rm(list=ls(all=t))
filename <- "Malawi_Child_Public Use" # !!!Update filename
functions_vers <- "functions_1.7.R" # !!!Update helper functions file
source (functions_vers)
Visually inspect variables in "dictionary.csv" and flag for risk, using the following flags:
# Direct PII: Respondent Names, Addresses, Identification Numbers, Phone Numbers
# Direct PII-team: Interviewer Names, other field team names
# Indirect PII-ordinal: Date of birth, Age, income, education, household composition.
# Indirect PII-categorical: Gender, education, ethnicity, nationality,
# occupation, employer, head of household, marital status
# GPS: Longitude, Latitude
# Small Location: Location (<100,000)
# Large Location (>100,000)
# Weight: weightVar
# Household ID: hhId,
# Open-ends: Review responses for any sensitive information, redact as necessary
# !!!No Direct PII
# !!!No Direct PII-team
# !!!Include relevant variables, but check their population size first to confirm they are <100,000
locvars <- c("community",
"b_community",
"e_community",
"b_ta",
"b_comm")
mydata <- encode_location (variables= locvars, missing=999999)
## [1] "Frequency table before encoding"
## community. Community
## Chaola Chazim'bobo Chikho 2 Chinyata Choumba Kakoloha
## 10417 363 313 1146 657 627 288
## Kanongo Luwira Mafuta Mkombezi Mlambe Mzokoto Nanzomba
## 842 237 345 552 496 625 584
## Ndaula Nyongani Pondani Tamanimwendo Waliranji
## 729 73 596 552 811
## [1] "Frequency table after encoding"
## community. Community
## 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
## 73 657 288 10417 552 237 496 842 552 363 596 345 1146 627 625 729
## 857 858 859
## 811 313 584
## [1] "Frequency table before encoding"
## b_community. b_Community
## Chaola Chazim'bobo Chikho 2 Chinyata Choumba Kakoloha
## 18844 65 64 161 73 88 40
## Kanongo Luwira Mafuta Mkombezi Mlambe Mzokoto Nanzomba
## 92 52 55 76 72 76 79
## Ndaula Nyongani Pondani Tamanimwendo Waliranji
## 101 4 115 68 128
## [1] "Frequency table after encoding"
## b_community. b_Community
## 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
## 92 4 18844 55 40 128 76 65 79 52 64 68 72 161 76 88
## 1017 1018 1019
## 101 115 73
## [1] "Frequency table before encoding"
## e_community. e_Community
## Chaola Chazim'bobo Chikho 2 Chinyata Choumba Kakoloha
## 10417 363 313 1146 657 627 288
## Kanongo Luwira Mafuta Mkombezi Mlambe Mzokoto Nanzomba
## 842 237 345 552 496 625 584
## Ndaula Nyongani Pondani Tamanimwendo Waliranji
## 729 73 596 552 811
## [1] "Frequency table after encoding"
## e_community. e_Community
## 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
## 842 811 496 584 1146 552 729 363 657 625 313 288 73 345 10417 596
## 773 774 775
## 552 237 627
## [1] "Frequency table before encoding"
## b_ta. b_Traditional Authority
## KASAKULA MAVWERE MWANKHUNIKILA
## 11610 3273 4063 1307
## [1] "Frequency table after encoding"
## b_ta. b_Traditional Authority
## 727 728 729 730
## 1307 11610 4063 3273
## [1] "Frequency table before encoding"
## b_comm. b_Community
## CHAOLA CHAZIM'BOBO CHIKHO 2 CHINYATA CHOUMBA
## 11610 117 273 1317 556 557
## KAKOLOHA KANONGO LUWIRA MAFUTA MKOMBEZI MLAMBE
## 183 718 215 323 433 406
## MZOKOTO NANZOMBA NDAULA NYONGANI PONDANI TAMANI MWENDO
## 476 557 641 49 605 475
## WALIRANJI
## 742
## [1] "Frequency table after encoding"
## b_comm. b_Community
## 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
## 557 605 476 718 406 556 183 557 742 641 273 215 117 475 433 323
## 716 717 718
## 1317 11610 49
# Top code household composition variables with large and unusual numbers
mydata <- top_recode ("num_people", break_point=10, missing=c(888, 999999)) # Topcode cases with 10 or more household members.
## [1] "Frequency table before encoding"
## num_people. Can You Please Tell Me How Many People Live In This Household, Including Yoursel
## 2 3 4 5 6 7 8 9 10 11 12 13 14 <NA>
## 77 391 1194 2073 2379 1874 1022 473 189 115 37 4 8 10417
## [1] "Frequency table after encoding"
## num_people. Can You Please Tell Me How Many People Live In This Household, Including Yoursel
## 2 3 4 5 6 7 8 9
## 77 391 1194 2073 2379 1874 1022 473
## 10 or more <NA>
## 353 10417
mydata <- top_recode ("b_num_people", break_point=10, missing=c(888, 999999)) # Topcode cases with 10 or more household members.
## [1] "Frequency table before encoding"
## b_num_people. b_Can You Please Tell Me How Many People Live In This Household, Including Yours
## 2 3 4 5 6 7 8 9 10 11 12 14 <NA>
## 9 44 132 287 360 316 158 61 26 10 5 1 18844
## [1] "Frequency table after encoding"
## b_num_people. b_Can You Please Tell Me How Many People Live In This Household, Including Yours
## 2 3 4 5 6 7 8 9
## 9 44 132 287 360 316 158 61
## 10 or more <NA>
## 42 18844
mydata <- top_recode("b_child_number", break_point=6, missing=c(888, 999999)) # Topcode cases with 7 or more child household members.
## [1] "Frequency table before encoding"
## b_child_number. b_Child Number To Be Interviewed In This Household
## 1 2 3 4 5 6 7 8 9 <NA>
## 3676 2604 1507 629 171 46 5 2 2 11611
## [1] "Frequency table after encoding"
## b_child_number. b_Child Number To Be Interviewed In This Household
## 1 2 3 4 5 6 or more <NA>
## 3676 2604 1507 629 171 55 11611
mydata <- top_recode ("e_num_people", break_point=10, missing=c(888, 999999)) # Topcode cases with 10 or more household members.
## [1] "Frequency table before encoding"
## e_num_people. e_Can You Please Tell Me How Many People Live In This Household, Including Yours
## 2 3 4 5 6 7 8 9 10 11 12 13 14 <NA>
## 77 391 1194 2073 2379 1874 1022 473 189 115 37 4 8 10417
## [1] "Frequency table after encoding"
## e_num_people. e_Can You Please Tell Me How Many People Live In This Household, Including Yours
## 2 3 4 5 6 7 8 9
## 77 391 1194 2073 2379 1874 1022 473
## 10 or more <NA>
## 353 10417
# !!!Include relevant variables in list below (Indirect PII - Categorical, and Ordinal if not processed yet)
indirect_PII <- c("yardwork",
"bird",
"firewood",
"hrsweek",
"b_yardwork",
"b_bird",
"b_firewood",
"b_bar",
"e_num_people",
"e_yardwork",
"e_bird",
"e_firewood",
"b_youngchild_a",
"b_youngchild_b",
"b_youngchild_c",
"b_youngchild_d",
"b_youngchild_e",
"b_youngchild_f",
"b_youngchild_g",
"b_youngchild_h",
"b_youngchild_i",
"b_youngchild_j",
"b_d2_a",
"b_d2_b",
"b_d2_c",
"b_d2_d",
"b_d3c",
"b_w2a",
"b_kidelse_a",
"b_w3c_a",
"b_w2b",
"b_kidelse_b",
"b_w3c_b",
"b_w2c",
"b_kidelse_c",
"b_w3c_c",
"b_w2d",
"b_kidelse_d",
"b_w3c_d",
"b_w2e",
"b_kidelse_e",
"b_w3c_e",
"b_w2f",
"b_kidelse_f",
"b_w3c_f",
"b_w2g",
"b_kidelse_g",
"b_w3c_g",
"b_w2h",
"b_kidelse_h",
"b_w3c_h",
"b_w2i",
"b_kidelse_i",
"b_w3c_i",
"b_w2j",
"b_kidelse_j",
"b_w3c_j",
"b_w2k",
"b_w2l",
"b_w3c_l",
"b_w2m",
"b_kidelse_m",
"b_w3c_m",
"b_w2o",
"b_kidelse_o",
"b_w3c_o",
"b_w2p",
"b_kidelse_p",
"b_w3c_p",
"b_w2q",
"b_kidelse_q",
"b_w3c_q",
"b_w2r",
"b_kidelse_r",
"b_w3c_r",
"b_kidtobseas",
"b_w4a",
"b_w4b",
"b_w5",
"b_hw1a",
"b_hw1b",
"b_hw1c",
"b_hw1d",
"b_hw1e",
"b_hw1f",
"b_hw1g",
"b_hw1i",
"b_hw1k",
"b_hw1m",
"b_hw1n",
"b_hw1o",
"b_hw2",
"b_hw3",
"b_hw4a",
"b_hw4b",
"b_hw4c",
"b_hw4d",
"b_hw4e",
"b_hw4f",
"b_hw4g",
"b_hw4h",
"b_hw4i",
"b_hw4j",
"b_hw4k",
"b_hw4l",
"b_hw4m",
"b_hw4n",
"b_hw5a",
"b_hw5b",
"b_hw5c",
"b_hw5d",
"e_youndchild_a",
"e_youndchild_b",
"e_youndchild_c",
"e_youndchild_d",
"e_youndchild_e",
"e_youndchild_f",
"e_youndchild_g",
"e_youndchild_h",
"e_youndchild_i",
"e_youndchild_j",
"e_d3c",
"e_kidemp_a",
"e_kidemp_b",
"e_kidemp_c",
"e_kidemp_d",
"e_kidemp_e",
"e_kidemp_f",
"e_kidemp_g",
"e_kidemp_h",
"e_kidemp_i",
"e_kidemp_j",
"e_kidemp_k",
"e_kidemp_l",
"e_kidemp_m",
"e_kidemp_n",
"e_kidemp_o",
"e_kidemp_p",
"e_kidemp_q",
"e_kidemp_r",
"e_kidelse_b",
"e_kidelse_c",
"e_kidelse_d",
"e_kidelse_e",
"e_kidelse_f",
"e_kidelse_g",
"e_kidelse_h",
"e_kidelse_i",
"e_kidelse_j",
"e_kidelse_k",
"e_kidelse_l",
"e_kidelse_m",
"e_kidelse_n",
"e_kidelse_o",
"e_kidelse_p",
"e_kidelse_q",
"e_kidelse_r",
"e_w3_4a",
"e_w3_4b",
"e_w3_4c",
"e_w3_4d",
"e_w3_4e",
"e_w3_4h",
"e_w3_4i",
"e_w3_4j",
"e_w3_4l",
"e_w3_4n",
"e_w3_4o",
"e_w3_4p",
"e_w3_4q",
"e_w3_4r",
"e_tobseas",
"e_w4a",
"e_w4b",
"e_w5",
"e_hw1_f",
"e_hw1_g",
"e_hw1_l",
"e_hw1_m",
"e_hw1_n",
"e_hw1_o",
"e_hw2",
"e_hw3",
"e_hw3_e",
"e_hw4_a",
"e_hw4_b",
"e_hw4_c",
"e_hw4_d",
"e_hw4_e",
"e_hw4_h",
"e_hw4_i",
"e_hw4_j",
"e_hw4_k",
"e_hw4_l",
"e_hw4_m",
"e_hw4_n",
"e_hw5_a",
"e_hw5_b",
"e_hw5_c")
capture_tables (indirect_PII)
# Recode those with very specific values.
# Based on dictionary inspection, select variables for creating sdcMicro object
# See: https://sdcpractice.readthedocs.io/en/latest/anon_methods.html
# All variable names should correspond to the names in the data file
# selected categorical key variables: gender, occupation/education and age
selectedKeyVars = c("sex_","childage", "b_d4") ##!!! Replace with candidate categorical demo vars
selectedHouseholdID = c('hhid') ##!!! Replace with household id
# creating the sdcMicro object with the assigned variables
sdcInitial <- createSdcObj(dat = mydata, keyVars = selectedKeyVars,
hhId = selectedHouseholdID)
## Warning in cbind(reshier, unique(dataX[, 1])): number of rows of result is not a multiple of
## vector length (arg 1)
sdcInitial
## The input dataset consists of 20253 rows and 724 variables.
## --> Categorical key variables: sex_, childage, b_d4
## --> Cluster/Household-Id variable: hhid
## ----------------------------------------------------------------------
## Information on categorical key variables:
##
## Reported is the number, mean size and size of the smallest category >0 for recoded variables.
## In parenthesis, the same statistics are shown for the unmodified data.
## Note: NA (missings) are counted as seperate categories!
## Key Variable Number of categories Mean size Size of smallest (>0)
## sex_ 3 (3) 4918.000 (4918.000) 4821 (4821)
## childage 14 (14) 893.077 (893.077) 537 (537)
## b_d4 16 (16) 207.933 (207.933) 1 (1)
## ----------------------------------------------------------------------
## Infos on 2/3-Anonymity:
##
## Number of observations violating
## - 2-anonymity: 0 (0.000%)
## - 3-anonymity: 0 (0.000%)
## - 5-anonymity: 0 (0.000%)
##
## ----------------------------------------------------------------------
# !!! No Open-Ends
# !!! No GPS data
Adds "_PU" (Public Use) to the end of the name
haven::write_dta(mydata, paste0(filename, "_PU.dta"))
haven::write_sav(mydata, paste0(filename, "_PU.sav"))
# Add report title dynamically
title_var <- paste0("DOL-ILAB SDC - ", filename)