
For the best experience, open this PDF portfolio in

Acrobat X or Adobe Reader X, or later.

Get Adobe Reader Now!

http://www.adobe.com/go/reader

citHeader("To cite the 'gender' package, you may either cite the package",
 "directly or cite the journal article which explains its method:")

year <- sub(".*(2[[:digit:]]{3})-.*", "\\1", meta$Date, perl = TRUE)
vers <- paste("R package version", meta$Version)

citEntry(entry="Manual",
 title = "gender: Predict Gender from Names Using Historical Data",
 author = personList(as.person("Lincoln Mullen")),
 year = year,
 note = vers,
 url = meta$URL,
 textVersion =
 paste("Lincoln Mullen (", year, "). ",
 "gender: Predict Gender from Names Using Historical Data. ",
 vers, ".", sep="")
)

citFooter("For the journal article, please cite: \n \n",
 "Cameron Blevins and Lincoln Mullen, \"Jane, John ... Leslie?",
 "A Historical Method for Algorithmic Gender Prediction,\"",
 "_Digital Humanities Quarterly_ 9, no. 3 (2015):",
 "<http://www.digitalhumanities.org/dhq/vol/9/3/000223/000223.html>.")

Package: gender
Type: Package
Title: Predict Gender from Names Using Historical Data
Version: 0.5.2
Date: 2018-03-06
Authors@R: c(person("Lincoln", "Mullen", role = c("aut", "cre"),
 email = "lincoln@lincolnmullen.com"),
 person("Cameron", "Blevins", role = "ctb"),
 person("Ben", "Schmidt", role = "ctb"))
Description: Encodes gender based on names and dates of birth using historical
 datasets. By using these datasets instead of lists of male and female names,
 this package is able to more accurately guess the gender of a name, and it
 is able to report the probability that a name was male or female.
URL: https://github.com/ropensci/gender
Depends: R (>= 3.0.0), utils, stats
Imports: dplyr (>= 0.4.2), httr (>= 1.0.0), jsonlite (>= 0.9.16)
Suggests: genderdata (>= 0.5.0), ggplot2 (>= 1.0.0), knitr (>= 1.11),
 testthat (>= 0.10.0), rmarkdown (>= 0.9.0), covr
Additional_repositories: http://packages.ropensci.org
LazyData: yes
License: MIT + file LICENSE
VignetteBuilder: knitr
BugReports: https://github.com/ropensci/gender/issues
RoxygenNote: 6.0.1
NeedsCompilation: no
Packaged: 2018-03-07 16:15:35 UTC; lmullen
Author: Lincoln Mullen [aut, cre],
 Cameron Blevins [ctb],
 Ben Schmidt [ctb]
Maintainer: Lincoln Mullen <lincoln@lincolnmullen.com>
Repository: CRAN
Date/Publication: 2018-03-07 21:17:45 UTC

Package ‘gender’
March 7, 2018

Type Package

Title Predict Gender from Names Using Historical Data

Version 0.5.2

Date 2018-03-06

Description Encodes gender based on names and dates of birth using historical
datasets. By using these datasets instead of lists of male and female names,
this package is able to more accurately guess the gender of a name, and it
is able to report the probability that a name was male or female.

URL https://github.com/ropensci/gender

Depends R (>= 3.0.0), utils, stats

Imports dplyr (>= 0.4.2), httr (>= 1.0.0), jsonlite (>= 0.9.16)

Suggests genderdata (>= 0.5.0), ggplot2 (>= 1.0.0), knitr (>= 1.11),
testthat (>= 0.10.0), rmarkdown (>= 0.9.0), covr

Additional_repositories http://packages.ropensci.org

LazyData yes

License MIT + file LICENSE

VignetteBuilder knitr

BugReports https://github.com/ropensci/gender/issues

RoxygenNote 6.0.1

NeedsCompilation no

Author Lincoln Mullen [aut, cre],
Cameron Blevins [ctb],
Ben Schmidt [ctb]

Maintainer Lincoln Mullen <lincoln@lincolnmullen.com>

Repository CRAN

Date/Publication 2018-03-07 21:17:45 UTC

1

https://github.com/ropensci/gender

https://github.com/ropensci/gender/issues

2 check_genderdata_package

R topics documented:

gender-package . 2
check_genderdata_package . 2
gender . 3
gender_df . 4
install_genderdata_package . 6

Index 7

gender-package Gender: predict gender by name from historical data

Description

Gender: predict gender from names using historical data

Details

Encodes gender based on names and dates of birth, using U.S. Census or Social Security data
sets. Requires separate downlaod of datasets, which should be done automatically and can be done
manually by running install_genderdata_package().

Author(s)

<lincoln@lincolnmullen.com>

check_genderdata_package

Check whether to install data for gender function and install if neces-
sary

Description

If the genderdata package is not installed, install it from GitHub using devtools. If it is not up to
date, reinstall it.

Usage

check_genderdata_package()

gender 3

gender Predict gender from first names using historical data

Description

This function predicts the gender of a first name given a year or range of years in which the person
was born. The prediction can use one of several data sets suitable for different time periods or
geographical regions. See the package vignette for suggestions on using this function with multiple
names and for a discussion of which data set is most suitable for your research question. When
using certain methods, the genderdata data package is required; you will be prompted to install it
if it is not already available.

Usage

gender(names, years = c(1932, 2012), method = c("ssa", "ipums", "napp",
"kantrowitz", "genderize", "demo"), countries = c("United States", "Canada",
"United Kingdom", "Denmark", "Iceland", "Norway", "Sweden"))

Arguments

names First names as a character vector. Names are case insensitive.

years The birth year of the name whose gender is to be predicted. This argument can
be either a single year, a range of years in the form c(1880, 1900). If no value
is specified, then for the "ssa" method it will use the period 1932 to 2012;
acceptable years for the SSA method range from 1880 to 2012, but for years
before 1930 the IPUMS method is probably more accurate. For the "ipums"
method the default range is the period 1789 to 1930, which is also the range of
acceptable years. For the "napp" method the default range is the period 1758 to
1910, which is also the range of acceptable years. If a year or range of years is
specified, then the names will be looked up for that period.

method This value determines the data set that is used to predict the gender of the
name. The "ssa" method looks up names based from the U.S. Social Se-
curity Administration baby name data. (This method is based on an imple-
mentation by Cameron Blevins.) The "ipums" method looks up names from
the U.S. Census data in the Integrated Public Use Microdata Series. (This
method was contributed by Ben Schmidt.) The "napp" method uses census
microdata from Canada, Great Britain, Denmark, Iceland, Norway, and Swe-
den from 1801 to 1910 created by the North Atlantic Population Project. The
"kantrowitz" method uses the Kantrowitz corpus of male and female names.
The "genderize" method uses the Genderize.io <http://genderize.io/>
API, which is based on "user profiles across major social networks." The "demo"
method is uses the top 100 names in the SSA method; it is provided only for
demonstration purposes when the genderdata package is not installed and it is
not suitable for research purposes.

countries The countries for which datasets are being used. For the "ssa" and "ipums"
methods, the only valid option is "United States" which will be assumed if

https://www.nappdata.org/napp/

http://genderize.io/

4 gender_df

no argument is specified. For the "napp" method, you may specify a charac-
ter vector with any of the following countries: "Canada", "United Kingdom",
"Denmark", "Iceland", "Norway", "Sweden". For the "kantrowitz" and "genderize"
methods, no country should be specified.

Value

Returns a data frame containing the results of predicting the gender. The exact components of the
returned list will depend on the specific method used. They include the following:

name The name for which the gender has been predicted.
proportion_male

The proportion of male names for the given range of years.

proportion_female

The proportion of female names for the given range of years.

gender The predicted gender based on the proportion of male and female names. Pos-
sible values are "male" and "female" for proportions above 0.5, "either" for
proportions that are exactly 0.5, and NA for combinations of names and years
for which a gender cannot be predicted using the given method.

year_min The lower bound (inclusive) of the year range used for the prediction.

year_max The upper bound (inclusive) of the year range used for the prediction.

Examples

gender("madison", method = "demo", years = 1985)
gender("madison", method = "demo", years = c(1900, 1985))
SSA method
Not run: gender("madison", method = "demo", years = c(1900, 1985))
IPUMS method
Not run: gender("madison", method = "ipums", years = 1860)
NAPP method
Not run: gender("madison", method = "napp", countries = c("Sweden", "Denmark"))

gender_df Use gender prediction with data frames

Description

In a common use case for gender prediction, you have a data frame with a column for first names
and a column for birth years (or, two columns specifying a minimum and a maximum potential
birth year). This function wraps the gender function to efficiently apply it to such a data frame.
The result is a data frame with one prediction of the gender for each unique combination of first
name and birth year. The resulting data frame can then be merged back into your original data
frame.

gender_df 5

Usage

gender_df(data, name_col = "name", year_col = "year", method = c("ssa",
"ipums", "napp", "demo"))

Arguments

data A data frame containing first names and birth year or range of potential birth
years.

name_col A string specifying the name of the column containing the first names.

year_col Either a single string specifying the birth year associated with the first name, or
character vector with two elements: the names of the columns with the minimum
and maximum years for the range of potential birth years.

method One of the historical methods provided by this package: "ssa", "ipums", "napp",
or "demo". See gender for details.

Value

A data frame with columns from the output of the gender function, and one row for each unique
combination of first names and birth years.

See Also

gender

Examples

library(dplyr)
demo_df <- data_frame(names = c("Hillary", "Hillary", "Hillary",

"Madison", "Madison"),
birth_year = c(1930, 2000, 1930, 1930, 2000),
min_year = birth_year - 1,
max_year = birth_year + 1,
stringsAsFactors = FALSE)

Using the birth year for the predictions.
Notice that the duplicate value for Hillary in 1930 is removed
gender_df(demo_df, method = "demo",

name_col = "names", year_col = "birth_year")

Using a range of years
gender_df(demo_df, method = "demo",

name_col = "names", year_col = c("min_year", "max_year"))

6 install_genderdata_package

install_genderdata_package

Install the genderdata package after checking with the user

Description

Install the genderdata package after checking with the user

Usage

install_genderdata_package()

Index

check_genderdata_package, 2

gender, 3, 4, 5
gender-package, 2
gender_df, 4

install_genderdata_package, 6

7

		gender-package

		check_genderdata_package

		gender

		gender_df

		install_genderdata_package

		Index

YEAR: 2014
COPYRIGHT HOLDER: Lincoln Mullen

e6cbf6a3d58335d9b33df531a8c0dd07 *DESCRIPTION
61cc147343066cd44bc4b3d0a213eb4f *LICENSE
1c26b58188236cdb646a89d2b0469dfd *NAMESPACE
128f74ee74360ed2b3f2b19e81cf8f76 *NEWS
fd48825403a2444a00d0acc08a0c53a0 *R/gender-demo.R
62c2d393c88bbaebd8fab06870665a6a *R/gender-genderize.R
7752947751ce93e069539e4ddc74fd17 *R/gender-ipums-usa.R
f6e6feaeb089535031c75b2e78e6949b *R/gender-kantrowitz.R
67d40b957bf7eba0bc7f7a0feb4b8a29 *R/gender-napp.R
3ade43c1dadf3cb6334b1fe6bb5fe793 *R/gender-package.r
919b7f86f8399ae4359fb5afb71ebd43 *R/gender-ssa.R
afe70df15a92fcd77b4d163a2fb0e14c *R/gender.R
c74eac324b47bfaedfaec574c1df2785 *R/gender_df.R
be5abfe080283f1cf2fdab16dc77e172 *R/install-genderdata-package.R
78736f289645404743d2a5089f1d0cd9 *R/sysdata.rda
6cef966e803c776b2d430c38a2a320d2 *README.md
b94287e4ce9d121608945b71a1d86731 *build/vignette.rds
2ec4d40e1a12e6931510b1098d7d36a1 *inst/CITATION
73afe5387a693a93018337d775433b02 *inst/doc/predicting-gender.R
60bd4efae8414c18c6edfa1b162d03d1 *inst/doc/predicting-gender.Rmd
47a9243cf02aa1978db13a6962919681 *inst/doc/predicting-gender.html
9c6ff9e954bf30ea0807ad504c697ff1 *man/check_genderdata_package.Rd
1060ec7be500d778c9b01b96f80ab4c4 *man/gender-package.Rd
aab738a5bc088ee47951c968884083ac *man/gender.Rd
2ded58fd0e6f099c777120277ae6e988 *man/gender_df.Rd
ac25bf1a5090e1eec33416223b088208 *man/install_genderdata_package.Rd
eea0812236f9f53199c7becdd4bbe3e6 *tests/run-all.R
97786b69a854ce657f425a1e02daf046 *tests/testthat/sample-data.r
9d7bf4845753ec7b9890cecf0afc664b *tests/testthat/test-argument-validation.r
261b392784c2b9a288086e18e425861d *tests/testthat/test-demo.r
97559acc0c4af35b34c8bc3c265fcc10 *tests/testthat/test-gender_df.R
f6db4135de8766e8ed5e16a7eac3ec50 *tests/testthat/test-genderize.R
6415ccd0fcc6d3e2f37b69772a63c3b4 *tests/testthat/test-ipums.r
add7f79ba5e27970ad9eaaf5df2039f8 *tests/testthat/test-kantrowitz.r
58ec9aeba43eaa5e7f79881867c90b4f *tests/testthat/test-napp.r
9b88b45f4cf0cb027a017b082f7c051d *tests/testthat/test-ssa.r
60bd4efae8414c18c6edfa1b162d03d1 *vignettes/predicting-gender.Rmd

Generated by roxygen2: do not edit by hand

export(check_genderdata_package)
export(gender)
export(gender_df)
export(install_genderdata_package)
import(dplyr)
importFrom(utils,data)
importFrom(utils,menu)

gender 0.5.2

- bugfix for change in the genderize.io API (#50)

gender 0.5.1

- bugfix for some users who cannot install the `genderdata` package as binary

gender 0.5.0

- genderdata package is installed using `install.packages()` from the rOpenSci
 package repository instead of using `install_github()`.
- all functions always return data frames
- general performance improvements
- calls to Genderize.io API no longer fail if the name does not exist
- new function `gender_df()` efficiently applies `gender()` to data frames
- add North Atlantic Population Project dataset for six European countries

gender 0.4.3

- updates to README.md as requested by CRAN

gender 0.4.2

- bugfix: Kantrowitz method is now case-insensitive
- updates to title and descriptions according to CRAN policy

gender 0.4.1

- tests and vignettes run without depending on the genderdata package
- users will be prompted to install the genderdata package from GitHub the
 first time that it is necessary
- added a demo mode with a minimal dataset

gender 0.4

- data is now external to the gender package and is available in the
 genderdata package.
- genderdata package can be installed with a new function

gender 0.3

- rewrote all functions to take only character vectors, not data frames, but
 provided instructions on how to use with data frames
- wrote a vignette describing the data sources and explaining the historical
 methodology behind this package

gender 0.2

- implemented an `ipums` method that predicts gender before 1930 using U.S. Census
 data from IPUMS (contributed by Benjamin Schmidt).
- upgraded dependency on `dplyr` to 0.2.

gender 0.1

- function `gender` implements gender lookup for names and data frames
- implemented finding gender by using the Kantrowitz names corpus
- implemented finding gender by using the national Social Security
 Administration data for names and dates of birth

<!-- README.md is generated from README.Rmd. Please edit that file -->
gender

An R package for predicting gender from first names using historical
data.

Author: [Lincoln Mullen](http://lincolnmullen.com)
 License:
[MIT](http://opensource.org/licenses/MIT)

[![CRAN_Status_Badge](http://www.r-pkg.org/badges/version/gender)](https://CRAN.R-project.org/package=gender)
[![CRAN_Downloads](http://cranlogs.r-pkg.org/badges/grand-total/gender)](https://CRAN.R-
project.org/package=gender)
[![Build
Status](https://travis-ci.org/ropensci/gender.svg?branch=master)](https://travis-ci.org/ropensci/gender)
[![AppVeyor Build
Status](https://ci.appveyor.com/api/projects/status/github/ropensci/gender?branch=master&svg=true)]
(https://ci.appveyor.com/project/ropensci/gender)
[![Coverage
Status](https://img.shields.io/codecov/c/github/ropensci/gender/master.svg)](https://codecov.io/github/ropensci/gender?
branch=master)

Description

Data sets, historical or otherwise, often contain a list of first names
but seldom identify those names by gender. Most techniques for finding
gender programmatically rely on lists of male and female names. However,
the gender associated with names can vary over time. Any data set that
covers the normal span of a human life will require a historical method
to find gender from names. This [R](https://www.r-project.org/) package
uses historical datasets from the U.S. Social Security Administration,
the U.S. Census Bureau (via [IPUMS USA](https://usa.ipums.org/usa/)),
and the [North Atlantic Population
Project](https://www.nappdata.org/napp/) to provide predictions of
gender for first names for particular countries and time periods.

Installation

You can install [this package from
CRAN](https://cran.r-project.org/package=gender):


``` r
install.packages("gender")
```


The first time you use the package you will be prompted to install the
accompanying [genderdata
package](https://github.com/ropensci/genderdata). Alternatively, you can
install this package for yourself from the [rOpenSci package
repository](http://packages.ropensci.org/):


``` r
install.packages("genderdata", type = "source",







                 repos = "http://packages.ropensci.org")
```


If you prefer, you can install the development versions of both packages
from the [rOpenSci package repository](http://packages.ropensci.org/):


``` r
install.packages(c("gender", "genderdata"),
                 repos = "http://packages.ropensci.org",
                 type = "source")
```


Using the package

The `gender()` function takes a character vector of names and a year or
range of years and uses various datasets to predict the gender of names.
Here we predict the gender of the names Madison and Hillary in 1930 and
again in the 2000s using Social Security data.


``` r
library(gender)
gender(c("Madison", "Hillary"), years = 1930, method = "ssa")
#> # A tibble: 2 x 6
#>   name    proportion_male proportion_female gender year_min year_max
#>   <chr>             <dbl>             <dbl> <chr>     <dbl>    <dbl>
#> 1 Hillary              1.                0. male      1930.    1930.
#> 2 Madison              1.                0. male      1930.    1930.
gender(c("Madison", "Hillary"), years = c(2000, 2010), method = "ssa")
#> # A tibble: 2 x 6
#>   name    proportion_male proportion_female gender year_min year_max
#>   <chr>             <dbl>             <dbl> <chr>     <dbl>    <dbl>
#> 1 Hillary         0.00550             0.994 female    2000.    2010.
#> 2 Madison         0.00460             0.995 female    2000.    2010.
```


See the package vignette for a fuller introduction and suggestions on
how to use the `gender()` function efficiently with large datasets.


``` r
vignette(topic = "predicting-gender", package = "gender")
```


To read the documentation for the datasets, install the [genderdata
package](https://github.com/ropensci/genderdata) then examine the
included datasets.


``` r
library(genderdata)
data(package = "genderdata")
```


Citation

If you use this package, I would appreciate a citation. You can see an

up to date citation information with `citation("gender")`. You can cite
either the package or the accompanying journal article.

> Lincoln Mullen (2016). gender: Predict Gender from Names Using
> Historical Data. R package version 0.5.2.
> <https://github.com/ropensci/gender>

> Cameron Blevins and Lincoln Mullen, â€œJane, John â€¦ Leslie? A Historical
> Method for Algorithmic Gender Prediction,â€ *Digital Humanities
> Quarterly* 9, no. 3 (2015):
> <http://www.digitalhumanities.org/dhq/vol/9/3/000223/000223.html>

--

[![rOpenSCi
logo](http://ropensci.org/public_images/github_footer.png)](http://ropensci.org)

% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/install-genderdata-package.R
\name{check_genderdata_package}
\alias{check_genderdata_package}
\title{Check whether to install data for gender function and install if necessary}
\usage{
check_genderdata_package()
}
\description{
If the genderdata package is not installed, install it from GitHub using
devtools. If it is not up to date, reinstall it.
}

Demo finding the gender of first names using SSA data
#
This internal function implements the \code{method = "demo"} option of
\code{\link{gender}}. See that function for documentation.
#
@param name A character string of a first name. Case insensitive.
@param years This argument can be either a single year or a range of years in
the form \code{c(1880, 1900)}. If no value is specified, then the names
will be looked up for the period 1932 to 2012. If a year or range of years
is specified, then the names will be looked up for that period. Dates may
range from 1880 to 2012. For years before 1930, the IPUMS method is
probably better.
@param certainty A boolean value, which determines whether or not to return
the proportion of male and female uses of names in addition to determining
the gender of names.
gender_demo <- function(names, years) {

 basic_names %>%
 filter(name %in% tolower(names),
 year >= years[1],
 year <= years[2]) %>%
 group_by(name) %>%
 summarise(female = sum(female),
 male = sum(male)) %>%
 mutate(proportion_male = round((male / (male + female)),
 digits = 4),
 proportion_female = round((female / (male + female)),
 digits = 4)) %>%
 mutate(gender = ifelse(proportion_female == 0.5, "either",
 ifelse(proportion_female > 0.5, "female",
 "male"))) %>%
 mutate(year_min = years[1], year_max = years[2]) %>%
 rename(join_name = name) %>%
 left_join(data_frame(name = names, join_name = tolower(names)),
 by = "join_name") %>%
 select(name, proportion_male, proportion_female, gender, year_min, year_max)

}

Find the gender of first names using Genderize.io API
#
This internal function implements the \code{method = "genderize"} option of
\code{\link{gender}}. See that function for documentation.
#
@param name A character string of a first name.
@return A list or (for multiple names) a list of lists containing the name
property and the predicted gender property, along with the proportion of
the uses of the name that is male and female.
gender_genderize <- function(names) {

 endpoint <- "https://api.genderize.io"

 apply_genderize <- function(n) {
 r <- httr::GET(endpoint, query = list(name = n))
 httr::stop_for_status(r)
 result <- httr::content(r, as = "text") %>%
 jsonlite::fromJSON(., simplifyVector = FALSE)

 # Convert genderize's return into our format
 if (is.null(result$gender)) {
 result$gender <- NA_character_
 result$proportion_male <- NA_real_
 result$proportion_female <- NA_real_
 } else if (result$gender == "female") {
 result$proportion_female = as.numeric(result$probability)
 result$proportion_male = 1 - result$proportion_female
 } else if (result$gender == "male") {
 result$proportion_male = as.numeric(result$probability)
 result$proportion_female = 1 - result$proportion_male
 }
 result$probability <- NULL
 result$count <- NULL

 as_data_frame(result)
 }

 if (length(names) == 1) {
 return(apply_genderize(names))
 } else {
 return(bind_rows(lapply(names, apply_genderize)))
 }

}

Find the gender of first names using U.S. Census data
#
This internal function implements the \code{method = "ipums"} option of
\code{\link{gender}}. See that function for documentation.
#
@param name A character string of a first name. Case insensitive.
@param years This argument can be either a single year, a range of years in
the form \code{c(1880, 1900)}. If no value is specified, then the names
will be looked up for the period 1789 to 1930. If a year or range of years
is specified, then the names will be looked up for that period. Acceptable
years range from 1789 to 1930.
gender_ipums_usa <- function(names, years) {

 genderdata::ipums_usa %>%
 filter(name %in% tolower(names),
 year >= years[1],
 year <= years[2]) %>%
 group_by(name) %>%
 summarise(female = sum(female),
 male = sum(male)) %>%
 mutate(proportion_male = round((male / (male + female)),
 digits = 4),
 proportion_female = round((female / (male + female)),
 digits = 4)) %>%
 mutate(gender = ifelse(proportion_female == 0.5, "either",
 ifelse(proportion_female > 0.5, "female",
 "male"))) %>%
 mutate(year_min = years[1], year_max = years[2]) %>%
 rename(join_name = name) %>%
 left_join(data_frame(name = names, join_name = tolower(names)),
 by = "join_name") %>%
 select(name, proportion_male, proportion_female, gender, year_min, year_max)

}

Find the gender of frst names using Kantrowitz names corpus
#
This internal function implements the \code{method = "kantrowitz"} option of
\code{\link{gender}}. See that function for documentation.
#
@param name A character string of a first name.
@return A list or (for multiple names) a list of lists containing the name
property and the predicted gender property.
gender_kantrowitz <- function(names) {

 # An internal function to predict the gender of one name
 apply_kantrowitz <- function(n) {

 results <- genderdata::kantrowitz %>% filter(name == tolower(n))

 # If the name isn't in the data set, return use that information rather than
 # silently dropping a row
 if (nrow(results) == 0) {
 results <- data.frame(name = n, gender = NA)
 }

 # Use the original capitalization of the name
 results$name <- n

 results

 }

 # Use the function directly if there is one name; use lapply if there are > 1.
 # Return the results as a list or a list of lists.
 if (length(names) == 1) {
 return(apply_kantrowitz(names))
 } else {
 return(bind_rows(lapply(names, apply_kantrowitz)))
 }

}

Find the gender of first names using NAPP data
#
This internal function implements the \code{method = "napp"} option of
\code{\link{gender}}. See that function for documentation.
#
@param names A character string of a first name. Case insensitive.
@param years This argument can be either a single year or a range of years in
the form \code{c(1758, 1910)}. If no value is specified, then the names
will be looked up for the period 1758 to 1910. If a year or range of years
is specified, then the names will be looked up for that period. Dates may
range from 1758 to 1910.
@param countries The countries to look up the names for. Multiple countries
can be specified.
gender_napp <- function(names, years, countries) {

 genderdata::napp %>%
 filter(name %in% tolower(names),
 year >= years[1],
 year <= years[2],
 country %in% countries) %>%
 group_by(name) %>%
 summarise(female = sum(female),
 male = sum(male)) %>%
 mutate(proportion_male = round((male / (male + female)),
 digits = 4),
 proportion_female = round((female / (male + female)),
 digits = 4)) %>%
 mutate(gender = ifelse(proportion_female == 0.5, "either",
 ifelse(proportion_female > 0.5, "female",
 "male"))) %>%
 mutate(year_min = years[1], year_max = years[2]) %>%
 rename(join_name = name) %>%
 left_join(data_frame(name = names, join_name = tolower(names)),
 by = "join_name") %>%
 select(name, proportion_male, proportion_female, gender, year_min, year_max)

}

% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/gender-package.r
\docType{package}
\name{gender-package}
\alias{gender-package}
\title{Gender: predict gender by name from historical data}
\description{
Gender: predict gender from names using historical data
}
\details{
Encodes gender based on names and dates of birth, using U.S. Census or Social
Security data sets. Requires separate downlaod of datasets, which should be
done automatically and can be done manually by running
\code{install_genderdata_package()}.
}
\author{
\email{lincoln@lincolnmullen.com}
}

#' Gender: predict gender from names using historical data
#'
#' Encodes gender based on names and dates of birth, using U.S. Census or Social
#' Security data sets. Requires separate downlaod of datasets, which should be
#' done automatically and can be done manually by running
#' \code{install_genderdata_package()}.
#'
#' @docType package
#' @name gender-package
#' @title Gender: predict gender by name from historical data
#' @author \email{lincoln@@lincolnmullen.com}
#' @import dplyr
#' @importFrom utils data
#' @importFrom utils menu
NULL

Find the gender of first names using Social Security data
#
This internal function implements the \code{method = "ssa"} option of
\code{\link{gender}}. See that function for documentation.
#
@param names A character string of a first name. Case insensitive.
@param years This argument can be either a single year or a range of years in
the form \code{c(1880, 1900)}. If no value is specified, then the names
will be looked up for the period 1932 to 2012. If a year or range of years
is specified, then the names will be looked up for that period. Dates may
range from 1880 to 2012. For years before 1930, the IPUMS method is
probably better.
@param correct_skew A boolean value which determines whether or not to
correct the skewed gender ratios of the SSA data. Default is to do the
correction, which is recommended.
gender_ssa <- function(names, years, correct_skew = TRUE) {

 # If we're going to correct the skew, calculate the correction factors;
 # otherwise just give them a value of one.
 if (correct_skew) {
 correx <- get_correction_factors(years)
 } else {
 correx <- c(1, 1); names(correx) <- c("female", "male")
 }

 genderdata::ssa_national %>%
 filter(name %in% tolower(names),
 year >= years[1],
 year <= years[2]) %>%
 group_by(name) %>%
 summarise(female = sum(female) * correx['female'],
 male = sum(male) * correx['male']) %>%
 mutate(proportion_male = round((male / (male + female)),
 digits = 4),
 proportion_female = round((female / (male + female)),
 digits = 4)) %>%
 mutate(gender = ifelse(proportion_female == 0.5, "either",
 ifelse(proportion_female > 0.5, "female",
 "male"))) %>%
 mutate(year_min = years[1], year_max = years[2]) %>%
 rename(join_name = name) %>%
 left_join(data_frame(name = names, join_name = tolower(names)),
 by = "join_name") %>%
 select(name, proportion_male, proportion_female, gender, year_min, year_max)

}

Calculate the correction factors for a year or range of years
#
The SSA data is skewed by gender, especially for years before 1935. This
internal function figures out the factor by which the gender ratio should be
multiplied in order to assume that the ratio of male to female births for
those years was 1:1.

#
@param years The range of years. This value will be passed to it by the
gender_ssa function.
#
get_correction_factors <- function(years) {
 genderdata::ssa_national %>%
 filter(year >= years[1],
 year <= years[2]) %>%
 summarise(female = sum(female),
 male = sum(male)) %>%
 transmute(ratio_female = female / (male + female),
 ratio_male = 1 - ratio_female) %>%
 transmute(female = 0.5 / ratio_female,
 male = 0.5 / ratio_male) %>%
 unlist()
}

#' Predict gender from first names using historical data
#'
#' This function predicts the gender of a first name given a year or range of
#' years in which the person was born. The prediction can use one of several
#' data sets suitable for different time periods or geographical regions. See
#' the package vignette for suggestions on using this function with multiple
#' names and for a discussion of which data set is most suitable for your
#' research question. When using certain methods, the \code{genderdata} data
#' package is required; you will be prompted to install it if it is not already
#' available.
#'
#' @param names First names as a character vector. Names are case insensitive.
#' @param years The birth year of the name whose gender is to be predicted. This
#' argument can be either a single year, a range of years in the form
#' \code{c(1880, 1900)}. If no value is specified, then for the \code{ "ssa"}
#' method it will use the period 1932 to 2012; acceptable years for the SSA
#' method range from 1880 to 2012, but for years before 1930 the IPUMS method
#' is probably more accurate. For the \code{"ipums"} method the default range
#' is the period 1789 to 1930, which is also the range of acceptable years.
#' For the \code{"napp"} method the default range is the period 1758 to 1910,
#' which is also the range of acceptable years. If a year or range of years is
#' specified, then the names will be looked up for that period.
#' @param method This value determines the data set that is used to predict the
#' gender of the name. The \code{"ssa"} method looks up names based from the
#' U.S. Social Security Administration baby name data. (This method is based
#' on an implementation by Cameron Blevins.) The \code{"ipums"} method looks
#' up names from the U.S. Census data in the Integrated Public Use Microdata
#' Series. (This method was contributed by Ben Schmidt.) The \code{"napp"}
#' method uses census microdata from Canada, Great Britain, Denmark,
#' Iceland, Norway, and Sweden from 1801 to 1910 created by the
#' \href{https://www.nappdata.org/napp/}{North Atlantic Population Project}.
#' The
#' \code{"kantrowitz"} method uses the Kantrowitz corpus of male and female
#' names. The \code{"genderize"} method uses the Genderize.io
#' <\url{http://genderize.io/}> API, which is based on "user profiles across
#' major social networks." The \code{"demo"} method is uses the top 100 names
#' in the SSA method; it is provided only for demonstration purposes when the
#' \code{genderdata} package is not installed and it is not suitable for
#' research purposes.
#' @param countries The countries for which datasets are being used. For the
#' \code{"ssa"} and \code{"ipums"} methods, the only valid option is
#' \code{"United States"} which will be assumed if no argument is specified.
#' For the \code{"napp"} method, you may specify a character vector with any
#' of the following countries: \code{"Canada"}, \code{"United Kingdom"},
#' \code{"Denmark"}, \code{"Iceland"}, \code{"Norway"}, \code{"Sweden"}. For
#' the \code{"kantrowitz"} and \code{"genderize"} methods, no country should
#' be specified.
#' @return Returns a data frame containing the results of predicting the gender.
#' The exact components of the returned list will depend on the specific
#' method used. They include the following: \item{name}{The name for which the
#' gender has been predicted.} \item{proportion_male}{The proportion of male
#' names for the given range of years.} \item{proportion_female}{The
#' proportion of female names for the given range of years.} \item{gender}{The

#' predicted gender based on the proportion of male and female names. Possible
#' values are \code{"male"} and \code{"female"} for proportions above
#' \code{0.5}, \code{"either"} for proportions that are exactly \code{0.5},
#' and \code{NA} for combinations of names and years for which a gender cannot
#' be predicted using the given method.} \item{year_min}{The lower bound
#' (inclusive) of the year range used for the prediction.} \item{year_max}{The
#' upper bound (inclusive) of the year range used for the prediction.}
#' @export
#' @examples
#' gender("madison", method = "demo", years = 1985)
#' gender("madison", method = "demo", years = c(1900, 1985))
#' # SSA method
#' \dontrun{gender("madison", method = "demo", years = c(1900, 1985))}
#' # IPUMS method
#' \dontrun{gender("madison", method = "ipums", years = 1860)}
#' # NAPP method
#' \dontrun{gender("madison", method = "napp", countries = c("Sweden", "Denmark"))}
gender <- function(names, years = c(1932, 2012),
 method = c("ssa", "ipums", "napp", "kantrowitz",
 "genderize", "demo"),
 countries = c("United States", "Canada", "United Kingdom",
 "Denmark", "Iceland", "Norway", "Sweden"))
 {

 method <- match.arg(method)

 # If we need the genderdata package, check that it is installed
 if (!method %in% c("demo", "genderize")) {
 check_genderdata_package()
 }

 # Check that the name is a character vector
 if (class(names) != "character") stop("Data must be a character vector.")

 # Check the validity of the years argument
 if (length(years) == 1) years <- c(years, years)
 if (length(years) > 2) {
 stop("Year should be a numeric vector with no more than two values.")
 }
 if (years[1] > years[2]) {
 stop("The first value for years should be smaller than the second value.")
 }
 if (missing(years)) {
 switch(method,
 ssa = years <- c(1932, 2012),
 ipums = years <- c(1789, 1930),
 napp = years <- c(1758, 1910)
)
 }

 # Hand off the arguments to functions based on method, and do error checking
 if (method == "ssa") {
 if (years[1] < 1880 || years[2] > 2012) {
 warning("The year range provided has been trimmed to fit within 1880 to 2012.")

 if (years[1] < 1880) years[1] <- 1880
 if (years[2] > 2012) years[2] <- 2012
 }
 if (!missing(countries) && countries != "United States") {
 stop("SSA data is only available for the United States of America.")
 }
 gender_ssa(names = names, years = years)
 } else if (method == "demo") {
 if (years[1] < 1880 || years[2] > 2012) {
 warning("The year range provided has been trimmed to fit within 1880 to 2012.")
 if (years[1] < 1880) years[1] <- 1880
 if (years[2] > 2012) years[2] <- 2012
 }
 if (!missing(countries) && countries != "United States") {
 stop("Demo data is only available for the United States of America.")
 }
 gender_demo(names = names, years = years)
 } else if (method == "kantrowitz") {
 if (!missing(years))
 stop("Kantrowitz method does not account for year.")
 if (!missing(countries))
 stop("Kantrowitz method does not account for country.")
 gender_kantrowitz(names = names)
 } else if (method == "ipums") {
 if (years[1] < 1789 || years[2] > 1930) {
 warning("The year range provided has been trimmed to fit within 1789 to 1930.")
 if (years[1] < 1789) years[1] <- 1789
 if (years[2] > 1930) years[2] <- 1930
 }
 if (!missing(countries) && countries != "United States") {
 stop("IPUMS data is only available for the United States of America.")
 }
 gender_ipums_usa(names = names, years = years)
 } else if (method == "napp") {
 if (years[1] < 1758 || years[2] > 1910) {
 warning("The year range provided has been trimmed to fit within 1758 to 1910.")
 if (years[1] < 1758) years[1] <- 1758
 if (years[2] > 1910) years[2] <- 1910
 }
 if (missing(countries))
 countries <- countries[countries != "United States"]
 countries <- match.arg(countries, several.ok = TRUE)
 if ("United States" %in% countries)
 stop("NAPP data is only available for European countries. See ",
 "the documentation.")
 gender_napp(names = names, years = years, countries = countries)
 } else if (method == "genderize") {
 if (!missing(years))
 stop("Genderize method does not account for year.")
 if (!missing(countries))
 stop("Genderize method does not account for country.")
 gender_genderize(names = names)
 }
}

Hide variables from R CMD check
if (getRversion() >= "2.15.1") {
 c("year", "male", "female", "proportion_female", "proportion_male",
 "ssa_national", "kantrowitz", ".", "ipums_usa", "ratio_male",
 "ratio_female", "name", "year_min", "year_max", "country", "napp") %>%
 utils::globalVariables()
}

% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/gender.R
\name{gender}
\alias{gender}
\title{Predict gender from first names using historical data}
\usage{
gender(names, years = c(1932, 2012), method = c("ssa", "ipums", "napp",
 "kantrowitz", "genderize", "demo"), countries = c("United States", "Canada",
 "United Kingdom", "Denmark", "Iceland", "Norway", "Sweden"))
}
\arguments{
\item{names}{First names as a character vector. Names are case insensitive.}

\item{years}{The birth year of the name whose gender is to be predicted. This
argument can be either a single year, a range of years in the form
\code{c(1880, 1900)}. If no value is specified, then for the \code{ "ssa"}
method it will use the period 1932 to 2012; acceptable years for the SSA
method range from 1880 to 2012, but for years before 1930 the IPUMS method
is probably more accurate. For the \code{"ipums"} method the default range
is the period 1789 to 1930, which is also the range of acceptable years.
For the \code{"napp"} method the default range is the period 1758 to 1910,
which is also the range of acceptable years. If a year or range of years is
specified, then the names will be looked up for that period.}

\item{method}{This value determines the data set that is used to predict the
gender of the name. The \code{"ssa"} method looks up names based from the
U.S. Social Security Administration baby name data. (This method is based
on an implementation by Cameron Blevins.) The \code{"ipums"} method looks
up names from the U.S. Census data in the Integrated Public Use Microdata
Series. (This method was contributed by Ben Schmidt.) The \code{"napp"}
method uses census microdata from Canada, Great Britain, Denmark,
Iceland, Norway, and Sweden from 1801 to 1910 created by the
\href{https://www.nappdata.org/napp/}{North Atlantic Population Project}.
The
\code{"kantrowitz"} method uses the Kantrowitz corpus of male and female
names. The \code{"genderize"} method uses the Genderize.io
<\url{http://genderize.io/}> API, which is based on "user profiles across
major social networks." The \code{"demo"} method is uses the top 100 names
in the SSA method; it is provided only for demonstration purposes when the
\code{genderdata} package is not installed and it is not suitable for
research purposes.}

\item{countries}{The countries for which datasets are being used. For the
\code{"ssa"} and \code{"ipums"} methods, the only valid option is
\code{"United States"} which will be assumed if no argument is specified.
For the \code{"napp"} method, you may specify a character vector with any
of the following countries: \code{"Canada"}, \code{"United Kingdom"},
\code{"Denmark"}, \code{"Iceland"}, \code{"Norway"}, \code{"Sweden"}. For
the \code{"kantrowitz"} and \code{"genderize"} methods, no country should
be specified.}
}
\value{
Returns a data frame containing the results of predicting the gender.

 The exact components of the returned list will depend on the specific
 method used. They include the following: \item{name}{The name for which the
 gender has been predicted.} \item{proportion_male}{The proportion of male
 names for the given range of years.} \item{proportion_female}{The
 proportion of female names for the given range of years.} \item{gender}{The
 predicted gender based on the proportion of male and female names. Possible
 values are \code{"male"} and \code{"female"} for proportions above
 \code{0.5}, \code{"either"} for proportions that are exactly \code{0.5},
 and \code{NA} for combinations of names and years for which a gender cannot
 be predicted using the given method.} \item{year_min}{The lower bound
 (inclusive) of the year range used for the prediction.} \item{year_max}{The
 upper bound (inclusive) of the year range used for the prediction.}
}
\description{
This function predicts the gender of a first name given a year or range of
years in which the person was born. The prediction can use one of several
data sets suitable for different time periods or geographical regions. See
the package vignette for suggestions on using this function with multiple
names and for a discussion of which data set is most suitable for your
research question. When using certain methods, the \code{genderdata} data
package is required; you will be prompted to install it if it is not already
available.
}
\examples{
gender("madison", method = "demo", years = 1985)
gender("madison", method = "demo", years = c(1900, 1985))
SSA method
\dontrun{gender("madison", method = "demo", years = c(1900, 1985))}
IPUMS method
\dontrun{gender("madison", method = "ipums", years = 1860)}
NAPP method
\dontrun{gender("madison", method = "napp", countries = c("Sweden", "Denmark"))}
}

#' Use gender prediction with data frames
#'
#' In a common use case for gender prediction, you have a data frame with a
#' column for first names and a column for birth years (or, two columns
#' specifying a minimum and a maximum potential birth year). This function wraps
#' the \code{\link{gender}} function to efficiently apply it to such a data
#' frame. The result is a data frame with one prediction of the gender for each
#' unique combination of first name and birth year. The resulting data frame can
#' then be merged back into your original data frame.
#'
#' @param data A data frame containing first names and birth year or range of
#' potential birth years.
#' @param name_col A string specifying the name of the column containing the
#' first names.
#' @param year_col Either a single string specifying the birth year associated
#' with the first name, or character vector with two elements: the names of
#' the columns with the minimum and maximum years for the range of potential
#' birth years.
#' @param method One of the historical methods provided by this package:
#' \code{"ssa"}, \code{"ipums"}, \code{"napp"}, or \code{"demo"}. See
#' \code{\link{gender}} for details.
#' @seealso \code{\link{gender}}
#' @export
#' @return A data frame with columns from the output of the \code{gender}
#' function, and one row for each unique combination of first names and birth
#' years.
#' @examples
#' library(dplyr)
#' demo_df <- data_frame(names = c("Hillary", "Hillary", "Hillary",
#' "Madison", "Madison"),
#' birth_year = c(1930, 2000, 1930, 1930, 2000),
#' min_year = birth_year - 1,
#' max_year = birth_year + 1,
#' stringsAsFactors = FALSE)
#'
#' # Using the birth year for the predictions.
#' # Notice that the duplicate value for Hillary in 1930 is removed
#' gender_df(demo_df, method = "demo",
#' name_col = "names", year_col = "birth_year")
#'
#' # Using a range of years
#' gender_df(demo_df, method = "demo",
#' name_col = "names", year_col = c("min_year", "max_year"))
gender_df <- function(data, name_col = "name", year_col = "year",
 method = c("ssa", "ipums", "napp", "demo")) {

 method <- match.arg(method)
 stopifnot("data.frame" %in% class(data),
 name_col %in% names(data),
 length(year_col) >= 1,
 length(year_col) <= 2,
 year_col %in% names(data))
 if (length(year_col) == 1) year_col <- c(year_col, year_col)

 name_year_grouping <- list(name_col, year_col[1], year_col[2])
 year_grouping <- list(year_col[1], year_col[2])

 data %>%
 distinct_(.dots = name_year_grouping) %>%
 group_by_(.dots = year_grouping) %>%
 do(results = gender(.[[name_col]],
 years = c(.[[year_col[1]]][1], .[[year_col[2]]][1]),
 method = method)) %>%
 do(bind_rows(.$results)) %>%
 ungroup()
}

% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/gender_df.R
\name{gender_df}
\alias{gender_df}
\title{Use gender prediction with data frames}
\usage{
gender_df(data, name_col = "name", year_col = "year", method = c("ssa",
 "ipums", "napp", "demo"))
}
\arguments{
\item{data}{A data frame containing first names and birth year or range of
potential birth years.}

\item{name_col}{A string specifying the name of the column containing the
first names.}

\item{year_col}{Either a single string specifying the birth year associated
with the first name, or character vector with two elements: the names of
the columns with the minimum and maximum years for the range of potential
birth years.}

\item{method}{One of the historical methods provided by this package:
\code{"ssa"}, \code{"ipums"}, \code{"napp"}, or \code{"demo"}. See
\code{\link{gender}} for details.}
}
\value{
A data frame with columns from the output of the \code{gender}
 function, and one row for each unique combination of first names and birth
 years.
}
\description{
In a common use case for gender prediction, you have a data frame with a
column for first names and a column for birth years (or, two columns
specifying a minimum and a maximum potential birth year). This function wraps
the \code{\link{gender}} function to efficiently apply it to such a data
frame. The result is a data frame with one prediction of the gender for each
unique combination of first name and birth year. The resulting data frame can
then be merged back into your original data frame.
}
\examples{
library(dplyr)
demo_df <- data_frame(names = c("Hillary", "Hillary", "Hillary",
 "Madison", "Madison"),
 birth_year = c(1930, 2000, 1930, 1930, 2000),
 min_year = birth_year - 1,
 max_year = birth_year + 1,
 stringsAsFactors = FALSE)

Using the birth year for the predictions.
Notice that the duplicate value for Hillary in 1930 is removed
gender_df(demo_df, method = "demo",
 name_col = "names", year_col = "birth_year")

Using a range of years
gender_df(demo_df, method = "demo",
 name_col = "names", year_col = c("min_year", "max_year"))
}
\seealso{
\code{\link{gender}}
}

#' Check whether to install data for gender function and install if necessary
#'
#' If the genderdata package is not installed, install it from GitHub using
#' devtools. If it is not up to date, reinstall it.
#' @export
check_genderdata_package <- function() {
 genderdata_version <- "0.5.0"
 if (!requireNamespace("genderdata", quietly = TRUE)) {
 message("The genderdata package needs to be installed.")
 install_genderdata_package()
 } else if (utils::packageVersion("genderdata") < genderdata_version) {
 message("The genderdata package needs to be updated.")
 install_genderdata_package()
 }
}

#' Install the genderdata package after checking with the user
#' @export
install_genderdata_package <- function() {
 instructions <- paste(" Please try installing the package for yourself",
 "using the following command: \n",
 " install.packages(\"genderdata\", repos = \"http://packages.ropensci.org\",",
 "type = \"source\")")

 error_func <- function(e) {
 stop(paste("Failed to install the genderdata package.\n", instructions))
 }

 if (interactive()) {
 input <- utils::menu(c("Yes", "No"),
 title = "Install the genderdata package?")
 if (input == 1) {
 message("Installing the genderdata package.")
 tryCatch(utils::install.packages("genderdata",
 repos = "http://packages.ropensci.org",
 type = "source"),
 error = error_func, warning = error_func)
 } else {
 stop(paste("The genderdata package is necessary for that method.\n",
 instructions))
 }
 } else {
 stop(paste("Failed to install the genderdata package.\n", instructions))
 }
}

% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/install-genderdata-package.R
\name{install_genderdata_package}
\alias{install_genderdata_package}
\title{Install the genderdata package after checking with the user}
\usage{
install_genderdata_package()
}
\description{
Install the genderdata package after checking with the user
}

---- echo = FALSE, warning = FALSE, error = FALSE, message = FALSE, fig.width=6, fig.height=4----
library(gender)
library(dplyr)
library(ggplot2)

gender:::basic_names %>%
 filter(name %in% c("madison", "hillary", "monroe", "jordan")) %>%
 mutate(proportion_female = female / (female + male)) %>%
ggplot(aes(x = year, y = proportion_female, color = name)) +
 geom_line() +
 ggtitle("The changing gender of several names") +
 xlab("Birth year for U.S. babies") +
 ylab("Proportion born female")

--
library(gender)
gender(c("Madison", "Hillary"), years = 1940, method = "demo")
gender(c("Madison", "Hillary"), years = 2000, method = "demo")

----eval=FALSE--
gender("Madison", years = c(1960, 1969), method = "ssa")

----eval=FALSE--
gender("Madison", years = c(1860, 1869), method = "ipums")

----eval=FALSE--
gender("Hilde", years = c(1860, 1869), method = "napp")

----eval=FALSE--
gender("Hilde", years = c(1879), method = "napp", countries = "Sweden")

--
library(dplyr)

demo_names <- c("Susan", "Susan", "Madison", "Madison",
 "Hillary", "Hillary", "Hillary")
demo_years <- c(rep(c(1930, 2000), 3), 1930)
demo_df <- data_frame(first_names = demo_names,
 last_names = LETTERS[1:7],
 years = demo_years,
 min_years = demo_years - 3,
 max_years = demo_years + 3)

demo_df

--
results <- gender_df(demo_df, name_col = "first_names", year_col = "years",
 method = "demo")
results

--
demo_df %>%
 left_join(results, by = c("first_names" = "name", "years" = "year_min"))

--
gender_df(demo_df, name_col = "first_names",
 year_col = c("min_years", "max_years"), method = "demo")

--
demo_df %>%
 distinct(first_names, years) %>%
 rowwise() %>%
 do(results = gender(.$first_names, years = .$years, method = "demo")) %>%
 do(bind_rows(.$results))

--
demo_df %>%
 distinct(first_names, years) %>%
 group_by(years) %>%
 do(results = gender(.$first_names, years = .$years[1], method = "demo")) %>%
 do(bind_rows(.$results))

title: "Predicting Gender Using Historical Data"
author: "Lincoln Mullen"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
 %\VignetteIndexEntry{Predicting Gender Using Historical Data}
 %\VignetteEngine{knitr::rmarkdown}
 %\VignetteEncoding{UTF-8}

A common problem for researchers who work with data, especially historians, is that a dataset has a list of people with
names but does not identify the gender of the person. Since first names often indicate gender, it should be possible to
predict gender using names. However, the gender associated with names can change over time. To illustrate, take the
names Madison, Hillary, Jordan, and Monroe. For babies born in the United States, those predominant gender associated
with those names has changed over time.


```{r, echo = FALSE, warning = FALSE, error = FALSE, message = FALSE, fig.width=6, fig.height=4}
library(gender)
library(dplyr)
library(ggplot2)


gender:::basic_names %>%
  filter(name %in% c("madison", "hillary", "monroe", "jordan")) %>%
  mutate(proportion_female = female / (female + male)) %>%
ggplot(aes(x = year, y = proportion_female, color = name)) +
  geom_line() +
  ggtitle("The changing gender of several names") +
  xlab("Birth year for U.S. babies") + 
  ylab("Proportion born female")
```


Predicting gender from names requires a fundamentally historical method. The `gender` package provides a way to
calculate the proportion of male and female names given a year or range of birth years and a country or set of countries.
The predictions are based on calculations from historical datasets.

This vignette offers a brief guide to the `gender` package. For a fuller historical explanation and a sample case study
using the package, please see our journal article: Cameron Blevins and Lincoln Mullen, "Jane, John ... Leslie? A
Historical Method for Algorithmic Gender Prediction," _Digital Humanities Quarterly_ (forthcoming 2015).

Basic usage

The main function in this package is `gender()`. That function lets you choose a dataset and pass in a set of names and a
birth year or range of birth years. The result is always a data frame that includes a prediction of the gender of the name
and the relative proportions between male and female. For example:


```{r}
library(gender)
gender(c("Madison", "Hillary"), years = 1940, method = "demo")
gender(c("Madison", "Hillary"), years = 2000, method = "demo")
```


The `gender` package itself contains only demonstration data. Datasets which permit you to make predictions for

various times and places are available in the [genderdata package](https://github.com/ropensci/genderdata). This
package is not available on CRAN because of its size. The first time that you need to use the dataset you will be
prompted to install it, or you can install it yourself from the [rOpenSci repository](http://packages.ropensci.org/):


```
install.packages("genderdata", repos = "http://packages.ropensci.org")
```


You specify which dataset you wish to use with the `method =` parameter. Below are some sample

United States in the 1960s:


```{r eval=FALSE}
gender("Madison", years = c(1960, 1969), method = "ssa")
```


United States in the 1860s:


```{r eval=FALSE}
gender("Madison", years = c(1860, 1869), method = "ipums")
```


North Atlantic countries in the 1860s:


```{r eval=FALSE}
gender("Hilde", years = c(1860, 1869), method = "napp")
```


Just Sweden in the 1879:


```{r eval=FALSE}
gender("Hilde", years = c(1879), method = "napp", countries = "Sweden")
```


Which dataset should you use?

Each method is associated with a dataset suitable for a particular time and place.

- `method = "ipums"`: United States from 1789 to 1930. Drawn from Census data.
- `method = "ssa"`: United States from 1930 to 2012. Drawn from Social Security Administration data.
- `method = "napp"`: Any combination of Canada, the United Kingdom, Germany, Iceland, Norway, and Sweden from
the years 1758 to 1910, though the nineteenth-century data is likely more reliable than the eighteenth-century data.

Description of the datasets

U.S. Census data is provided by [IPUMS USA](https://usa.ipums.org/usa/) from the Minnesota Population Center,
University of Minnesota. The IPUMS data includes 1% and 5% samples from the Census returns. The Census, taken
decennially, includes respondent's birth dates and gender. With the gender package, it is possible to use this dataset for
years between 1789 and 1930. The dataset includes approximately 339,967 unique names.

U.S. Social Security Administration data was collected from applicants to Social Security. The Social Security Board
was created in the New Deal in 1935. Early applicants, however, were people who were nearing retirement age not
people who were being born, so the dataset extends further into the past. However, the Social Security Administration
did not immediately require all persons born in the United States to register for a Social Security Number. (See Shane

Landrum, "The State's Big Family Bible: Birth Certificates, Personal Identity, and Citizenship in the United States,
1840--1950" [PhD dissertation, Brandeis University, 2014].) A [consequence]
(https://github.com/ropensci/gender/issues/9) of this---for reasons that are not entirely clear---is that for years before
1918, the SSA dataset is heavily female; after about 1940 it skews slightly male. For this reason this package corrects
the prediction to assume a secondary sex ratio that is evenly distributed between males and females. Also, the SSA
dataset only includes names that were used more than five times in a given year, so the "long tail" of names is excluded.
Even so, the dataset includes 91,320 unique names. The SSA dataset extends from 1880 to 2012, but for years before
1930 you should use the IPUMS method.

The [North Atlantic Population Project](https://www.nappdata.org/napp/) provides data for Canada, the United
Kingdom, Germany, Iceland, Norway, and Sweden for years between 1758 and 1910, based on census microdata from
those countries.

Working with data frames of names

Most often you have a dataset and you want to predict gender for multiple names. Consider this sample dataset.


```{r}
library(dplyr)


demo_names <- c("Susan", "Susan", "Madison", "Madison",
                "Hillary", "Hillary", "Hillary")
demo_years <- c(rep(c(1930, 2000), 3), 1930)
demo_df <- data_frame(first_names = demo_names,
                      last_names = LETTERS[1:7],
                      years = demo_years,
                      min_years = demo_years - 3,
                      max_years = demo_years + 3)


demo_df
```


Here we have a dataset with first names connected to years. It is important to emphasize that these years should be the
years of birth. If you have years representing something else, you will have to estimate the years of birth. For this demo
dataset, we have included a single birth year for each person. But since historians may only have a guess at the birth
year of people, we have also included columns for the minimum and maximum years in an possible age range.

We can pass this data frame to the `gender_df()` function, specifying the method that we wish to use and the names of
the columns that contain the names and the birth years. The result is a data frame of predictions.


```{r}
results <- gender_df(demo_df, name_col = "first_names", year_col = "years",
                     method = "demo")
results
```


Notice that in our original data frame there were two Hillarys (`Hillary E` and `Hillary G`) born in 1930, but our
resulting data frame only contains one. That is because the `gender_df()` function is efficient, calculating genders only
for unique combinations of first names and years. In a dataset of any appreciable size, this saves quite a bit of
computation time. The resulting data frame can be merged back into the original dataset.


```{r}
demo_df %>% 
  left_join(results, by = c("first_names" = "name", "years" = "year_min"))







```


We can also use `gender_df()` to predict gender a range of years by passing it the names of columns with minimum and
maximum years of the range to be used for each person. As in the previous example, only unique combinations of first
names and ranges of years will be calculated.


```{r}
gender_df(demo_df, name_col = "first_names",
          year_col = c("min_years", "max_years"), method = "demo")
```


Working with dplyr

The `gender_df()` function is simply a wrapper around a [dplyr](https://cran.r-project.org/package=dplyr) data
manipulation chain. Should you wish, you can use dplyr's `do()` function to run the `gender()` function on each name
and birth year (i.e., each row). This will result in a dataframe containing a column of dataframes. Another call to `do()`
and `bind_rows()` will create a the single data frame that we expect.


```{r}
demo_df %>% 
  distinct(first_names, years) %>% 
  rowwise() %>% 
  do(results = gender(.$first_names, years = .$years, method = "demo")) %>% 
  do(bind_rows(.$results))
```


That method of using dplyr is the most intuitive, since it calls `gender()` once for each row. (In the example above, there
are six calls to the function.) However, because of the way that the `gender()` function works, it can handle multiple
names provided that they all use the same range of years. In other words, we will do better to group the data frame by
the year. In the code below, we call `gender()` once for each year (i.e. two times) which results in a considerable time
savings.


```{r}
demo_df %>% 
  distinct(first_names, years) %>% 
  group_by(years) %>% 
  do(results = gender(.$first_names, years = .$years[1], method = "demo")) %>% 
  do(bind_rows(.$results))
```


These results can then be joined back into your original dataset.

Predicting Gender Using Historical Data
Lincoln Mullen

2018-03-07

A common problem for researchers who work with data, especially historians, is that a dataset has a list of
people with names but does not identify the gender of the person. Since first names often indicate gender, it
should be possible to predict gender using names. However, the gender associated with names can change over
time. To illustrate, take the names Madison, Hillary, Jordan, and Monroe. For babies born in the United States,
those predominant gender associated with those names has changed over time.

Predicting gender from names requires a fundamentally historical method. The gender package provides a way to
calculate the proportion of male and female names given a year or range of birth years and a country or set of
countries. The predictions are based on calculations from historical datasets.

This vignette offers a brief guide to the gender package. For a fuller historical explanation and a sample case
study using the package, please see our journal article: Cameron Blevins and Lincoln Mullen, “Jane, John …
Leslie? A Historical Method for Algorithmic Gender Prediction,” Digital Humanities Quarterly (forthcoming 2015).

Basic usage

The main function in this package is gender(). That function lets you choose a dataset and pass in a set of
names and a birth year or range of birth years. The result is always a data frame that includes a prediction of the
gender of the name and the relative proportions between male and female. For example:

library(gender)
gender(c("Madison", "Hillary"), years = 1940, method = "demo")

A tibble: 2 x 6
name proportion_male proportion_female gender year_min year_max
<chr> <dbl> <dbl> <chr> <dbl> <dbl>
1 Hillary 1. 0. male 1940. 1940.
2 Madison 1. 0. male 1940. 1940.

A tibble: 2 x 6
name proportion_male proportion_female gender year_min year_max
<chr> <dbl> <dbl> <chr> <dbl> <dbl>
1 Hillary 0. 1.00 female 2000. 2000.
2 Madison 0.00690 0.993 female 2000. 2000.

The gender package itself contains only demonstration data. Datasets which permit you to make predictions for
various times and places are available in the genderdata package. This package is not available on CRAN
because of its size. The first time that you need to use the dataset you will be prompted to install it, or you can
install it yourself from the rOpenSci repository:

install.packages("genderdata", repos = "http://packages.ropensci.org")

You specify which dataset you wish to use with the method = parameter. Below are some sample

United States in the 1960s:

United States in the 1860s:

North Atlantic countries in the 1860s:

Just Sweden in the 1879:

Which dataset should you use?

Each method is associated with a dataset suitable for a particular time and place.

method = "ipums": United States from 1789 to 1930. Drawn from Census data.
method = "ssa": United States from 1930 to 2012. Drawn from Social Security Administration data.
method = "napp": Any combination of Canada, the United Kingdom, Germany, Iceland, Norway, and
Sweden from the years 1758 to 1910, though the nineteenth-century data is likely more reliable than the
eighteenth-century data.

gender(c("Madison", "Hillary"), years = 2000, method = "demo")

gender("Madison", years = c(1960, 1969), method = "ssa")

gender("Madison", years = c(1860, 1869), method = "ipums")

gender("Hilde", years = c(1860, 1869), method = "napp")

gender("Hilde", years = c(1879), method = "napp", countries = "Sweden")

https://github.com/ropensci/genderdata

http://packages.ropensci.org/

Description of the datasets

U.S. Census data is provided by IPUMS USA from the Minnesota Population Center, University of Minnesota.
The IPUMS data includes 1% and 5% samples from the Census returns. The Census, taken decennially,
includes respondent’s birth dates and gender. With the gender package, it is possible to use this dataset for
years between 1789 and 1930. The dataset includes approximately 339,967 unique names.

U.S. Social Security Administration data was collected from applicants to Social Security. The Social Security
Board was created in the New Deal in 1935. Early applicants, however, were people who were nearing
retirement age not people who were being born, so the dataset extends further into the past. However, the Social
Security Administration did not immediately require all persons born in the United States to register for a Social
Security Number. (See Shane Landrum, “The State’s Big Family Bible: Birth Certificates, Personal Identity, and
Citizenship in the United States, 1840–1950” [PhD dissertation, Brandeis University, 2014].) A consequence of
this—for reasons that are not entirely clear—is that for years before 1918, the SSA dataset is heavily female;
after about 1940 it skews slightly male. For this reason this package corrects the prediction to assume a
secondary sex ratio that is evenly distributed between males and females. Also, the SSA dataset only includes
names that were used more than five times in a given year, so the “long tail” of names is excluded. Even so, the
dataset includes 91,320 unique names. The SSA dataset extends from 1880 to 2012, but for years before 1930
you should use the IPUMS method.

The North Atlantic Population Project provides data for Canada, the United Kingdom, Germany, Iceland, Norway,
and Sweden for years between 1758 and 1910, based on census microdata from those countries.

Working with data frames of names

Most often you have a dataset and you want to predict gender for multiple names. Consider this sample dataset.

A tibble: 7 x 5
first_names last_names years min_years max_years
<chr> <chr> <dbl> <dbl> <dbl>
1 Susan A 1930. 1927. 1933.
2 Susan B 2000. 1997. 2003.
3 Madison C 1930. 1927. 1933.
4 Madison D 2000. 1997. 2003.
5 Hillary E 1930. 1927. 1933.
6 Hillary F 2000. 1997. 2003.
7 Hillary G 1930. 1927. 1933.

library(dplyr)

demo_names <- c("Susan", "Susan", "Madison", "Madison",
 "Hillary", "Hillary", "Hillary")
demo_years <- c(rep(c(1930, 2000), 3), 1930)
demo_df <- data_frame(first_names = demo_names,
 last_names = LETTERS[1:7],
 years = demo_years,
 min_years = demo_years - 3,
 max_years = demo_years + 3)

demo_df

https://usa.ipums.org/usa/

https://github.com/ropensci/gender/issues/9

https://www.nappdata.org/napp/

Here we have a dataset with first names connected to years. It is important to emphasize that these years should
be the years of birth. If you have years representing something else, you will have to estimate the years of birth.
For this demo dataset, we have included a single birth year for each person. But since historians may only have
a guess at the birth year of people, we have also included columns for the minimum and maximum years in an
possible age range.

We can pass this data frame to the gender_df() function, specifying the method that we wish to use and the
names of the columns that contain the names and the birth years. The result is a data frame of predictions.

A tibble: 6 x 6
name proportion_male proportion_female gender year_min year_max
* <chr> <dbl> <dbl> <chr> <dbl> <dbl>
1 Hillary 1.00 0. male 1930. 1930.
2 Madison 1.00 0. male 1930. 1930.
3 Susan 0. 1.00 female 1930. 1930.
4 Hillary 0. 1.00 female 2000. 2000.
5 Madison 0.00690 0.993 female 2000. 2000.
6 Susan 0. 1.00 female 2000. 2000.

Notice that in our original data frame there were two Hillarys (Hillary E and Hillary G) born in 1930, but our
resulting data frame only contains one. That is because the gender_df() function is efficient, calculating genders
only for unique combinations of first names and years. In a dataset of any appreciable size, this saves quite a bit
of computation time. The resulting data frame can be merged back into the original dataset.

A tibble: 7 x 9
first_names last_names years min_years max_years proportion_male
<chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 Susan A 1930. 1927. 1933. 0.
2 Susan B 2000. 1997. 2003. 0.
3 Madison C 1930. 1927. 1933. 1.00
4 Madison D 2000. 1997. 2003. 0.00690
5 Hillary E 1930. 1927. 1933. 1.00
6 Hillary F 2000. 1997. 2003. 0.
7 Hillary G 1930. 1927. 1933. 1.00
... with 3 more variables: proportion_female <dbl>, gender <chr>,
year_max <dbl>

We can also use gender_df() to predict gender a range of years by passing it the names of columns with
minimum and maximum years of the range to be used for each person. As in the previous example, only unique
combinations of first names and ranges of years will be calculated.

results <- gender_df(demo_df, name_col = "first_names", year_col = "years",
 method = "demo")
results

demo_df %>%
 left_join(results, by = c("first_names" = "name", "years" = "year_min"))

gender_df(demo_df, name_col = "first_names",
 year_col = c("min_years", "max_years"), method = "demo")

A tibble: 6 x 6
name proportion_male proportion_female gender year_min year_max
* <chr> <dbl> <dbl> <chr> <dbl> <dbl>
1 Hillary 1.00 0. male 1927. 1933.
2 Madison 1.00 0. male 1927. 1933.
3 Susan 0.00280 0.997 female 1927. 1933.
4 Hillary 0.00920 0.991 female 1997. 2003.
5 Madison 0.00810 0.992 female 1997. 2003.
6 Susan 0. 1.00 female 1997. 2003.

Working with dplyr

The gender_df() function is simply a wrapper around a dplyr data manipulation chain. Should you wish, you can
use dplyr’s do() function to run the gender() function on each name and birth year (i.e., each row). This will result
in a dataframe containing a column of dataframes. Another call to do() and bind_rows() will create a the single
data frame that we expect.

Source: local data frame [6 x 6]
Groups: <by row>

A tibble: 6 x 6
name proportion_male proportion_female gender year_min year_max
* <chr> <dbl> <dbl> <chr> <dbl> <dbl>
1 Susan 0. 1.00 female 1930. 1930.
2 Susan 0. 1.00 female 2000. 2000.
3 Madison 1.00 0. male 1930. 1930.
4 Madison 0.00690 0.993 female 2000. 2000.
5 Hillary 1.00 0. male 1930. 1930.
6 Hillary 0. 1.00 female 2000. 2000.

That method of using dplyr is the most intuitive, since it calls gender() once for each row. (In the example above,
there are six calls to the function.) However, because of the way that the gender() function works, it can handle
multiple names provided that they all use the same range of years. In other words, we will do better to group the
data frame by the year. In the code below, we call gender() once for each year (i.e. two times) which results in a
considerable time savings.

Source: local data frame [6 x 6]

demo_df %>%
 distinct(first_names, years) %>%
 rowwise() %>%
 do(results = gender(.$first_names, years = .$years, method = "demo")) %>%
 do(bind_rows(.$results))

demo_df %>%
 distinct(first_names, years) %>%
 group_by(years) %>%
 do(results = gender(.$first_names, years = .$years[1], method = "demo")) %>%
 do(bind_rows(.$results))

https://cran.r-project.org/package=dplyr

Groups: <by row>

A tibble: 6 x 6
name proportion_male proportion_female gender year_min year_max
* <chr> <dbl> <dbl> <chr> <dbl> <dbl>
1 Hillary 1.00 0. male 1930. 1930.
2 Madison 1.00 0. male 1930. 1930.
3 Susan 0. 1.00 female 1930. 1930.
4 Hillary 0. 1.00 female 2000. 2000.
5 Madison 0.00690 0.993 female 2000. 2000.
6 Susan 0. 1.00 female 2000. 2000.

These results can then be joined back into your original dataset.

library(testthat)
if (requireNamespace("genderdata", quietly = TRUE)) {
 test_check("gender", filter = "demo")
} else {
 test_check("gender", filter = "demo")
}

suppressMessages(require(dplyr))

sample_names_data <- c("jane", "jane", "madison", "madison")
sample_years_ssa <- c(rep(c(1930, 2010), 2))
sample_years_ipums <- c(rep(c(1830, 1880), 2))

sample_names_df <- data_frame(names = sample_names_data,
 years = sample_years_ssa)

sample_names_df_big <- bind_rows(sample_names_df, sample_names_df)

source("sample-data.r")
context("Argument validation")

test_that("error if Kantrowitz method includes years", {
 expect_that(gender(name = "julie", years = c(1880,1900), method =
 "kantrowitz"),
 throws_error("Kantrowitz method does not account for year."))
})

test_that("error if data is not a character vector", {
 expect_that(gender(name = 1900),
 throws_error("Data must be a character vector."))
})

test_that("error if years are not either range or single year", {
 expect_that(gender(sample_names_data, years = c(1900, 1950, 2000)),
 throws_error("Year should be a numeric vector with"))
 expect_that(gender(sample_names_data, years = c(1950, 1900)),
 throws_error("The first value for years should be smaller"))
})

test_that("error if method is not recognized", {
 expect_that(gender(sample_names_data, method = "my_nonworking_method"),
 throws_error("'arg' should be one of"))
})

test_that("function works with a single year", {
 expect_that(gender("madison", method = "ssa", years = 2000)$gender,
 equals("female"))
})

test_that("countries are mapped with their respective methods", {
 expect_error(gender("Madison", method = "ssa", countries = "Sweden"),
 "SSA data is only available")
 expect_error(gender("Madison", method = "ipums", countries = "Denmark"),
 "IPUMS data is only available")
 expect_error(gender("Madison", method = "kantrowitz", countries = "Denmark"),
 "Kantrowitz method does not account for country")
 expect_error(gender("Madison", method = "genderize", countries = "USA"),
 "Genderize method does not account for country")
 expect_error(gender("Madison", method = "napp", countries = "United States"),
 "NAPP data is only available for European countries.")
 expect_error(gender("Madison", method = "napp", countries = "New South Wales"))
})

test_that("year ranges out of scope of data are trimmed", {
 expect_warning(gender("Jason", method = "ssa", years = c(1860, 1950)),
 "The year range provided has been trimmed")
 expect_warning(gender("Jason", method = "ipums", years = c(1700, 1950)),
 "The year range provided has been trimmed")
 expect_warning(gender("Jason", method = "napp", years = c(1754, 1765)),
 "The year range provided has been trimmed")
})

source("sample-data.r")
context("Demo method")

Test a single name
single <- gender("Madison", method = "demo", years = c(2000, 2001))

Test multiple names with different years
multiple_diff <- Map(gender, sample_names_data, sample_years_ssa,
 method = "demo") %>%
 do.call(rbind.data.frame, .)

test_that("a single name can be encoded", {
 # Madison was female in the SSA period
 expect_that(single$gender, equals("female"))
})

test_that("a single name returns a list with the name, gender, and proportions", {
 expect_is(single, "data.frame")
 expect_that(length(single), equals(6))
 expect_that(names(single), equals(c("name", "proportion_male",
 "proportion_female", "gender",
 "year_min", "year_max")))
})

test_that("the returned list has items with the correct types", {
 expect_is(single$name, "character")
 expect_is(single$proportion_female, "numeric")
 expect_is(single$proportion_male, "numeric")
 expect_is(single$gender, "character")
 expect_is(single$year_min, "numeric")
 expect_is(single$year_max, "numeric")
})

source("sample-data.r")
context("Gender DF")

results <- gender_df(sample_names_df,
 name_col = "names", year_col = "years",
 method = "ssa")

test_that("makes correct predictions", {
 results2 <- results %>% filter(name == "madison")
 expect_equal(results2$gender, c("male", "female"))
})

test_that("works with different arguments and methods", {
 names(sample_names_df) <- c("firstname", "years")
 sample_names_df$years <- sample_names_df$years - 100
 sample_names_df$min <- sample_names_df$years - 3
 sample_names_df$max <- sample_names_df$years + 3

 results <- gender_df(sample_names_df,
 name_col = "firstname",
 year_col = c("min", "max"),
 method = "ipums")

 expect_is(results, "data.frame")
})

test_that("only operates on distinct combinations of names/years", {
 big <- gender_df(sample_names_df_big,
 name_col = "names", year_col = "years")
 expect_identical(results, big)
})

context("Genderize method")

single <- gender("leslie", method = "genderize")

failed <- gender("does not exist", method = "genderize")

test_that("a single name returns a data frame with the name, gender, and proportions", {
 expect_is(single, "data.frame")
 expect_that(names(single), equals(c("name", "gender", "proportion_female",
 "proportion_male")))
})

test_that("leslie is a female name according to genderize", {
 expect_that(single$gender, equals("female"))
})

test_that("genderize returns values of correct type", {
 expect_that(class(single$name), equals("character"))
 expect_that(class(single$gender), equals("character"))
 expect_that(class(single$proportion_female), equals("numeric"))
 expect_that(class(single$proportion_male), equals("numeric"))
})

test_that("genderize does not have an error with names that don't exist", {
 expect_is(failed, "data.frame")
 expect_equal(nrow(failed), 1)
 expect_equivalent(failed, data_frame(name = "does not exist",
 gender = NA_character_,
 proportion_male = NA_real_,
 proportion_female = NA_real_))
})

source("sample-data.r")
context("IPUMS method")

Test a single name
single <- gender("Madison", method = "ipums", years = c(1880, 1881))

Test a missing name
missing <- gender("zzzzz", method = "ipums", years = 1880)

test_that("a single name can be encoded", {
 # Madison was male in the IPUMS period
 expect_that(single$gender, equals("male"))
})

test_that("a single name returns a list with the name, gender, and proportions", {
 expect_is(single, "data.frame")
 expect_that(length(single), equals(6))
 expect_that(names(single), equals(c("name", "proportion_male",
 "proportion_female", "gender",
 "year_min", "year_max")))
})

test_that("the returned list has items with the correct types", {
 expect_is(single$name, "character")
 expect_is(single$proportion_female, "numeric")
 expect_is(single$proportion_male, "numeric")
 expect_is(single$gender, "character")
 expect_is(single$year_min, "numeric")
 expect_is(single$year_max, "numeric")
})

test_that("a name not in the data set returns an empty data frame", {
 expect_equal(nrow(missing), 0)
})

test_that("capitalization of name matches what was passed to it", {
 expect_equal(gender("Marie", method = "ipums")$name, "Marie")
})

source("sample-data.r")
context("Kantrowitz")

Test a single name
single <- gender("madison", method = "kantrowitz")

Test multiple names with same years
multiple_same <- gender(sample_names_data, method = "kantrowitz")

test_that("a single name can be encoded", {
 expect_that(single$gender, equals("male"))
})

test_that("a single name returns a list with the name and gender", {
 expect_is(single, "data.frame")
 expect_that(length(single), equals(2))
 expect_that(names(single), equals(c("name", "gender")))
})

test_that("multiple names returns a data.frame", {
 expect_is(multiple_same, "data.frame")
 expect_equal(nrow(multiple_same), length(sample_names_data))
 expect_equal(names(multiple_same), c("name", "gender"))
})

test_that("capitalization of name matches what was passed to it", {
 expect_equal(gender("Marie", method = "kantrowitz")$name, "Marie")
})

source("sample-data.r")
context("NAPP method")

Test a single name
single <- gender("Leslie", method = "napp", years = c(1870, 1871))

Test a missing name
missing <- gender("zzzzz", method = "napp", years = 1890)

test_that("a single name can be encoded", {
 # Madison was male in the NAPP period
 expect_that(single$gender, equals("male"))
})

test_that("a single name returns the name, gender, and proportions", {
 expect_is(single, "data.frame")
 expect_that(length(single), equals(6))
 expect_that(names(single), equals(c("name", "proportion_male",
 "proportion_female", "gender",
 "year_min", "year_max")))
})

test_that("the returned value has items with the correct types", {
 expect_is(single$name, "character")
 expect_is(single$proportion_female, "numeric")
 expect_is(single$proportion_male, "numeric")
 expect_is(single$gender, "character")
 expect_is(single$year_min, "numeric")
 expect_is(single$year_max, "numeric")
})

test_that("a name not in the data set returns an empty data frame", {
 expect_equal(nrow(missing), 0)
})

test_that("capitalization of name matches what was passed to it", {
 expect_equal(gender("Marie", method = "napp")$name, "Marie")
})

test_that("different countries can be specified", {
 sweden <- gender("Hilde", method = "napp", countries = "Sweden")
 scandinavia <- gender("Claude", method = "napp",
 countries = c("Sweden", "Norway"))
 expect_false(sweden$proportion_male == scandinavia$proportion_male)
})

source("sample-data.r")
context("SSA method")

Test a single name
single <- gender("Madison", method = "ssa", years = c(2000, 2001))

Test multiple names with different years
multiple_diff <- Map(gender, sample_names_data, sample_years_ssa,
 method = "ssa") %>%
 do.call(rbind.data.frame, .)

test_that("a single name can be encoded", {
 # Madison was female in the SSA period
 expect_that(single$gender, equals("female"))
})

test_that("a single name returns a list with the name, gender, and proportions", {
 expect_is(single, "data.frame")
 expect_that(length(single), equals(6))
 expect_that(names(single), equals(c("name", "proportion_male",
 "proportion_female", "gender",
 "year_min", "year_max")))
})

test_that("the returned list has items with the correct types", {
 expect_is(single$name, "character")
 expect_is(single$proportion_female, "numeric")
 expect_is(single$proportion_male, "numeric")
 expect_is(single$gender, "character")
 expect_is(single$year_min, "numeric")
 expect_is(single$year_max, "numeric")
})

test_that("Correct predictions from skewed SSA data", {
 # For rationale see https://github.com/ropensci/gender/issues/9
 expect_that(gender("merle", method = "ssa", years = 1901)$gender,
 equals("male"))
 expect_that(gender("merle", method = "ssa", years = c(1901, 1903))$gender,
 equals("male"))
})

test_that("capitalization of name matches what was passed to it", {
 marie <- gender("Marie", years = 1978, method = "ssa")
 expect_equal(marie$name, "Marie")
})

