predicted by

 the competitive model, but that the standard error of that prediction is

 large. Thus, although it will be possible to test whether the difference in

 price is significant, it will probably be very hard to decide how much of that

 difference is due to random error.37 Furthermore, variations in price in

 either direction can be explained away, by either plaintiffs or defendants,

 in terms of shifts in demand or cost conditions. Hence, if what is involved

 is prediction over a long time, this forecasting may be worth trying, but it

 is not likely to be useful. As opposed to the other approaches already

 discussed, however, it does have the merit of providing a clear comparison

 of the two hypotheses involved.

 36. There may be some technical problems concerning whether to estimate equation (9)
 directly by multiple regression or to use sophisticated simultaneous equation techniques to
 estimate equations (7) and (8) directly, but they need not detain us.

 37. This would generally be tested by a so-called "Chow" test. See Fisher, Tests of
 Equality Between Sets of Coefficients in Two Linear Regressions: An Expository Note, 38
 Econometrica 361-66 (1970). This would also be the test used to determine whether the
 entire regression of income on aptitude was the same for men and for women in the dis-
 crinination example above.
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 C. Punishment as a Deterrent to Crime

 The last topic that I will discuss is the use of studies that purport to
 examine the effect of punishment as a general deterrent to crime-that is,
 as a deterrent to persons other than those being punished. I have
 already mentioned the death penalty studies referred to by the Solicitor
 General. In addition, there are a number of studies of other categories of
 crimes and types of punishment. This is not the occasion to discuss these
 studies in great detail; such discussions can be found elsewhere.38 However,
 a consideration of some of the reasons why these studies are unsatisfactory
 will illustrate points that are generally applicable to the use of multiple
 regression analysis.

 At first glance, the problem seems to be eminently suitable for regression
 analysis. Nearly any examination of data in which punishment varies also
 shows crime varying in the opposite direction. Yearly data on murders
 committed in the United States (a "time series") show the number of
 murders rising in years with no executions. With respect to other crimes,
 cross-section data show that jurisdictions with less severe sentences tend
 to be the jurisdictions with higher crime rates. It plainly appears that there
 is a negative correlation between severity of punishment and crime rate and
 that the problem is merely that of assessing the magnitude of the deterrent
 effect.

 Unfortunately, while I agree that there probably is something significant
 in these data, the problem of measurement turns out to be very severe. This
 is true for more than one reason. First, there is a problem because we do
 not have a very good theory of what causes crime, and thus we do not
 really know what other variables should be controlled for in deriving a
 crime equation. Second, one has to control not only for other variables
 in the same equation but also for the presence of additional relations between
 those variables and crime. Add to this the doubtful nature of much of the
 data and one has a serious problem.

 Let me begin by considering the death penalty studies.39 The primary
 study 40 used time-series data on the United States as a whole for the years
 1933-1969. This is a sample of thirty-seven observations, although data
 on some of the variables had to be constructed. However, it turns out that
 the results depend almost entirely on the years after 1962. This is, perhaps,
 no surprise; it was primarily in these years and in the early 1970's that many
 jurisdictions experimented with the abolition of capital punishment. It does
 mean, however, that there is only a relatively limited amount of data to use
 in controlling for other effects, despite the seemingly large sample size.
 Furthermore, these same years coincide with a general upsurge in crime,

 38. See, e.g., Deterrence and Incapacitation, supra note 1.
 39. For a more detailed discussion and references, see Klein, Forst & Filatov, supra note 1.
 40. Ehrlich, The Deterrent Effect of Capital Punishment: A Question of Life and Death,

 65 Am. Econ. Rev. 397 (1975).
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 not just in those crimes subject to capital punishment. Therefore, we can-

 not be sure that the results of the study do not simply depend on poorly
 understood phenomena concerning the causes of crime.

 There are lessons to be learned here. First, when faced with a multiple

 regression study, one should try to determine whether the results crucially

 depend on certain of the years chosen or whether they stand up to variations

 in the sample. If the results do depend on certain years, one should try to

 decide whether there are other characteristics specially associated with these

 years that might have affected the results. Second, and perhaps more im-

 portant, one must try to determine whether enough is known about the

 phenomenon being investigated (here, the causes of crime) to estimate it

 in terms of the model selected. If not, there will be other plausible explana-

 tions for the results achieved.

 The death penalty study also turns out to depend rather crucially on

 the form of the equation used. There is a big difference in its results

 depending on whether the equation is estimated in linear or logarithmic

 form.4' Of course, if one had reason to believe that the correct form of
 the equation was one or the other, one would simply use that form. But

 one does not know which form is "correct." Results that depend on the

 use of a particular version of the equation may not be valid; they depend

 on an unsupported assumption.42 When one is deciding whether to execute

 a man, it ought to concentrate the mind wonderfully. In such matters, the

 studies to be relied on ought not depend on particular sample periods or

 choice of specifications.

 Many of the problems with the capital punishment study arise because

 of the limited nature of the available data. An obvious alternative set of

 experiments would involve the use of data concerning various crimes and

 drawn from different jurisdictions, in order to get a large sample and a lot

 of variation.43 The trouble here is as follows.

 Obviously, there are reasons other than variations in punishment why
 crime rates vary over jurisdictions. It is therefore necessary to control for

 such reasons. Some possibilities for such variables are unemployment rate,
 percentage of urban population, and so forth. Multiple regression might
 in fact do this.

 Unfortunately, there are also reasons why punishment levels vary over
 jurisdictions. One of the reasons suggested in the literature has to do

 with crime rates. It is easy to see how this might happen. Jurisdictions

 41. See notes 10 & 20 supra.
 42. There are ways of testing whether one form is better than another. Often, however,

 it is hard to tell from the results.
 43. Ehrlich has also performed cross-section analyses of murder, but I am less familiar

 with these than with his study of noncapital crimes. The latter is Ehrlich, Participation in
 Illegitimate Activities: A Theoretical and Empirical Investigation, 81 J. Pol. Econ. 521 (1973).
 The following comments are expanded in Nagin, General Deterrence: A Review of the Em
 pirical Evidence, in Deterrence and Incapacitation, supra note 1, at 95, and Fisher & Nagin,
 On the Feasibility of Identifying the Crime Function in a Simultaneous Model of Crime Rate
 and Sanction Levels, id. at 361.
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 with higher crime rates may adopt "get tough" policies. Alternatively (and

 this is the suggestion in much of the literature), jurisdictions with high crime

 rates may overload their punishment facilities and thus may come to tolerate

 relatively common offenses somewhat more than do jurisdictions with low

 crime rates. In any event, there is a serious possibility that the variation

 in punishment levels over Jirisdictions can be accounted for, at least in part,

 by the variation in crime rates. In this circumstance, as in part of the supply

 and demand example given above, the problem is not merely that one has

 to control for other variables, but that one has to control for the presence

 of another equation. To see the kind of problem that arises, consider the

 following vastly simplified example.

 Assume, for the moment, that the only thing that affects crime rates is

 punishment. Assuming linearity, for convenience only, the crime rate equa-

 tion to be estimated could then be written as:

 (10) C-a + bS + u

 Here, C is the measure of crime rate and S is a measure of punishment or

 Crime
 Rate

 C

 s Sanctions
 Level

 Figure 3

This content downloaded from 130.91.93.179 on Thu, 29 Aug 2019 20:54:17 UTC
All use subject to https://about.jstor.org/terms



 1980] MULTIPLE REGRESSION I 733

 sanctions levels. The coefficient b would represent the deterrent effect of
 increasing sanctions.

 Suppose, however, that sanctions also depended on the crime rate and
 only on the crime rate. Then the equation that shows how sanction levels
 are determined can be written (again assuming linearity):

 (11) S=d+eC+v

 In these equations u and v are random disturbances.

 Given the interrelation between these two equations, one could not
 effectively estimate the crime equation (equation (10)) by least squares
 regression. The fundamental assumption of least squares regression is that
 the random disturbance term operates independently of the independent
 variable. All of the properties of least squares depend on this. In the
 present instance this would require that u and S be uncorrelated. This
 cannot be the case, however, because the model itself (just as in the supply
 and demand example given above) implies that it is not so. An upward
 shift in u, according to equation (10) itself, will mean an upward shift in
 the crime rate, C. But an upward shift in the crime rate, C, will, according
 to equation (11), cause a shift in the sanctions level, S. Hence, shifts in u
 cannot be independent of shifts of S and least squares regression will fail.
 (This may also be seen by solving equations (10) and (11) for C and S
 to obtain the reduced form of the system, as was done in the supply and
 demand example.)

 The problem is worse than this, however. To see this, ignore the
 random disturbances, for a moment, and suppose that equations (10) and
 (11) were exact. I have graphed those equations in Figure 3. In such a
 situation, the crime rate and the sanctions level would be entirely determined
 by the simultaneous solution of the two nonrandom equations-the inter-
 section of the two lines in Figure 3 at K. (The resemblance to a supply and
 demand graph is not accidental.) If this were really the case, the only point
 we would ever observe would correspond to that intersection at sanctions
 level denoted by S * and crime rate denoted by C *. But if that point were
 the only one observed, there would be no way of recovering equations (10)
 and (11). In terms of the graph, we could not tell the true crime function
 (the more steeply sloped line) apart from the sanctions function (the less
 steeply sloped line) or, indeed, from any other line that went through that
 same point; each line could vary, in an infinite number of ways, around the
 point K.

 Even if we put random disturbances back in, we would not get any-
 where. The effect of random disturbances would be to produce a cluster

 of points surrounding the intersection drawn in the graph, but again, it would

 not be possible to recover the two underlying lines that generated this cluster

 or to tell the two lines apart even if we could recover them. In this circum-

 stance, the crime and sanctions equations are said to be "not identifiable."
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 This problem, one of identification, is a well-studied subject in econo-

 metrics.44 I have deliberately chosen an extreme case. Unfortunately, the
 identification problem continues in the deterrence studies even when the ex-
 treme assumptions are relaxed.

 Suppose, for example, that there was some variable that shifted sanc-

 tions levels over jurisdictions but did not affect crime rate. This would
 mean that there would be an additional significant variable in equation (11)
 that was not also a variable in an expanded version of equation (10). Leav-
 ing equation (10) as it is, the effect would be to shift the sanctions equation
 in Figure 3 up and down. (This is illustrated by dashed lines parallel to
 the solid line corresponding to the sanctions equation in Figure 3 and
 marked "shifted equation.") If this happened, we would observe not merely
 one intersection of the sanctions equation and the crime equation but several
 intersections, points such as A and B, for example. Those points would all
 lie on the crime equation and, indeed, as the sanctions equation shifted
 back and forth because of the presence of the additional variable, the points
 of intersection would trace out the crime equation.

 In such a situation, as the diagram suggests, there is a technique for
 recovering the crime equation from the data. That technique, however, is

 not least squares regression, because the correlation between the disturbance

 term and the independent variable in equation (10) would generate invalid
 results. Moreover, it will still not be possible to recover the sanctions equa-
 tion itself.

 Because of the identification problem it is necessary to find a variable
 that shifts one equation of the model but not the equation to be identified.
 However, it is not only bad practice to attempt to find such variables from
 the data, it is literally impossible. No amount of manipulation of data gen-
 erated by the model will reveal such variables; the selection of such a variable
 must be done as a matter of prior theory.

 It is easy to see from Figure 3 why this should be so. If there is a
 variable shifting the sanctions equation but not the crime equation, then the
 observed points will be like the points A, B, and K in the diagram. But
 such a pattern of intersection could also be produced by a variable shifting
 the crime equation but not the sanctions equation. More generally, it could
 be produced by shifts in both equations. Only if we know from theoretical,
 nondata-generated considerations that it is the sanctions equation that shifts
 can we be sure that it is the crime equation that is traced out.

 In most situations, such theoretical considerations may readily be
 found. (For example, consumer income enters demand but not supply
 curves; factor costs affect supply but not demand.) This is not so in the
 present case, however. While there are a number of variables that may
 enter the sanctions equation, it is difficult, if not impossible, to think of such

 44. See F.M. Fisher, The Identification Problem in Econometrics (1966) (reissued 1976).
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 a variable that would not also enter the crime equation.45 The existing

 studies have tried to get around this by casually assuming that variables such

 as unemployment influence sanctions levels but not crime. This is plainly

 wrong. In the present state of our knowledge, we simply do not know

 enough about the structure of the system generating the observations to be

 able validly to estimate the crime equation.

 This problem has some general implications for the use of regression

 analysis. First, it is important to be very careful not only about controlling

 for additional variables, but also about the possibility that one must control

 for the existence of additional relationships between the dependent and inde-

 pendent variables. If there are such relationships, least squares will not be

 an appropriate estimator, and it is at least possible that no appropriate esti-

 mator will exist (although this is not common). Second, if there is another

 equation involved, one must find out how the expert really did his estimation.

 If he explored the data by multiple regression and then, having decided on

 a model, altered it with another estimation technique, the results are quite

 suspect.46

 Finally, one should make sure that the model used is constructed on

 sound hypotheses based on theoretical considerations generated from outside
 the model itself. While multiple regression and related econometric tech-

 niques are powerful tools for analyzing data, their proper use presupposes

 an underlying theory of the structure generating those data. While some

 hypotheses concerning that structure can be tested with these tools, the

 theory itself cannot be discovered by computer runs and data experimenta-

 tion. Thus, the expert making the study must not only understand the

 proper uses of the statistical tools, he also must learn something about the
 phenomena and hypotheses being investigated.

 CONCLUSION

 Multiple regression analysis can play a vital role in legal proceedings.

 Used properly, it is an accurate and reliable method of determining the rela-

 tionships between two or more variables, and it can be a valuable tool for
 resolving factual disputes. In order for this to happen, however, multiple

 45. On the other hand, it is not difficult to think of variables that enter the crime
 equation but that would not directly influence the choice of sanctions. Unemployment, for
 example, is far more likely to influence the crime rate than to influence sanctions. Other
 examples might include measures of income disparity or expenditures on security systems. If
 such variables really do influence crime rate, but not sanctions, then including them in the
 crime equation would shift that equation relative to the sanctions equation. The points of
 intersection traced out would all lie on the sanctions equation, which would then be iden-
 tifiable and could be estimated (although still not by least squares).

 46. Consider the following all too common procedure. Since multiple regression is easy
 to do, one experiments with multiple regression until one has a version of the estimated
 equation that corresponds to one's own predilections. Then one reestimates the equation by
 an appropriate simultaneous equation technique. If the results look very different from the
 least squares version one goes on exploring. This is not a way to produce consistent results.
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 regression must be better understood by the legal community; in particular,

 there must be an understanding of both the potential and the limits of the

 technique.

 It is not necessary that lawyers understand the mechanics of multiple

 regression in terms of what goes on inside the computer. It is necessary,

 however, that they understand the regression model and the assumptions

 being used in any given regression study, how the results of the regression
 bear on the hypothesis to be tested, and how the results distinguish this

 particular hypothesis from other hypotheses. The expert constructing the

 analysis should be able to explain all of this to the attorney who employs

 him, and an expert who cannot explain such things is likely to fall apart on

 cross-examination.

 Lawyers will increasingly find themselves in a position where it would

 be profitable to use a regression analysis or where they must confront a

 regression study produced by an opponent. When that happens, a basic
 knowledge of multiple regression may be a valuable asset.
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